ERKENNTNISSCHICHTEN – Das volle Programm…

 

  1. Wir beginnen mit einem Erkenntnisbegriff, der im subjektiven Erleben ansetzt. Alles, was sich subjektiv als ‚Gegeben‘ ansehen kann, ist ein ‚primärer‘ ‚Erkenntnisinhalt‘ (oft auch ‚Phänomen‘ [PH] genannt).

  2. Gleichzeitig mit den primären Erkenntnisinhalten haben wir ein ‚Wissen‘ um ’sekundäre‘ Eigenschaften von Erkenntnisinhalten wie ‚wahrgenommen‘, ‚erinnert‘, ‚gleichzeitig‘, ‚vorher – nachher‘, ‚Instanz einer Klasse‘, ‚innen – außen‘, und mehr.

  3. Auf der Basis der primären und sekundären Erkenntnisse lassen sich schrittweise komplexe Strukturen aufbauen, die das subjektive Erkennen aus der ‚Innensicht‘ beschreiben (‚phänomenologisch‘, [TH_ph]), aber darin auch eine systematische Verortung von ‚empirischem Wissen‘ erlaubt.

  4. Mit der Bestimmung des ‚empirischen‘ Wissens lassen sich dann Strukturen der ‚intersubjektiven Körperwelt‘ beschreiben, die weit über das ’subjektive/ phänomenologische‘ Wissen hinausreichen [TH_emp], obgleich sie als ‚Erlebtes‘ nicht aus dem Bereich der Phänomene hinausführen.

  5. Unter Einbeziehung des empirischen Wissens lassen sich Hypothesen über Strukturen bilden, innerhalb deren das subjektive Wissen ‚eingebettet‘ erscheint.

  6. Der Ausgangspunkt bildet die Verortung des subjektiven Wissens im ‚Gehirn‘ [NN], das wiederum zu einem ‚Körper‘ [BD] gehört.

  7. Ein Körper stellt sich dar als ein hochkomplexes Gebilde aus einer Vielzahl von Organen oder organähnlichen Strukturen, die miteinander in vielfältigen Austauschbeziehungen (‚Kommunikation‘) stehen und wo jedes Organ spezifische Funktionen erfüllt, deren Zusammenwirken eine ‚Gesamtleistung‘ [f_bd] des Input-Output-Systems Körpers ergibt. Jedes Organ besteht aus einer Vielzahl von ‚Zellen‘ [CL], die nach bestimmten Zeitintervallen ‚absterben‘ und ‚erneuert‘ werden.

  8. Zellen, Organe und Körper entstehen nicht aus dem ‚Nichts‘ sondern beruhen auf ‚biologischen Bauplänen‘ (kodiert in speziellen ‚Molekülen‘) [GEN], die Informationen vorgeben, auf welche Weise Wachstumsprozesse (auch ‚Ontogenese‘ genannt) organisiert werden sollen, deren Ergebnis dann einzelne Zellen, Zellverbände, Organe und ganze Körper sind (auch ‚Phänotyp‘ genannt). Diese Wachstumsprozesse sind ’sensibel‘ für Umgebungsbedingungen (man kann dies auch ‚interaktiv‘ nennen). Insofern sind sie nicht vollständig ‚deterministisch‘. Das ‚Ergebnis‘ eines solchen Wachstumsprozesses kann bei gleicher Ausgangsinformation anders aussehen. Dazu gehört auch, dass die biologischen Baupläne selbst verändert werden können, sodass sich die Mitglieder einer Population [POP] im Laufe der Zeit schrittweise verändern können (man spricht hier auch von ‚Phylogenese‘).

  9. Nimmt man diese Hinweise auf Strukturen und deren ‚Schichtungen‘ auf, dann kann man u.a. zu dem Bild kommen, was ich zuvor schon mal unter dem Titel ‚Emergenz des Geistes?‘ beschrieben hatte. In dem damaligen Beitrag hatte ich speziell abgehoben auf mögliche funktionale Unterschiede der beobachtbaren Komplexitätsbildung.

  10. In der aktuellen Reflexion liegt das Augenmerk mehr auf dem Faktum der Komplexitätsebene allgemein. So spannen z.B. die Menge der bekannten ‚Atome‘ [ATOM] einen bestimmten Möglichkeitsraum für theoretisch denkbare ‚Kombinationen von Atomen‘ [MOL] auf. Die tatsächlich feststellbaren Moleküle [MOL‘] bilden gegenüber MOL nur eine Teilmenge MOL‘ MOL. Die Zusammenführung einzelner Atome {a_1, a_2, …, a_n} ATOM zu einem Atomverband in Form eines Moleküls [m in MOL‘] führt zu einem Zustand, in dem das einzelne Atom a_i mit seinen individuellen Eigenschaften nicht mehr erkennbar ist; die neue größere Einheit, das Molekül zeigt neue Eigenschaften, die dem ganzen Gebilde Molekül m_j zukommen, also {a_1, a_2, …, a_n} m_i (mit {a_1, a_2, …, a_n} als ‚Bestandteilen‘ des Moleküls m_i).

  11. Wie wir heute wissen, ist aber auch schon das Atom eine Größe, die in sich weiter zerlegt werden kann in ‚atomare Bestandteile‘ (‚Quanten‘, ‚Teilchen‘, ‚Partikel‘, …[QUANT]), denen individuelle Eigenschaften zugeordnet werden können, die auf der ‚Ebene‘ des Atoms verschwinden, also auch hier wenn {q_1, q_2, …, q_n} QUANT und {q_1, q_2, …, q_n} die Bestandteile eines Atoms a_i sind, dann gilt {q_1, q_2, …, q_n} a_i.

  12. Wie weit sich unterhalb der Quanten weitere Komplexitätsebenen befinden, ist momentan unklar. Sicher ist nur, dass alle diese unterscheidbaren Komplexitätsebenen im Bereich ‚materieller‘ Strukturen aufgrund von Einsteins Formel E=mc^2 letztlich ein Pendant haben als reine ‚Energie‘. Letztlich handelt es sich also bei all diesen Unterschieden um ‚Zustandsformen‘ von ‚Energie‘.

  13. Entsprechend kann man die Komplexitätsbetrachtungen ausgehend von den Atomen über Moleküle, Molekülverbände, Zellen usw. immer weiter ausdehnen.

  14. Generell haben wir eine ‚Grundmenge‘ [M], die minimale Eigenschaften [PROP] besitzt, die in einer gegebenen Umgebung [ENV] dazu führen können, dass sich eine Teilmenge [M‘] von M mit {m_1, m_2, …, m_n} M‘ zu einer neuen Einheit p={q_1, q_2, …, q_n} mit p M‘ bildet (hier wird oft die Bezeichnung ‚Emergenz‘ benutzt). Angenommen, die Anzahl der Menge M beträgt 3 Elemente |M|=3, dann könnte man daraus im einfachen Fall die Kombinationen {(1,2), (1,3), (2,3), (1,2,3)} bilden, wenn keine Doubletten zulässig wären. Mit Doubletten könnte man unendliche viele Kombinationen bilden {(1,1), (1,1,1), (1,1,….,1), (1,2), (1,1,2), (1,1,2,2,…),…}. Wie wir von empirischen Molekülen wissen, sind Doubletten sehr wohl erlaubt. Nennen wir M* die Menge aller Kombinationen aus M‘ (einschließlich von beliebigen Doubletten), dann wird rein mathematisch die Menge der möglichen Kombinationen M* gegenüber der Grundmenge M‘ vergrößert, wenngleich die Grundmenge M‘ als ‚endlich‘ angenommen werden muss und von daher die Menge M* eine ‚innere Begrenzung‘ erfährt (Falls M’={1,2}, dann könnte ich zwar M* theoretisch beliebig groß denken {(1,1), (1,1,1…), (1,2), (1,2,2), …}, doch ‚real‘ hätte ich nur M*={(1,2)}. Von daher sollte man vielleicht immer M*(M‘) schreiben, um die Erinnerung an diese implizite Beschränkung wach zu halten.

  15. Ein anderer Aspekt ist der Übergang [emer] von einer ’niedrigerem‘ Komplexitätsniveau CL_i-1 zu einem höheren Komplexitätsniveau CL_i, also emer: CL_i-1 —> CL_i. In den meisten Fällen sind die genauen ‚Gesetze‘, nach denen solch ein Übergang stattfindet, zu Beginn nicht bekannt. In diesem Fall kann man aber einfach ‚zählen‘ und nach ‚Wahrscheinlichkeiten‘ Ausschau halten. Allerdings gibt es zwischen einer ‚reinen‘ Wahrscheinlich (absolute Gleichverteilung) und einer ‚100%-Regel‘ (Immer dann wenn_X_dann geschieht_Y_) ein Kontinuum von Wahrscheinlichkeiten (‚Wahrscheinlichkeitsverteilungen‘ bzw. unterschiedlich ‚festen‘ Regeln, in denen man Z%-Regeln benutzt mit 0 < Z < 100 (bekannt sind z.B. sogenannte ‚Fuzzy-Regeln‘).

  16. Im Falle des Verhaltens von biologischen Systemen, insbesondere von Menschen, wissen wir, dass das System ‚endogene Pläne‘ entwickeln kann, wie es sich verhalten soll/ will. Betrachtet man allerdings ‚große Zahlen‘ solcher biologischer Systeme, dann fällt auf, dass diese sich entlang bestimmter Wahrscheinlichkeitsverteilungen trotzdem einheitlich verhalten. Im Falle von Sterbensraten [DEATH] einer Population mag man dies dadurch zu erklären suchen, dass das Sterben weitgehend durch die allgemeinen biologischen Parameter des Körpers abhängig ist und der persönliche ‚Wille‘ wenig Einfluß nimmt. Doch gibt es offensichtlich Umgebungsparameter [P_env_i], die Einfluss nehmen können (Klima, giftige Stoffe, Krankheitserreger,…) oder indirekt vermittelt über das individuelle ‚Verhalten‘ [SR_i], das das Sterben ‚begünstigt‘ oder ‚verzögert‘. Im Falle von Geburtenraten [BIRTH] kann man weitere Faktoren identifizieren, die die Geburtenraten zwischen verschiedenen Ländern deutlich differieren lässt, zu verschiedenen Zeiten, in verschiedenen sozialen Gruppen, usw. obgleich die Entscheidung für Geburten mehr als beim Sterben individuell vermittelt ist. Bei allem Verhalten kann man mehr oder weniger starke Einflüsse von Umgebungsparametern messen. Dies zeigt, dass die individuelle ‚Selbstbestimmung‘ des Verhaltens nicht unabhängig ist von Umgebungsparametern, die dazu führen, dass das tatsächliche Verhalten Millionen von Individuen sehr starke ‚Ähnlichkeiten‘ aufweist. Es sind diese ‚gleichförmigen Wechselwirkungen‘ die die Ausbildung von ‚Verteilungsmustern‘ ermöglichen. Die immer wieder anzutreffenden Stilisierungen von Wahrscheinlichkeitsverteilungen zu quasi ‚ontologischen Größen‘ erscheint vor diesem Hintergrund eher irreführend und verführt dazu, die Forschung dort einzustellen, wo sie eigentlich beginnen sollte.

  17. Wie schon die einfachen Beispiele zu Beginn gezeigt haben, eröffnet die nächst höhere Komplexitätstufe zunächst einmal den Möglichkeitsraum dramatisch, und zwar mit qualitativ neuen Zuständen. Betrachtet man diese ‚Komplexitätsschichtungen‘ nicht nur ‚eindimensional‘ (also z.B. in eine Richtung… CL_i-1, CL_i, CL_i+1 …) sondern ‚multidimensional‘ (d.h. eine Komplexitätsstufe CL_i kann eine Vielzahl von Elementen umfassen, die eine Komplexitätstufe j<i repräsentieren, und diese können wechselseitig interagieren (‚kommunizieren‘)), dann führt dies zu einer ‚Verdichtung‘ von Komplexität, die immer schwerer zu beschreiben ist. Eine einzige biologische Zelle funktioniert nach so einem multidimensionalen Komplexitätsmuster. Einzelne Organe können mehrere Milliarden solcher multidimensionaler Einheiten umfassen. Jeder Körper hat viele solcher Organe die miteinander wechselwirken. Die Koordinierung aller dieser Elemente zu einer prägnanten Gesamtleistung übersteigt unsere Vorstellungskraft bei weitem. Dennoch funktioniert dies in jeder Sekunde in jedem Körper Billionenfach, ohne dass das ‚Bewusstsein‘ eines biologischen Systems dies ‚mitbekommt‘.

  18. Was haben all diese Komplexitätstufen mit ‚Erkenntnis‘ zu tun? Nimmt man unser bewusstes Erleben mit den damit verknüpften ‚Erkenntnissen‘ zum Ausgangspunkt und erklärt diese Form von Erkenntnis zur ‚Norm‘ für das, was Erkenntnis ist, dann haben all diese Komplexitätsstufen zunächst nichts mit Erkenntnis zu tun. Allerdings ist es dieses unser ’subjektives‘ ‚phänomenologisches‘ ‚Denken‘, das all die erwähnten ‚Komplexitäten‘ im Denken ’sichtbar‘ macht. Ob es noch andere Formen von Komplexität gibt, das wissen wir nicht, da wir nicht wissen, welche Form von Erkenntnis unsere subjektive Erkenntnisform von vornherein ‚ausblendet‘ bzw. aufgrund ihrer Beschaffenheit in keiner Weise ‚erkennt‘. Dies klingt paradox, aber in der Tat hat unser subjektives Denken die Eigenschaft, dass es durch Verbindung mit einem Körper einen indirekt vermittelten Bezug zur ‚Körperwelt jenseits des Bewusstseins‘ herstellen kann, der so ist, dass wir die ‚Innewohnung‘ unseres subjektiven Erkennens in einem bestimmten Körper mit dem Organ ‚Gehirn‘ als Arbeitshypothese formulieren können. Darauf aufbauend können wir mit diesem Körper, seinem Gehirn und den möglichen ‚Umwelten‘ dann gezielt Experimente durchführen, um Aufklärung darüber zu bekommen, was denn so ein Gehirn im Körper und damit korrelierend eine bestimmte Subjektivität überhaupt erkennen kann. Auf diese Weise konnten wir eine Menge über Erkenntnisgrenzen lernen, die rein aufgrund der direkten subjektiven Erkenntnis nicht zugänglich sind.

  19. Diese neuen Erkenntnisse aufgrund der Kooperation von Biologie, Psychologie, Physiologie, Gehirnwissenschaft sowie Philosophie legen nahe, dass wir das subjektive Phänomen der Erkenntnis nicht isoliert betrachten, sondern als ein Phänomen innerhalb einer multidimensionalen Komplexitätskugel, in der die Komplexitätsstrukturen, die zeitlich vor einem bewussten Erkennen vorhanden waren, letztlich die ‚Voraussetzungen‘ für das Phänomen des subjektiven Erkennens bilden.

  20. Gilt im bekannten Universum generell, dass sich die Systeme gegenseitig beeinflussen können, so kommt bei den biologischen Systemen mit ‚Bewusstsein‘ eine qualitativ neue Komponente hinzu: diese Systeme können sich aktiv ein ‚Bild‘ (‚Modell‘) ihrer Umgebung, von sich selbst sowie von der stattfindenden ‚Dynamik‘ machen und sie können zusätzlich ihr Verhalten mit Hilfe des konstruierten Bildes ’steuern‘. In dem Masse, wie die so konstruierten Bilder (‚Erkenntnisse‘, ‚Theorien‘,…) die tatsächlichen Eigenschaften der umgebenden Welt ‚treffen‘ und die biologischen Systeme ‚technologische Wege‘ finden, die ‚herrschenden Gesetze‘ hinreichend zu ‚kontrollieren‘, in dem Masse können sie im Prinzip nach und nach das gesamte Universum (mit all seinen ungeheuren Energien) unter eine weitreichende Kontrolle bringen.

  21. Das einzig wirkliche Problem für dieses Unterfangen liegt in der unglaublichen Komplexität des vorfindlichen Universums auf der einen Seite und den extrem beschränkten geistigen Fähigkeiten des einzelnen Gehirns. Das Zusammenwirken vieler Gehirne ist absolut notwendig, sehr wahrscheinlich ergänzt um leistungsfähige künstliche Strukturen sowie evtl. ergänzt um gezielte genetische Weiterentwicklungen. Das Problem wird kodiert durch das Wort ‚gezielt‘: Hier wird ein Wissen vorausgesetzt das wir so eindeutig noch nicht haben Es besteht ferner der Eindruck, dass die bisherige Forschung und Forschungsförderung diese zentralen Bereiche weltweit kum fördert. Es fehlt an brauchbaren Konzepten.

Eine Übersicht über alle bisherigen Beiträge findet sich hier

Schreibe einen Kommentar