PHILOSOPHIEWERKSTATT VOM 11.Januar 2014 – Rückblick – Lernen braucht Wissen und Emotionen

Letzte Änderung: Mo 12.Jan.2014 (Strukturierung, Am Ende Ausblick mit Terminen und Programmvorschlag)

ZUSAMMENFASSUNG

1) Mittlerweile liegt die dritte PHILOSOPHIEWERKSTATT 11.Jan.2014 hinter uns. Wie schon die letzten Male waren es sehr intensive Gespräche, die entstanden. Das tatsächliche Programm wich vom Plan ein wenig ab. Der Rückblick verlief wie geplant, war aber in sich schon ziemlich intensiv. Es gab dann eine längere Pause mit Essen, Trinken und viel Reden. Es folgte dann der neue Input zum Thema ‚Sind Emotionen (im weitesten Sinne) für ein Lernen notwendig?‘. Damit knüpften wir nochmals an das gemeinsame Brainatorming vom 14.Dez.2013 an; außerdem passte es gut zum Rückblick.
2) Kurz zusammengefasst waren die Überlegungen etwa wie folgt: bei einem komplexen System wie einem Tier oder gar einem Menschen ist eine klare Beschreibung von ‚Wissen‘ und ‚Emotionen (i.w.S.)‘ schwer bis unmöglich. Die meisten Menschen haben zum Thema zwar eine Meinung in ihrem Alltag, aber bei genaueren Nachfragen ist es kaum möglich, zu klären, was jemand meint, wenn er nach seinem ‚Bauchgefühl‘ entscheidet: Wann tut er das? Wie? Gibt es Unterschiede? usw. Dass stark Emotionen das Verhalten allgemein und das Lernen insbesondere beeinflussen können, scheint aufgrund der Alltagserfahrung klar zu sein.

EXPERIMENT ZU ‚EMOTION UND WISSEN‘

3) Die Frage ist also, ob es ein Experiment geben könnte, das einfach genug ist, und doch so, dass man alle beteiligten Komponenten ‚klar‘ verstehen und kontrollieren kann, das zugleich aber noch aussagekräftig genug ist, um zum Verhältnis von ‚Wissen‘ und Emotionen‘ etwas sagen zu können.

PSYCHOLOGIE UND INFORMATIK

4) Der Vortragende wählte dazu eine Kombination aus Psychologie und Informatik. Die Psychologen haben zu Beginn des 20.Jahrhunderts gelernt, wie sie ‚Intelligenz‘ messen können, ohne zu wissen, was ‚Intelligenz‘ in einem Lebewesen genau ist. Die Methode, die ‚Intelligenz‘ eines Systems durch Bezugnahme auf das Verhalten bei der Lösung einer Menge von Aufgaben zu beschreiben, dadurch zu quantifizieren, und damit ‚vergleichbar‘ zu machen, ist nicht auf Menschen beschränkt. Man kann damit auch Tiere messen und auch — heute — Computer. Damit könnte man bezogen auf ein definiertes Aufgabenset feststellen, in welchem Ausmaß ein Computer und ein Menschen ‚verhaltensmäßig übereinstimmen‘ oder nicht.

COMPUTER: WAS IST DAS?

5) Bei dieser Gelegenheit gab es einen Hinweis auf den Begriff ‚Computer‘. Die meisten Menschen verbinden mit dem Begriff ‚Computer‘ die konkreten Geräte, mit denen man im Alltag arbeitet (Smartphones, Tablets, eReader, PCs,…). Dies ist nicht ganz falsch, da alle diese Geräte beispielhafte Realisierungen des abstrakten Konzeptes eines berechnenden Automaten sind, das historisch bedeutsam im Kontext des Grundlagenstreits der Mathematik zu Beginn des 20.Jahrhunderts von Turing 1936/7 in die Diskussion eingeführt worden ist. Er hatte versucht, den Beweis von Gödel von 1931, zu den Grenzen der Entscheidbarkeit mathematischer Theorien, mit anderen Mitteln als Gödel sie benutzt hatte, vorzunehmen, um den Beweis dadurch möglicherweise verständlicher zu machen (was Gödel persönlich auch so sah; Gödel war nämlich mit seinem eigenen Beweis unzufrieden gewesen, und hatte Turings Lösungsansatz in einer Rede in Princeton ausdrücklich als ‚verständlicher‘ gelobt). Am Beispiel eines Büroangestellten, der mit einem Schreibstift auf einem Blatt Papier seine Zahlen notiert und rechnet, hatte Gödel das Konzept der maximal einfachen Maschine für maximal komplexe Aufgaben formuliert, die alles, was mit endlichen Mitteln berechenbar ist, berechnen kann. Später wurde diese seine abstrakte Maschine ihm zu Ehren Turingmaschine genannt. Während eine Turingmaschine duch die Unendlichkeit des Schreib-Lesebandes letztlich einen unendlich großen Speicher besitzt, hat jede konkrete gebaute Maschine, die wie eine Turingmaschine arbeitet, immer nur einen endlichen Speicher. In diesem Sinne kann ein realer Computer die Leistung einer idealen Turingmaschine immer nur annähern.
6) Was ein Computer im Stil einer Turingmaschine letztlich alles ‚tun‘ kann, hängt davon ab, wie man ihn programmiert. Bislang werden Programme für bestimmte klar umrissene Aufgaben geschrieben, und man erwartet, dass das Programm in einer bestimmten Situation genau das tut, was man von ihm erwartet (einen Text schreiben; Bremsen, wenn man auf das Bremspedal tritt; einen Alarm geben, wenn ein bestimmter Wert gefährlich überschritten wird; usw.). Programme, die in diesem Sinne ‚erwartungskonform‘ sind, sind ‚deterministisch‘, sind ‚reaktiv‘, d.h. sie sind in ihrem Verhalten genau festgelegt. Dass die meisten Menschen vor diesem Alltagshintergrund davon ausgehen, dass Computer ja eigentlich ‚dumm‘ sind, ist nachvollziehbar.
7) Allerdings ist dieser Eindruck auch irreführend, denn Computer ‚als solche‘ können im Prinzip alles, was ‚berechenbar‘ ist, d.h. auch ‚Denken‘, ‚Fühlen‘, usw., wenn man sie nur ‚lässt‘. Die meisten übersehen, dass wir Menschen alle unsere wunderbaren Eigenschaften nicht haben, weil wir sie ‚gelernt‘ haben, sondern weil unser Körper und unser Gehirn in bestimmter Weise so vorgeprägt ist, dass wir überhaupt ‚Wahrnehmen‘, ‚Erinnern‘, ‚Denken‘ usw. können.

Experimenteller Rahmen, offen für Philosophie, Psychologie und Neurowissenschaften

Experimenteller Rahmen, offen für Philosophie, Psychologie und Neurowissenschaften

OFFENE SYSTEME, REAKTIV UND ADAPTIV

8) Die strukturellen Gemeinsamkeiten zwischen uns Menschen und einem möglichen Computer werden deutlich, wenn man sowohl Menschen als auch Computer abstrakt als ‚Input-Output-Systeme‘ betrachtet. Sowohl vom Menschen wie auch vom Computer können wir annehmen, dass sie auf spezifische Weise Ereignisse aus der ‚Umgebung‘ (der ‚Welt‘ (W)) aufnehmen können (Sinnesorgane, Sensoren, Leseband), die wir hier abstrakt einfach als ‚Systeminput‘ oder einfach ‚Input‘ (I) bezeichnen. Genauso können wir annehmen, dass Menschen wie Computer auf die Welt (W) zurückwirken können (über diverse Aktoren, Schreibband). Die Menge dieser Rückwirkungen bezeichnen wir hier als ‚Output‘ (O). Ferner gehen wir immer davon aus, dass es zwischen dem beobachtbaren Output ‚O‘ und dem beobachtbaren Input ‚I‘ einen irgendwie gearteten ‚gesetzmäßigen‘ oder ‚regelhaften‘ Zusammenhang gibt, den wir hier einfach ‚phi‘ nennen, also ‚phi‘ ordnet dem Input ‚I‘ auf spezifische Weise einen bestimmten Output ‚O‘ zu. Die Mathematiker sprechen in diesem Zusammenhang von einer ‚Abbildung‘ oder ‚Funktion‘, geschrieben z.B. als ‚phi: I —> O‘. Die Informatiker sprechen von einem ‚Algorithmus‘ oder einem ‚Programm‘. Gemeint ist in allen Fällen das Gleiche.
9) In der Form ‚phi‘ ordnet dem Input ‚I‘ einen Output ‚O‘ zu wissen wir so gut wie nichts über die innere Struktur des Systems. Dies ändert sich, wenn wir zusätzlich den Begriff ‚innere Zustände‘ (‚inner states‘, IS) einführen. Damit können wir das Reden über ein System nahezu beliebig verfeinern. Diese inneren Zustände ‚IS‘ können ‚Neuronen‘ sein, ‚Erlebnisse‘ (‚Qualia‘), chemische Prozesse, was immer man braucht. Die Einbeziehung der inneren Zustände ‚IS‘ erlaubt sogleich einige interessante Differenzierungen.
10) Zunächst mal können wir unsere Redeweise erweitern zu ‚phi‘ ordnet einem Input ‚I‘ mit Hilfe der aktuellen inneren Zustände ‚IS‘ einen entsprechenden Output ‚O‘ zu, phi: I x IS —> O. Das heißt, die inneren Zustände ‚IS‘, was immer diese im einzelnen genau sind, sind ‚mitursächlich‘ dafür, dass dieser bestimmte Output ‚O‘ zustande kommt. Bsp: Wenn ich bei einem Getränkeautomaten ein Getränk auswähle, das geforderte Geld einwerfe und dann auf Ausführung drücke, dann wird der Automat (falls er nicht ‚defekt‘ ist) mir das gewählte Getränk ausgeben. Er wird immer nur das tun, und nichts anderes.
11) Von lernenden Systemen wie Tieren oder Menschen wissen wir, dass ihre Reaktionen (ihr Output ‚O‘) sich im Laufe der Zeit ändern können, weil sie ‚durch Lernen‘ ihre inneren Zustände ‚IS‘ ändern können. In diesem Fall müssten wir von der Verhaltensfunktion ‚phi‘ sagen: ‚phi‘ ordnet dem aktuellen Input ‚I‘ und unter Berücksichtigung der aktuellen internen Zustände ‚IS‘ nicht nur einen bestimmten Output ‚O‘ zu, sondern kann auch dabei gleichzeitig seine eigenen internen Zustände ‚IS‘ in spezifischer Weise ‚ändern‘, also phi: I x IS —> IS x O. Ein ‚lernendes‘ System ist in diesem Sinne ’selbstveränderlich‘, ‚adaptiv‘, ‚anpassungsfähig‘ usw.
12) Der wichtige Punkt hier ist nun, dass diese adaptive Verhaltensformel ( phi: I x IS —> IS x O) nicht nur auf Tiere und Menschen anwendbar ist, sondern auch — ohne Einschränkungen — auf das Konzept des Computers. Dass wir bis heute kaum wirklich lernfähige Computer haben, liegt vor allem an zwei Gründen: (i) im Alltag wollen wir lieber ‚dumme‘ Maschinen, weil sie uns für bestimmte Zwecke klare Erwartungen erfüllen sollen; (ii) zum anderen gibt es nahezu kaum Programmierer, die wissen, wie man ein lernfähiges Programm schreibt. Der Begriff ‚Künstliche Intelligenz‘ (KI) (bzw. Engl.: ‚artificial intelligence‘ (AI)) existiert zwar seit Beginn des Denkens über und Entwickelns von Computern, aber da wir bis heute nur rudimentäre Vorstellungen davon haben, was Lernen beim Menschen bedeutet, weiß keiner so recht, wie er einen Computer programmieren soll, der die Intelligenz von Menschen hinreichend ’nachahmt‘. In einer typischen Informatikausbildung in Deutschland kommt weder Psychologie noch Neurowissenschaften vor. Dazu muss man sagen, dass die Nachfrage nach lernfähigen Computern in der Realität bislang auch gering war (in vielen Filmen über intelligente Maschinen wird das Thema ausgiebig durchgespielt; dort meist negativ besetzt: die ‚bösen‘ Maschinen, die die Menschheit ausrotten wollen).

VERSCHIEDENE SICHTEN DER WISSENSCHAFTEN

13) Im vorausgehenden Schaubild wird aber auch noch etwas anderes angedeutet, was in den vorausgegangenen Sitzungen immer wieder mal anklang: Ich kann den Menschen von verschiedenen Blickpunkten aus betrachten: (NN) Von den Neuronen des Gehirns aus (Neurowissenschaften); (SR) vom beobachtbaren Verhalten aus (Psychologie); (PHN) Von den Phänomenen des Bewusstseins aus (Philosophie, Phänomenologie), oder in Kombinationen: (NN-SR) Neuro-Psychologie; (NN-PHN) Neuro-Phänomenologie; (PHN-SR) Phänomenologische Psychologie. Das Problem hierbei ist (was sehr oft übersehen wird), dass es zwischen den drei Sehweisen NN, SR und PHN keine direkten Verbindungen gibt: Das Neuron als solches sagt nichts über das Verhalten oder über Bewusstseinstatbestände; ein beobachtbares Verhalten sagt nichts über Neuronen oder Bewusstseinstatbestände; ein bewusstes Erlebnis sagt nichts über Neuronen oder beobachtbares Verhalten. Eine Verbindung zwischen diesen verschiedenen Sehweisen herzustellen ist von daher kein Selbstläufer, sondern eine eigenständige Leistung mit hohen methodischen Anforderungen (man sollte nicht überrascht sein, wenn man ein Buch mit dem Begriff ‚Neuropsychologie‘ aufschlägt und man findet auf keiner Seite die entsprechenden methodischen Maßnahmen….).
14) Für das vorgesehene Experiment soll die verhaltensorientierte Sicht der Psychologie als Hauptperspektive gewählt werden. Andere Perspektiven werden nach Bedarf zugeschaltet.

BEWUSSTSEIN DER PHILOSOPHEN, DER PSYCHOLOGEN, der NEUROWISSENSCHAFTEN

15) Ohne auf Details einzugehen sei hier angenommen, dass die philosophische Perspektive eigentlich nur die Kategorie ‚Bewusstsein‘ (‚consciousness‘ (CNSC)) kennt und dazu unterschiedliche Annahmen darüber, warum das Bewusstsein so ist, wie es ist. Die verhaltensbasierte Psychologie hat eine ganze Bandbreite von Denkmodellen entwickelt, die mögliche ‚Funktionen‘ im System beschreiben. Dazu gehören recht umfangreiche Modelle zu unterschiedlichen Gedächtnisformen wie z.B. ‚Sensorisch‘ (’sensorical memory‘, (SM)), ‚Kurzzeitspeicher’/ ‚Arbeitsspeicher‘ (’short term memory‘ (STM)) und ‚Langzeitspeicher‘ (‚long term memory‘ (LTM)). Letzteres mit sehr differenzierten Teilstrukturen). Heutzutage wird eine starke Korrelation zwischen dem philosophischen Konzept ‚Bewusstsein‘ und dem psychologischen Konzept ‚Arbeitsgedächtnis‘ angenommen. Die Neurowissenschaften entdecken immer mehr Funktionale Schaltkreise im Gehirn, die wiederum auf unterschiedliche Weise (Ebenen, Hierarchien) angeordnet sind. So gibt es funktionale Schaltkreise auf einer hohen integrativen Ebene, deren Korrelation mit dem psychologischen Konzept ‚Arbeitsgedächtnis‘ und dem philosophischen Konzept ‚Bewusstsein‘ korrelieren. Doch sind diese Sachverhalte sehr komplex und keinesfalls eindeutig. Für das nachfolgende Experiment spielt dies keine Rolle. Es orientiert sich am beobachtbaren Verhalten und ist bzgl. der internen Mechanismen, die das Verhalten hervorbringen, ’neutral‘.

EXPERIMENTELLER RAHMEN (UNVOLLSTÄNDIG)

16) Der äußere Rahmen des Experiments ist jetzt also eine Welt ‚W‘, in der das lernende System ‚LS‘ irgendwelche ‚Aufgaben‘ lösen muss. Für die Erreichung einer Lösung benötigt das lernende System ‚Wissen‘. Wie dann gezeigt werden soll, reicht Wissen alleine aber nicht aus. Neben ‚Wissen‘ benötigt ein lernendes System auch etwas, wodurch das Wissen ‚bewertet‘ werden kann, andernfalls kann es nicht lernen. Eine Möglichkeit, solche ‚Bewertungen‘ vornehmen zu können, sind ‚eingebaute‘ (‚intrinsische‘, ‚endogene‘, ‚angeborene’…) Zustände, die in Form von ‚Emotionen‘ (im weitesten Sinne wie z.B. ‚Hunger‘, ‚Durst‘ (= Bedürfnisse), ‚Neugierede‘, ‚Angst‘, ‚Schmerzen‘, ‚Lust’……) auftreten und das Verhalten ‚bewerten‘ können.

Fortsetzung folgt….

Die nächsten Termine für eine Philosophie-Werkstatt sind geplant für 8. Februar, 8. März, 12. April, 10. Mai, 14. Juni 2014.

Als Programmvorschlag für 8.Febr.2014 liegt vor:

  • Teil 1: In Gruppengesprächen und Plenum klären, was der Diskussionsstand ist, was fehlt, welche Themen neu addressiert werden sollen.
  • Teil 2: Fortsetzung des Themas: Wie können Emotionen helfen, dem Wissen eine handlungsfähige Struktur zu geben?
  • Teil 3: Philosophische Begründung für ein Kunstexperiment und Realisierung eines Beispiels

Einen Überblick über alle bishrigen Blogeinträge nach Titeln findet sich HIER.

Ein Gedanke zu „PHILOSOPHIEWERKSTATT VOM 11.Januar 2014 – Rückblick – Lernen braucht Wissen und Emotionen

  1. ERGÄNZUNG PROGRAMMVORSCHLAG

    Die Veranstaltung ‚Philosophie-Werkstatt‘ ist ja noch dabei, ihre endgültige Form zu finden. Bislang scheinen folgende Aspekte wichtig zu sein:

    – Das aktive philosophische Reflektieren und Diskutieren soll im Zentrum stehen
    – Den ‚roten Faden‘ sollten die Blogbeiträge liefern, bei denen idealerweise mehrere Autoren mitwirken
    – Es kommen immer auch wieder neue TeilnehmerInnen dazu; diese sollten Gelegenheit haben, sich vorzustellen und im Gespräch die anderen kennen zu lernen
    – Die aktiven Teilnehmer sollten bei der Auswahl der Themen mitwirken oder sogar selber den einen oder anderen Beitrag bestreiten
    – Es kann auch immer ein ‚Arbeitsthema‘ geben, das sich über mehrere Sitzungen erstreckt
    – Die — philosophisch motivierte und begründete — Kunst sollte einen festen Platz bekommen. Aus diesen Aspekten wäre folgende Struktur für ein Treffen interessant:

    Teil 1: AKTUELLER STATUS
    In kleinen Gruppen, gemischt mit einem Plenum, sprechen alle Teilnehmer darüber, wie sie den aktullen Diskussionsstand sehen und klären, welche Themen ihrer Meinung nach als Hauptthema mal behandelt werden soll. Dieses Meinungsbild wird in einem Meinungsbild/ Ideendiagramm (Mind Map) festgehalten. Vorschläge für neue Themen können beim nächsten Treffen wirksam werden (inklusive Vorschlag, wer das Thema bestreitet).

    Teil 2: AKTUELLES THEMA
    Präsentation von Ideen, Materialien zu einem ausgewählten Thema mit Aussprache.

    Teil 3: PHILOSOPHIE UND KUNST
    Überlegungen zu möglichen Kunstprojekten, Vorstellungen, Aktuelle Experimente.

    PAUSEN
    Sehr wichtig sind das Ankommen, die beiden Pausen, und der Abspann. Hier finden viele intensive Gespräche statt, Klärungen, Persönliches, Brainstorming; Essen und Trinken….

    Die Philosophie-Werkstatt lebt von ihren Teilnehmern…

    Eine Philosophie-Werkstatt kann überall stattfinden…

    Rückblicke, Kommentare zu einer Philosophie-Werkstatt im Blog sind natürlich auch möglich und erwünscht…

Schreibe einen Kommentar