RINGEN UM DAS BEWUSSTSEIN: VELMANS 1995 – The Relation of Consciousness to the Material World. Diskussion

Max Velmans, The Relation of Consciousness to the Material World, Journal of Consciousness Studies, Vol.2, No.3, 1995, pp.255-265

KONTEXT

  1. Diesem Blogeintrag gingen zwei Beiträge voraus, in denen jeweils die Position von Chalmers und die von Clark aus dem gleichen Band der Zeitschrift diskutiert worden sind. Chalmers hatte mit seinem Beitrag den Band eröffnet, und alle anderen nahmen in ihren Beiträgen auf den Beitrag von Chalmers Bezug.

  2. Hier ist es Velmans, der zu Chalmers Stellung bezieht.

POSITION VON VELMANS

  1. Schon vor dem Beitrag von Chalmers 1995 hatte Velmans (1991, 1993) die Position vertreten, die Chalmers als zentrale These vorträgt, auf der alles andere aufbaut: Das Phänomen des Bewusstseins ist fundamental verschieden von den Verarbeitungsprozessen, wie wir sie im Gehirn finden. (vgl. Velmans S.256) Man kann zwar partiell subjektive Erlebnisse mit beobachtbaren Prozessen im Gehirn korrelieren, aber es erscheint extrem unwahrscheinlich (‚extremely unlikely‘), dass man solche subjektiven Phänomene auf solche neuronalen Prozesse reduzieren kann. (vgl. 256)

  2. Zwar dürfte alles, was wir als real in der Welt wahrnehmen, letztlich nur eine subjektive Wahrnehmung sein (irgendwie von der realen Welt mitverursacht), aber umgekehrt folgt aus einer Nicht-Wahrnehmung nicht zwingend, dass es in der Welt nichts gibt.

  3. Nimmt man einerseits eine Nicht-Reduzierbarkeit des Phänomens des Bewusstseins auf beobachtbare neuronale Prozesse an, will aber andererseits auch nicht einen Dualismus im Sinne Descartes vertreten, bleibt u.a. die Suche nach einer Version einer Dualen-Aspekt Theorie des Bewusstseins, wie sie Chalmers in seinem Beitrag versucht hatte.

  4. Velmans verweist in diesem Kontext auf Spinoza (1732 – 177), der in der Kritik an Descartes dessen Konzept von Geist und Materie als zwei Aspekte von etwas grundlegend Anderem in der Natur vermutet haben soll. (vgl. Velmans S.256)

  5. Analog zu Chalmers folgt Velmans der Arbeitshypothese einer Dualen-Aspekt Theorie, wobei auch er – wie Chalmers – den Begriff der Information als grundlegende Eigenschaft der Natur betrachtet (Anmerkung: im Gegensatz zu Spinoza, der hier den Begriff der Substanz verwendet).

  6. In seiner weiteren Analyse nimmt Velmans an, dass subjektive Erlebnisse repräsentierender Art (‚representational‘) seien, also über etwas (‚about something‘). Daraus schließt er, dass auch die korrelierenden neuronalen Prozesse über etwas sein müssten. Ferner nimmt er an, dass diese korrelierten repräsentierenden Prozesse und Erlebnisse identische Informationen kodieren, die eben nur auf zwei verschiedene Weisen formatiert ist. (vgl. S.257)

  7. Entgegen dieser Annahme sieht Velmans verschiedene Fälle der Diskrepanz zwischen neuronalen Prozessen, die Information verarbeiten, und dem Bewusstsein.

  8. Den meisten neuronalen Prozesse im Gehirn korrelieren keine subjektiven Erlebnisse. Auch nicht im Fall des Langzeit-Gedächtnisses oder im Falle von Blind-Sicht Patienten (‚blind-sight‘). Bei letzteren verarbeitet das Gehirn visuelle Informationen, die nicht bewusst sind. Soll ein Mensch mit Blind-Sicht handeln, wird er aber dennoch ‚richtig‘ handeln, so, als ob er Bewusstsein hätte.

  9. Angesichts solcher massiven Fälle von Diskrepanzen zwischen informationsrelevanten neuronalen Prozessen und nicht aufweisbarem Bewusstsein stellt Velmans die enge Korrelation von Chalmers zwischen Bewusstsein und Aufmerksamkeit in Frage. Er befürwortet eher, die Begriffe Bewusstsein, Aufmerksamkeit und Erfahrung als gleichwertig zu betrachten und alle (nicht notwendigerweise mit Bewusstsein korrelierenden) informationsverarbeitenden Prozesse des Gehirns als davon separat zu sehen. (vgl. S.258f)

  10. Ähnlich argumentiert Velmans am Beispiel der Ergebnisgleichheit von strukturell gleichen Organisationen, wie sie Chalmers postulierte. Am Beispiel von neuronalen Implantaten stellt Velmans in Frage, ob nicht auch andere Organisationsformen gleiche Ergebnisse erzeugen könnten. (vgl. S.259f)

  11. Letztlich sind es nur spezielle Fälle von neuronalen Prozessen, die mit subjektiven Erlebnissen korrelieren.

  12. Es gäbe auch noch die theoretische Möglichkeit, dass im Prinzip alle neuronalen Prozesse mit Bewusstsein begleitet sind, dass sie aber im Normalfall nur gehemmt werden. Bewusstsein würde dann da auftreten, wo die allgemeinen informationsverarbeitenden Prozesse nicht gehemmt werden (‚released from inhibition‘). In dieser Sicht wäre das Gehirn dann wie ein Filter für Informationen.(vgl. S.261f)

  13. Betrachtet man ferner, so Velmans, wie einfach man eine Temperaturmessung mit einem Gerät messen könnte, und wie kompliziert das menschliche Nervensystem aufgebaut ist, um subjektive warm-kalt Empfindungen zu realisieren, dann spricht dies auch eher dafür, dass die Struktur von informationsverarbeitenden Prozessen nicht unbedingt etwas darüber aussagen muss, ob solche Prozesse mit Bewusstsein begleitet sind oder nicht.

  14. Diese Überlegungen führen wieder zu dem Punkt zurück, dass all das empirische Wissen über neuronale Prozesse keine Anhaltspunkte liefert, warum manche dann doch mit subjektiven Erlebnissen korrelieren. (vgl. S.262)

  15. Dass die gleichen Informationen in unterschiedlichen Formaten repräsentiert werden können, dies sehen wir mittlerweile nicht mehr als ungewöhnlich an, aber dass es überhaupt geschieht, das ist ein provozierender Sachverhalt.(vgl. S.262f)

DISKUSSION

  1. Hier einige erste Zwischenreflexionen nach der Lektüre von Chalmers, Clark und jetzt Velmans (es werden nicht alle diskussionswürdigen Punte  aufgegriffen, das wären zu viele).

  2. Sowohl Chalmers als auch Velmans sehen im Phänomen des Bewusstseins, des Bereiches der subjektiven Erlebnisse, ein Phänomen sui generis, das sich nicht auf die bekannten empirischen Beschreibungen von neuronalen Prozessen reduzieren lässt.

  3. Gegenüber von Chalmers sieht Velmans daher keine Chance, aus den Daten empirischer neuronaler Prozesse allgemeine Regeln abzuleiten, mit denen man direkt auf Ereignisse des Bewusstseins schließen könnte. Nicht einmal über die Hypothese von Chalmers, dass aus einer Strukturgleichheit von zwei Strukturen S1 und S2 etwas über die möglichen Ergebnisse von S1 und S2 gefolgert werden könne.

  4. Allerdings folgt Velmans der Dualen-Aspekt Hypothese von Chalmers, dass man den Begriff der Information als grundlegenden Begriff in der Natur einführen könne, aufgrund dessen man dann die unterschiedlichen Ausprägungen wie neuronale Prozesse und subjektive Erlebnisse als zwei unterschiedliche Zustandsformen der grundlegenden Information verstehen könne. Velmans zitiert hier auch Spinoza, der eine ähnliche Idee in seiner Auseinandersetzung mit dem Dualismus von Descartes entwickelt hatte.

  5. Dass Spinoza das gleiche Problem mit einem anderen Begriff, nämlich Substanz, für sich ‚löste‘, macht Velmans nicht hellhörig. Ist der neuere Begriff Information, so wie er von Chalmers und Velmans benutzt wird, dann so zu verstehen, dass er strukturgleich zum Begriff der Substanz bei Spinoza ist?

  6. Es fällt auf, dass Velmans in seinem Beitrag den Begriff Information nicht weiter thematisiert; er übernimmt ihn einfach in der Verwendungsweise, wie er ihn bei Chalmers vorfindet.

  7. Wie ich aber in der Diskussion des Beitrags von Chalmers schon angemerkt hatte, ist die Verwendung des Begriffs Information bei Chalmers in sich unklar. Direkt bezieht er sich auf den semantikfreien Informationsbegriff von Shannon (1948), aber in der Art und Weise wie Chalmers diesen Begriff dann verwendet tut er genau das, was Shannon in seinem Text gleich zu Beginn explizit ausgeschlossen hat. Chalmers benutzt den Begriff Information im alltäglichen Sinne, nämlich mit einer semantischen Dimension, will sagen er benutzt nicht nur Signalereignisse als solche beschränkt auf ihre Auftretenswahrscheinlichkeiten, sondern er sieht Signalereignisse immer auch als Bedeutungsträger, also als Ereignisse, die mit etwas anderem korrelieren, das sowohl für den Sender wie für den Empfänger wesentlich dazu gehört. Im gesamten biologischen Bereich ist dies so. So sind z.B. die unterschiedlichen Bestandteile eines DNA-Moleküls (in seinen verschiedenen übersetzten Formen) für das Empfängermolekül, das Ribosom, nicht einfach nur irgendwelche atomaren Verbindungen, sondern diese atomaren Verbindungen sind Signalereignisse, die vom Empfänger so interpretiert werden, als ob sie noch etwas Anderes kodieren. Dieses Andere sind jene atomaren Verbindungen (Moleküle), mittels deren dann ein neues, komplexeres Molekül, ein Protein, zusammengebaut wird. Der Output des Prozesses ist etwas anderes, als der Input. Man kann diesen komplexen Prozess natürlich ausschließlich bezüglich seiner statistischen Eigenschaften beschreiben, damit würde man aber genau das, was diesen Prozess so besonders macht, das, was ihn auszeichnet, unsichtbar machen. Shannon wusste genau, was er tat, als er erklärte, dass er die Bedeutungskomponente ausließ, aber viele seiner späteren Leser haben seine Bemerkung anscheinend schlicht überlesen.

  8. Würde man den Begriff der Information streng nach Shannon verstehen, also Information_Sh, dann werden die Arbeitshypothesen von Chalmers und Velmans schlicht unsinnig. Mit reiner Statistik versteht man weder irgendeinen neuronalen Prozess noch die Dynamik subjektiver Ereignisse.

  9. Würde man den Begriff der Information im von Shannon explizit ausgeschlossenen Sinne – also Information+ – verstehen, also mit einer expliziten semantischen Dimension, dann müsste man über die Arbeitshypothesen von Chalmers und Velmans neu nachdenken. Das wäre eine in sich reizvolle Aufgabe. Bevor man dies tut, sollte man sich dann aber die Ausgangsposition nochmals vergegenwärtigen.

  10. Ausgangspunkt für Chalmers und Velmans ist deren Überzeugung, dass sich subjektive Erlebnisse nicht durch Rekurs auf empirische Beschreibungen von neuronalen Prozessen erklären lassen. Weder aus der Art der neuronalen Prozesse (Chalmers und Velmans) noch aus der Struktur neuronaler Verschaltungen (eher nur Velmans) lassen sich irgendwelche zwingenden Schlüsse auf mögliche begleitende subjektive Erlebnisse ziehen.

  11. Eine solche abgrenzende Position macht wissenschaftsphilosophisch nur Sinn, wenn man von zwei unterschiedlichen Datenbereichen (subjektive Erlebnisse D_s und neuronale Ereignisse D_nn) ausgeht, zu denen es zwei verschiedene Theorien gibt, eine Theorie der subjektiven Erlebnisse <Ts, Int_s, D_nn, D_nn> und eine Theorie der neuronalen Ereignisse <Tnn, Int_nn>. Ferner muss man annehmen, dass mindestens die Datenbereiche beider Theorien wesentlich verschieden sind, also D_s != D_nn. Letzteres ist der Fall, da nach allgemeinem Verständnis zwar alle empirischen Daten D_e, zu denen auch die neuronalen Ereignisse D_nn gehören, zwar zugleich auch subjektive Ereignisse D_s sind, da sie für den Beobachter ja primär erst einmal als seine subjektiven Wahrnehmungen auftreten, dass aber umgekehrt es für eine empirische Theorie Te nicht möglich ist, subjektive Daten D_s einzubeziehen. Mit anderen Worten, die empirischen Daten D_e bilden aus Sicht einer empirischen Theorie eine echte Teilmenge der subjektiven Daten D_s, von daher rührt die Ungleichheit in den Daten. Wichtig ist aber das Detail, dass aus Sicht einer empirischen Theorie Te zwar keine subjektiven Daten D_s verarbeitet werden können, dass umgekehrt aber eine subjektive Theorie Ts sehr wohl Zugriff auf empirische Daten hat, da empirische Daten D_e (mit den neuronalen Daten D_nn als echter Teilmenge) zugleich immer auch subjektive Daten D_s sind, also D_e c D_s. Empirische Daten D_e sind eben beides: subjektiv wie auch zugleich inter-subjektiv.

  12. Die heutigen empirischen Wissenschaften haben die empirische Welt in unterschiedliche empirische Datenbereiche aufgeteilt, deren Beziehungsverhältnisse eigentlich offiziell nicht geklärt sind. Unterschwellig wird immer angenommen, dass die Physik die umfassendste Sichtweise hat, dass also den empirischen Daten der Physik D_e_physik alle anderen empirischen Datenbereiche D_e_x umfassen, also D_e_x c D_e_physik. Ob dies so ist, ist eher offen. Astrobiologie, Evolutionsbiologie, Mikrobiologie – um nur einige Disziplinen zu nennen –, die sich u.a. mit dem Phänomen des biologischen Lebens beschäftigen, haben zahllose originäre Phänomene zu bieten, deren wissenschaftliche Beschreibung allein mit dem Inventar der bekannten Physik im Ansatz unmöglich erscheint (nach Feststellung von bekannten Physikern). Dann würde nicht gelten, dass D_e_x c D_e_physik, sondern D_e_x != D_e_physik.

  13. Doch unabhängig von den Verhältnissen zwischen den Datenbereichen der unterschiedlichen wissenschaftlichen Disziplinen gilt für das Verhältnis der empirischen Daten D_e zu den Tatsachen des Bewusstsein D_s, dass alle empirischen Daten D_e eine echte Teilmenge der subjektiven Daten D_s sind, also D_e c D_s. Vom Standpunkt eines Theorieerstellers vom Typ homo sapiens (sapiens) liegt damit eine Lösung der methodischen Probleme der empirischen Einzeldisziplinen Te_x – wenn es überhaupt eine gibt – im Bereich einer Theorie der Subjektivität Ts.

  14. Ich habe nicht den Eindruck, dass es solch eine umfassende Theorie der Subjektivität bislang gibt. Die großen philosophischen Entwürfe gehen sicher in diese Richtung. Vielleicht ist Carnaps Stufenbau der Welt (inhaltlich fast vollständig von Husserl geprägt (gegen den Mainstream der Carnap-Interpretation)) ein kleiner Ansatz zu einer modernen Theorie der Subjektivität.

  15. Also, wir haben noch keine brauchbare Theorie der Subjektivität Ts. Wenn wir sie hätten, man kann ja mal spekulieren, dann müsste man solche Fragen wie die von Chalmers, Velmans und Clark in solch einem Kontext diskutieren. Ob in solch einem Kontext ein semantischer Informationsbegriff Information+ dann nützlich wäre, müsste man ausloten. Ich vermute mal, dass man viele andere Fragen klären müsste, bevor man über die mögliche Verwendung eines Informationsbegriffs im Kontext von Subjektivität und begleitenden empirischen Prozessen nachdenken würde.

Einen Überblick über alle Blogbeiträge von Autor cagent nach Titeln findet sich HIER.

RINGEN UM DAS BEWUSSTSEIN. BEISPIEL CHALMERS 1995 – Problem of Consciousness

(Letzte Aktualisierung: Do 28.Juli 2016, 13:06h)

David J.Chalmers, FACING UP THE PROBLEM OF CONSCIOUSNESS, Journal of Consciousness Studies, 2, No. 3, 1995, pp.200-219

KONTEXT

  1. In einem vorausgehenden Blogeintrag mit dem Titel THOMPSON: MIND IN LIFE – Review – Teil 1 hatte ich damit begonnen, eine neue Variante phänomenologischer Forschung zu besprechen, die unter dem Titel Neurophänomenologie begründet worden war. Dieser Ansatz geht zurück auf Varela, der dazu 1996 einen grundlegenden Artikel im JoCS geschrieben hatte, in dem er wiederum auf einen Artikel von Chalmers 1995 geantwortet hatte. Seine Antwort umfasste dann gleich einen kompletten konstruktiven Vorschlag, wie man es anders machen könnte. Bevor der Artikel von Varela hier zur Sprache kommen soll, hier zunächst eine Reflexion auf den Beitrag von Chalmers 1995, der seitdem in zahllosen weiteren Artikeln intensiv diskutiert worden ist.

OBJEKTIV – SUBJEKTIV

Rekonstruktion der theoretischen Begriffe von Chalmers (1995) Kap.1-2

Rekonstruktion der theoretischen Begriffe von Chalmers (1995) Kap.1-2

  1. Im Kapitel 2 (siehe Bild) startet Chalmers seine Überlegungen zum Bewusstsein mit einer Fallunterscheidung in objektive Aspekte des Problems und in subjektive Aspekte.

  2. Die objektiven Aspekte lassen sich nach Chalmers – im Prinzip – im Rahmen der bekannten wissenschaftlichen Disziplinen relativ einfach aufklären. Als wissenschaftliche Disziplinen führt er nur eine einzige an, nämlich die Kognitionswissenschaft (‚cognitive science‘), innerhalb deren er drei methodische Ansätze unterscheidet: computerhaft (‚computational‘), neurophysiologisch und neuronal (’neural‘).

  3. Als Phänomene, die er für die Methoden der Kognitionswissenschaft im Prinzip als einfach (‚easy‘) erklärbar einstuft, zählt er auf: Umgebungsreize, verbale Äußerungen, Aufmerksamkeit, Verhaltenskontrolle, Wachheit und Schlaf, Verhaltenskontrolle und diverse interne Zustände.

  4. Daneben erkennt er aber auch noch eine subjektive Dimension im Wirklichkeitszugang. Diese erschließt sich im Darin sein (‚to be in them‘) in inneren, mentalen Zuständen. Hier trifft man auf Phänomene, Qualia, befindet man sich im Raum des Bewusstseins, im Bewusstsein.

  5. Die subjektive Dimension befindet sich außerhalb des Zugriffs der objektiven Methoden. Insofern nennt er die Fragen des Bewusstseins, die sich im subjektivne Zugang erschließen, als harte (‚hard‘) Fragen. Er spricht hier vom harten Problem (‚hard problem‘) des Bewusstseins.

FUNKTIONALE ERKLÄRUNG MIT GRENZEN

Chalmers (1995) Kap.3 Behauptungen zur begrifflichen Kluft zwischen funktionaler Erklärung und Bewusstseinserfahrung

Chalmers (1995) Kap.3 Behauptungen zur begrifflichen Kluft zwischen funktionaler Erklärung und Bewusstseinserfahrung

  1. Das 3.Kapitel läuft auf die These von der begrifflichen Kluft (‚explanatory gap‘) zwischen funktionaler Erklärung objektiver Phänomene einerseits und der korrelierenden Existenz des subjektiven Phänomens des Bewusstseins hinaus (vgl. Bild 2).

  2. Dies setzt voraus, dass die Wissenschaften, die objektive Phänomene im Umfeld des Bewusstseins erklären, dies mit Hilfe von funktionalen Erklärungen tun können. In einer funktionalen Erklärung F werden die beobachtbaren (zu erklärenden) Phänomene X in Beziehung gesetzt zu anderen beobachtbaren Phänomenen Y, und zwar so, dass der Zusammenhang einen Mechanismus (‚mechanism‘) erkennen lässt, aufgrund dessen das Auftreten von X in Abhängigkeit von Y akzeptiert werden kann. Entsprechend den zuvor angeführten Methoden der Kognitionswissenschaft(en) sieht Chalmers drei Arten von möglichen Mechanismen: (i) Computermodelle, (ii) kognitive Modelle und (iii) neuronale Modelle.

  3. Chalmers sieht keine Möglichkeit, das korrelierende Auftreten einer Bewusstseinserfahrung B im Kontext von beobachtbaren Phänomenen X und Y ebenfalls durch eine funktionale Erklärung G so zu erklären, dass sich zwischen X und Y einerseits und B andererseits ein Mechanismus angeben lässt, der als Erklärung akzeptierbar sei.

  4. Diese Unmöglichkeit der Angabe einer weiteren funktionalen Erklärung versteht Chalmers als Erklärungslücke (‚explanatory gap‘).

BEISPIELE (REDUKTIVER ERKLÄRUNG) (Kap.4)

Chalmers 1995 kap.4 illustrierende Beispiele

Chalmers 1995 kap.4 illustrierende Beispiele

  1. Im Kap.4 stellt Chalmers verschiedene Autoren vor, mittels deren er seine zuvor eingeführte Klassifikation illustrieren möchte. (vgl. Bild 3)

  2. Diese Beispiele sind aber so karg beschrieben, dass man sie kaum verwerten kann. Als Beleg soll das Zitat von Edelman dienen. Im Buch von Edelman (1989) wird ein sehr ausführliches Bild von den Forschungen zum Bewusstsein vermittelt. Das Stichwort vom ’neuronalen Darwinismus‘ greift hier viel zu kurz (das Buch Edelmans von 1992 Bright Air, Brilliant Fire: On the Matter of thre Mind, das noch umfassender ist, wird erst gar nicht erwähnt)(Anmerkung: In seinem Buch The Conscious Mind (1996) ist Chalmers hier genauer und hilfreicher. Die Bemerkungen hier im Artikel erscheinen da eher nutzlos).

  3. Die Stichworte zu Koch/ Crick und Baars lassen noch am ehesten deren Ideen erkennen. Nach Koch/Crick sind es synchronisierende Oszillationen im Gehirn (Bindungstheorie), die unterschiedliche Aktivitäten bündeln und so komplexe Zustände möglich machen, die eventuell als Korrelate des Bewusstseins (‚correlates of experience‘) angesehen werden können. Ähnlich und doch weitergehender (spekulativer) argumentiert Baars. Er sieht einen Zusammenhang zwischen den Inhalten des Bewusstseins (‚contens of consciousness‘) und dem, was er den globalen Arbeitsbereich (‚global workspace‘) des Gehirns nennt: dies soll jener Bereich sein, in den viele andere Bereiche des Gehirns wichtige Informationen abbilden, über die alle spezialisierten Bereiche kommunizieren. Er nennt dies ein gemeinsames schwarzes Brett (‚communal blackboard‘).

  4. Was immer such die einzelnen Beispiele im einzelnen – nach Chalmers – sagen bzw. sagen wollen, für Chalmers bietet keines der Beispiele (also: keiner der Autoren) eine wirkliche Antwort auf die Frage, warum (‚why‘) es das Phänomen des Bewusstseins parallel zu diesen vielen Prozessen gibt und wie (‚how‘) der Zusammenhang zwischen den physiologischen und den phänomenalen Phänomenen genau zu denken ist.

WEITERE BEISPIELE (REDUKTIVER ERKLÄRUNG) (Kap.5)

  1. In Kap.5 wir die kursorische Aufzählung weiterer Beispiele fortgesetzt, in der Erklärungsansätze genannt werden, die mit dem Phänomen des Bewusstseins Berührungen aufweisen, aber nichts wirklich erklären sollen.

  2. So wird wird das Konzept nicht-algorithmischer Prozesse von Penrose (1989, 1994) erwähnt. Ein Zusammenhang mit dem Phänomen des Bewusstseins sieht Chalmers nicht.(p.207)

  3. Ähnlich stellt Chalmers auch einen Erklärungszusammenhang zwischen chaotischen und nichtlinearen Prozessen ebenso wenig mit quantentheoretischen Modellen (Hameroff 1994) in Frage. Was erklären diese? (vgl. p.207f)

  4. Chalmers wiederholt hier sein Axiom, dass jede Art von Erklärung physikalischer Prozesse alleine nicht ausreichend sein kann, das Phänomen des Bewusstseins als solches zu erklären. Die Emergenz von Bewusstseinserfahrung entzieht sich einer rein physikalischen Erklärung. Phänomene des Bewusstseins können sich im Kontext von physikalischen Prozessen zeigen, sie müssen es aber nicht.(p.208)

NEUE FUNDAMENTALE ENTITÄTEN

Chalmers 1995 Kap.5 Nicht-reduzierende Theorien

Chalmers 1995 Kap.5 Nicht-reduzierende Theorien

  1. Nachdem Chalmers – aus seiner Sicht – herausgearbeitet hat, dass eine Erklärung der Phänomene des Bewusstseins mittels physikalischer Gesetze nicht möglich erscheint, folgt er der Strategie der Physik aus der Vergangenheit, indem man für nicht-reduzierbare Phänomene dann postuliert, dass sie fundamentale Phänomene seien, die ihre eigenen Gesetze benötigen.(vgl. Bild 5)

  2. Insofern diese neuen fundamentale Phänomene nicht isoliert von den physikalischen Phänomenen auftreten, nennt er sie emergente Phänomene, deren korrelierendes Auftreten im Kontext physikalischer Phänomene sich gegebenenfalls mit zusätzlichen überbrückenden Prinzipien (Brückenprinzipien, ‚bridging principles‘) beschreiben lassen.

  3. Die Betrachtung von Phänomenen führt meist auch zur Frage von damit zusammenhängenden möglichen Existenzen (Ontologien, ‚ontologies‘).

  4. Fall sich mit den Phänomenen des Bewusstseins Existenzen ganz eigener Art verknüpfen würden, dann läge eine neue Art von Dualismus (im Stile von Descartes und anderen) vor. Soweit will Chalmers aber nicht gehen. Obwohl es sich bei den Phänomenen des Bewusstseins um nicht-reduzierbare, und damit fundamentale Phänomene handelt, will er sie nicht gänzlich von der natürlichen Ontologie getrennt sehen, wie sie von der Physik beschrieben wird.

  5. Interessanterweise sieht Chalmers eine Theorie des Bewusstseins näher bei der Physik als bei der Biologie, der er jegliche fundamentale Prinzipien im Sinne des Bewusstseins abspricht.(p.211)

AUSBLICK AUF EINE THEORIE DES BEWUSSTSEINS

Chalmers 1995 - Elemente einer neuen Theorie des Bewusstseins

Chalmers 1995 – Elemente einer neuen Theorie des Bewusstseins

  1. Unabhängig davon, was Chalmers über andere Autoren gesagt hat (treffend oder nicht treffend), hat er seine eigene Meinung zu einer möglichen Theorie des Bewusstseins.

  2. Zu Beginn des Kap.7 skizziert er einige grundlegende Annahmen, auf deren Basis er dann weiter voranschreitet.

  3. Wie in Bild 7 angedeutet, soll eine mögliche Theorie des Bewusstseins einfach und kohärent sein und soll Aussagen über reproduzierbare Fakten möglich machen.

  4. Als Basis für die Theorie gibt es einerseits die Eigenschaften der bewusstseinsbasierten Erfahrung, zu denen jeder einzeln, für sich einen direkten Zugang hat, und andererseits empirische Phänomene, wie Umwelt, Körper und Gehirn, speziell auch sprachliche Äußerungen, über die man indirekt auf Eigenschaften des Bewusstseins schließen kann.

  5. Ferner postuliert Chalmers spezielle psycho-physische Brückenprinzipien, die einen Zusammenhang zwischen korrelierenden physikalischen und bewusstseinsbezogenen Phänomenen herstellen.

PRINZIP DER STRUKTURELLEN KOHÄRENZ

  1. Als eine mögliche Richtschnur für die Formulierung der Inhalte einer möglichen Theorie des Bewusstseins beschreibt Chalmers das Prinzip der strukturellen Kohärenz.

  2. Diese Kohärenz sieht er gegeben zwischen dem empirischen Phänomen der Aufmerksamkeit (‚attention‘) und den den subjektiven Phänomenen des Bewusstseins.

  3. Der Begriff der ‚Aufmerksamkeit‘ wird definiert über empirische Phänomene und deren funktionalen Beziehungen.

  4. Ohne eine weitere Analyse der subjektiven Phänomene vorgelegt zu haben behauptet Chalmers nun, dass die Phänomene im Kontext der empirischen Aufmerksamkeit eine bestimmte Struktur erkennen lassen, die sich auch im Bereich der subjektiven Phänomene finde. Er geht sogar soweit, die Ähnlichkeit zwischen beiden Strukturen (Struktur der Aufmerksamkeit, Struktur des Bewusstseins) als isomorph zu bezeichnen (p.213).

  5. Zugleich schränkt er diese Ähnlichkeit dahingehend ein, dass subjektive Phänomene Eigenschaften haben, die sich nicht in der strukturellen Ähnlichkeit erschöpfen. Die kohärente Strukturen beschränken das beobachtbare Verhalten subjektiver Phänomene, aber erschöpfen sie nicht. (vgl.p.213)

  6. Sofern man solch eine strukturelle Kohärenz feststellen kann, macht es nach Chalmers Sinn, die empirischen Phänomene der Aufmerksamkeit als Korrelate bewusster Erfahrung zu bezeichnen.

PRINZIP DER ORGANISATORISCHEN INVARIANZ

  1. Chalmers formulierte noch ein weiteres Prinzip, das von der organisatorischen Invarianz. Es ist kein mathematisches Prinzip, sondern eher ein Postulat über empirische Strukturen.

  2. Ausgangspunkt sind zwei Systeme S1 und S2. Beide haben eine funktionale Organisation, d.h. Es gibt jeweils irgendwelche Mengen von Elementen M1 und M2 und jeweils irgendwelche Funktionen F1 und F2, die über den Mengen M1 und M2 definiert sind, also S1(x) iff x=<M1,F1> bzw. S2(x) iff x=<M2,F2>.

  3. Chalmers postuliert nun, dass, wenn beide Systeme S1 und S2 die gleiche funktionale Organisation haben (‚functional organization‘), dass sie (?) dann auch die qualitativ gleiche Erfahrung (‚qualitatively identical experience‘) haben.

  4. Diese Formulierung wirft einige Fragen auf.

  5. Nimmt man an, dass er mit Erfahrung wie zuvor im Text immer die Erfahrung des Bewusstseins meint, dann stellt sich die Frage, in welchem Sinne ein System S1 oder S2 eine bewusste Erfahrung haben sollen? Nach allem zuvor Gesagtem haben empirische Systeme nicht notwendigerweise eine bewusste Erfahrung.

  6. Wenn Chalmers aber meint, dass die Systeme S1 und S2 für empirische Systeme stehen, die Korrelate von bewussten Erfahrungen sind, dann würde das Prinzip besagen wollen, dass zwei verschiedene empirische Systeme S1 und S2, die Korrelate von jeweils einem Bewusstsein B1 bzw. B2 sind, diesen korrelierenden Bewusstseinen B1 und B2 jeweils identische Erfahrungen übermitteln.

  7. Direkt beweisbar ist dieses Prinzip nicht, da der direkte Zugriff auf bewusste Erfahrungen von den beiden Bewusstseinen fehlt, aber es ist eine sehr plausible Arbeitshypothese. (vgl. p.215) Diese Arbeitshypothese würde es zumindest ansatzweise verständlich machen, warum zwei verschiedene Menschen ansatzweise über ähnliche Erfahrungen verfügen können.

DIE THEORIE DES DOPPELTEN ASPEKTS DER INFORMATION

  1. Chalmers klassifiziert die beiden vorausgehenden Prinzipien als nicht basale Prinzipien. Nichts desto Trotz sind sie für ihn hilfreiche Beschränkungen (‚constraints‘).

  2. Jetzt will er ein erstes basales Prinzip mit Hilfe des Begriffs der Information einführen.

  3. Bei dieser Einführung des Begriffs Information bezieht er sich zwar ausdrücklich auf Shannon (1948), ersetzt aber die Begrifflichkeit von Shannon sogleich durch die Begrifflichkeit von Bateson (1972), indem er die einzelnen physikalischen Informationen als Differenzen bezeichnet, die eine Differenz konstituieren (Originalzitat Bateson: A „bit“ of information is definable as a difference which makes a difference. Such a difference, as it travels and undergoes successive transformation in a circuit, is an elementary idea. (Bateson 1972, p.335)

  4. Dann überträgt er diese Begrifflichkeit auf die empirischen und auf die subjektiven Phänomene, indem er für die Menge der korrelierenden empirischen Phänomene einen Informationsraum Ie postuliert und für die Menge der subjektiven Phänomene auch einen Informationsraum Is. Ferner postuliert er, dass die Elemente in jedem dieser Räume durch eine Menge von Differenzen charakterisiert werden – also <Ie,De> sowie <Is, Ds> –, dass jedem dieser Räume mit diesen Differenzen dann eine Struktur Ste(x) iff x= <Ie,De> sowie Sts(x) iff x=<Is, Ds> zukomme, die sich direkt korrespondieren (‚directly correspond‘), also CORR(STe, Sts).

  5. Aus den Postulaten werden dann sogleich Behauptungen der Art, dass man sowohl in den empirischen Prozessen wie auch in den subjektiven Erfahrungen die gleichen abstrakten Informationsräume finde.

  6. Nachdem Chalmers die Begriffe Information und Differenz für die theoretische Beschreibung eingeführt hat (niemand hat ihn dazu gezwungen!), folgert er dann aus seinen eigenen Annahmen, als Hypothese, dass Information zwei Aspekte habe: einen physikalischen und einen phänomenalen (:= subjektiven).

  7. Nach diesen begrifflichen Verschiebungen erklärt er dann diese letzte Hypothese zu einem basalen Prinzip, aus dem hervorgehe, dass sich immer dann Erfahrung eines Bewusstseins vorfindet, wenn ein entsprechender physikalischer Prozessraum gegeben ist.(vgl. p.216)

DISKURS

KEINE DOPPEL-ASPEKT THEORIE DER INFORMATION

  1. Chalmers selbst klassifiziert seine Doppel-Aspekt Überlegungen als eher eine Idee denn eine Theorie (vgl. p.217) bzw. weiter vorne als extrem spekulativ und unterbestimmt.

  2. Dies würde ich hier unterschreiben. Denn die Verwendung des Wortes Information durch Chalmers erscheint sehr fragwürdig.

  3. Der Informationsbegriff bei Shannon (1948) setzt einen sehr speziellen Kontext voraus, auf den Shannon klar und deutlich hinweist. Es geht bei der Verwendung des Begriffs der Information bei Shannon NICHT um den Begriff von Information, wie er im Alltag oder bei wichtigen biologischen Kontexten vorkommt, wo unterschiedliche bedeutungsvolle/ semantische Kontexte eine Rolle spielen, sondern AUSSCHLIESSLICH um die jeweiligen Signalereignisse und deren Wahrscheinlichkeiten. Diese Signalereignisse als solche haben weder irgendeinen Informationswert noch eine irgendwie geartete Bedeutung. Es sind einfach Eigenschaften aus einem Eigenschaftsraum, die sich natürlich qua Eigenschaften durch Unterschiede/ Differenzen indirekt charakterisieren lassen. Aber der Begriff der Differenz setzt ein X und Y voraus, die minimale Eigenschaften Px und Py besitzen, aufgrund deren sie sich unterscheiden lassen. Nur unter Voraussetzung von solchen Elementen samt Eigenschaften lässt sich eine Differenz definieren. Ein System von Differenzrelationen setzt mathematisch eine Menge von Elementen voraus, aufgrund deren sich die Relationen definieren lassen.

  4. Der Sprachgebrauch von Bateson (1972) mit seinen Differenzen mag irgendwie interessant klingen, ist aber mathematisch irreführend. Eine Differenz ist abgeleitet von dem X, das sich von anderem Nicht-X unterscheiden lässt. Die Unterscheidbarkeit von Ereignissen X in der Wahrnehmung ist biologisch natürlich bedeutsam, aber das Ereignis als solches keinesfalls, nur die Relationen zu einem Y, das sich biologisch als ‚relevant‘ erweist.

  5. Streichen wir also den Begriff der Differenz im Kontext von Information, da redundant, bleibt der Informationsbegriff, angeblich nach Shannon.

  6. Bei Shannon aber ging es nur um Signalereignisse und deren wahrscheinliches Auftreten, ohne jeglichen Bedeutungsbezug.

  7. Natürlich kann man sowohl die empirischen wie auch die subjektiven Phänomene abstrakt als Ereignisse betrachten, die mit gewissen Wahrscheinlichkeiten auftreten. Das würde aber genau jene Qualitäten an diesen Ereignissen verdecken, die sie für ein biologisches System interessant machen. Biologisch interessant sind ausschließlich Ereignisse, sofern sie Bezug haben zum Überleben generell und innerhalb dessen zu speziellen Kontexten des Überleben. Es sind gerade diese Kontexte, die sich mit Ereignissen assoziieren lassen, durch die Ereignisse mit Bedeutung aufgeladen werden, sodass diese Ereignisse im biologischen Sinn informativ sind.

  8. Dieser fundamentale Aspekt von Information wurde von Shannon ganz bewusst ausgeklammert, da er dies für seinen Anwendungsfall nicht benötigt hat. Bateson und Chalmers brauchen es eigentlich, folgen hier aber – blindlings? – Shannon, obgleich dieser sogar ein großes Warnschild gleich zu Beginn seines Textes aufgestellt hat. DIES IST NICHT INFORMATION IM ÜBLICHEN SINNE!!!

STRUKTURELLE KOHÄRENZ VON WAS?

  1. Nach dieser Entmystifizierung des Differenz- und Informationsbegriffs bleibt von der Doppel-Aspekt Theorie der Information nur noch das übrig, was Chalmers schon zuvor mit dem nicht-basalen Prinzip der strukturalen Kohärenz ausgedrückt hat, dass nämlich die korrelierenden empirischen Phänomene und die subjektiven Phänomene strukturell ähnlich seien. Chalmers bleibt eine Definition jener Strukturen schuldig, die er als gegeben voraussetzt, von denen er immerhin sagt, dass sie isomorph seien, und doch wiederum nicht so, dass alle subjektiven Phänomene durch die empirischen Phänomene dadurch voll bestimmt wären. Eigentlich impliziert Isomorphie eine 1-zu-1 Abbildung; aber dann doch nicht ganz? Was meint er dann?

  2. Wenn man von einer Strukturähnlichkeit zwischen zwei Strukturen S1 und S2 spricht, geht man normalerweise davon aus, dass die beiden Strukturen S1 und S2 nicht nur einfach gegeben sind, sondern auch in ihrer Beschaffenheit genau beschrieben/ definiert sind. Kann man das von den subjektiven Phänomenen des Bewusstseins sagen? Außer von Husserl sind mir keine ausführlichen Untersuchungen zu den Phänomenen des Bewusstseins bekannt, und von Husserls Untersuchungen kann man weder sagen, sie seien vollständig noch liegen sie in einer Form vor, die man als formal befriedigend bezeichnen könnte (obwohl Husserl von der Ausbildung her auch Mathematiker war und von daher das Rüstzeug haben konnte). Diskutabel wäre hier vielleicht Carnaps logischer Stufenbau (1928), der der Struktur von Husserl – soweit bekannt – sehr eng folgen soll. Wovon also spricht Chalmers, wenn er die Strukturähnlichkeit zwischen empirischen und subjektiven Phänomenen behauptet?

WAS BLEIBT VON CHALMERS KRITIK?

NICHTREDUZIERBARKEIT

  1. Der zentrale Punkt von Chalmers Kritik dürfte wohl die Nichtreduzierbarkeit des Subjektiven auf Empirisches sein. Im subjektiv zugänglichen Erfahrungsraum des Bewusstseins erschließen sich Phänomene, die über die rein objektiv-empirischen Phänomene hinausgehen.

  2. In seiner ablehnenden Kritik empirischer Ansätze kommt immer wieder auch der Begriff der Funktion vor; funktionale-empirische Erklärungsansätze sollen nicht reichen. Diese Formulierung kann missverständlich sein. Denn der Versuch, den Raum der subjektiven Phänomene als Phänomene sui generis zu beschreiben, wird – wie auch im Fall empirischer Phänomene – Elementarereignisse einführen, über diese Elementarereignisse diverse Relationen und Funktionen,  und damit letztendlich eine Struktur des subjektiven Phänomenraumes definieren, mittels der man dann möglicherweise Vergleiche, Abbildungen auf andere Strukturen vornehmen kann, z.B. auch, wie von Chalmers praktiziert, auf die Struktur der mit dem Bewusstsein korrelierenden empirischen Phänomene.

  3. Hier stellt sich allerdings das spezielle Problem einer simultanen Abhängigkeit von korrelierenden empirischen und subjektiven Phänomenen: man kann ja nur in dem Maße davon sprechen, dass ein empirisches Phänomen Pe mit einem subjektiven Phänomen Ps korreliert, wenn es ein subjektives Phänomen Ps gibt, das als Ausgangspunkt dient! Ein empirisches Phänomen Pe als solches lässt keinerlei Rückschluss auf ein irgendwie geartetes subjektives Phänomen Ps zu. Die Brückenprinzipien, von denen Chalmers in seinem Artikel spricht, sind induktiv simultan zu definieren. Sie sind nicht einfach da. Es sind nicht die Brückenprinzipien, mittels deren man aus den empirischen Phänomenen Pe die subjektiven Phänomene Ps ableitet, sondern es sind die subjektiven Phänomenen Ps, die sich mit empirischen Phänomenen Pe korrelieren lassen, und aufgrund solcher realisierten Korrelationen kann man vielleicht Brückenprinzipien definieren.

  4. Dies gilt insbesondere auch am Beispiel der sprachlichen Äußerungen, die Chalmers explizit als Indikatoren möglicher subjektiver Erfahrung nennt. Der Sprachschall als solcher bildet ein empirisches Phänomen Pe, dem möglicherweise subjektive Bedeutungsinhalte Ps korrelieren können. Ob dies der Fall ist, kann nur der Sprechende selbst entscheiden, sofern er einen direkten Zugang zu seinen subjektiven Phänomenen hat und von daher weiß, ob sich mit einem bestimmten Sprachschall tatsächlich ein bestimmter subjektiver Sachverhalt verknüpft. Von daher sind sprachliche Äußerungen niemals ein Ersatz für die damit hypothetisch unterstellten subjektiven Phänomene.

Einen Überblick über alle Beiträge von Autor cagent  nach Titeln findet sich HIER.

DENKEN UND WERTE – DER TREIBSATZ FÜR ZUKÜNFTIGE WELTEN (Teil 1)

  1. In dem Beitrag Digitalisierung und die Religionen vom 9.März 2016 gibt es neben vielen anderen Motiven zwei Motive, die besonders hervortreten: einmal das Momentum (i) kombinatorischer Räume, die gefüllt werden können, und zum anderen (ii) das Momentum der Auswahl, welche Teilräume wie gefüllt werden sollen.

KOMBINATORISCHER RAUM BIOLOGISCHE ZELLE

  1. Im Rahmen der biologischen Evolution auf Zellebene z.B. eröffnet sich der kombinatorische Raum an verschiedenen Stellen. Eine ist jene, wo das Übersetzungsmolekül (das Ribosom) von den gespeicherten potentiellen Informationen (DNA mit ihren Abwandlungen) eine Transformation in andere Moleküle (Proteine) überleitet , mit denen sich neue Zellstrukturen aufbauen lassen. Die Verfügbarkeit dieser Proteine, ihre chemischen Eigenschaften und die Umgebungseigenschaften definieren einen potentiellen kombinatorischen Raum, von dem im konkreten Übersetzungsprozess dann ein bestimmter Teilraum ausgewählt wird.
  2. Aber auch schon der potentielle Informationsspeicher (realisiert mittels DNA-Molekülen) selbst, wie auch seine verschiedenen Transformationsprozesse bis zum Übersetzungsprozess in Proteine repräsentieren ebenfalls kombinatorische Räume, deren Realisierung viel Spielraum zulässt.
  3. Man könnte diese molekülbasierte Informationsspeicherung, diese Transformationen der Moleküle, als eine Urform des Denkens ansehen: Moleküle fungieren als Repräsentanten möglicher Konstruktionsprozesse, und diese Repräsentanten können verändert, rekombiniert werden zu neuen Strukturen, die dann zu neuen Konstruktionsprozessen führen. Man hat also – vereinfacht – ein Funktion der Art repr: M_inf x M_tr x MMprot —> Z, d.h. die Reproduktionsfunktion repr die mittels Molekülen, die als Informationsträger fungieren (M_inf), mittels Molekülen (M_tr), die als Übersetzer fungieren und Molekülen (MM_prot), die als Proteine fungieren können, daraus neue Zellstrukturen entstehen lassen kann.

GELIEHENE PRÄFERENZEN

  1. So wundersam diese Urform des Denkens immer neue kombinatorische Räume strukturell aufspannen und dann im Reproduktionsprozess als reales Strukturen konkretisieren kann, so hilflos und arm ist dieser Mechanismus bei der Beurteilung, Bewertung, welche der möglichen Teilräume denn bevorzugt vor anderen realisiert werden sollten. Soll das Fell weiß oder schwarz sein? Benötigt man überhaupt Zähne? Wozu so komplizierte Hand- und Fingergelenke? Warum tausende Kilometer reisen, um zu brüten? … Die Urform des Denkens ist unfähig, ihre potentielle innere Vielfalt selbständig zu bewerten. Man kann auch sagen, die Urform des Denkens kann zwar kombinieren, ist aber blind wenn es darum geht, gezielt Teilräume auszuwählen, die sich als interessante Kandidaten für das Leben anbieten.
  2. Dabei ist schon die Wortwahl ‚interessante Kandidaten für das Leben‘ problematisch, da der Begriff Leben eine Schöpfung von Lebewesen ist, die viele Milliarden Jahre später erst auftreten und die versuchen im Nachhinein, von außen, durchtränkt von neuen Bedingungen, die zunächst bedeutungsleere Wortmarke Leben mit Bedeutung zu füllen. Die Urform des Denkens verfügt über keinen externen Begriff von Leben und es gibt keine Ingenieure, die der Urform des Denkens zuflüstern können, was sie tun sollen.

MOLEKÜLE ALS INFORMATIONSSPEICHER IMPLIZITE PRÄFERENZEN

  1. Allerdings beinhaltet schon die Urform des Denkens über ein Moment, das außerordentlich ist: jene Moleküle (DNA), die als Speicher potentieller Informationen dienen. Zu einem bestimmten Zeitpunkt repräsentieren diese Informations-Moleküle einen eng umgrenzten Teilraum eines kombinatorischen Raumes und wirken für den Übersetzungsprozess wie eine Art Anweisung in Form eines Bauplans. Gemessen an dem theoretisch möglichen kombinatorischen Raum stellt der Plan des Informationsmoleküls eine Auswahl dar, eine Selektion und damit zeigt sich hier eine indirekte Präferenz für die Informationen auf dem Molekül vor allen anderen möglichen Informationen. Die Urform des Denkens kann zwar im Prinzip einen riesigen potentiellen kombinatorischen Raum repräsentieren und transformieren, die konkrete Zelle aber repräsentiert in diesem riesigen Raum einen winzigen Teilbereich, mit einem aktuellen Ausgangspunkt – gegeben durch die aktuellen Informationen auf dem Informationsmolekül M_inf – und potentiellen Veränderungsrichtungen – gegeben durch die Transformationsprozesse einschließlich der verfügbaren Materialien und Pannen im Prozess. Anders formuliert, die Informationsmoleküle repräsentieren eine komplexe Koordinate (KK) im kombinatorischen Raum und die Transformationsprozesse (einschließlich Pannen und Materialien) repräsentieren eine Menge von möglichen Veränderungsrichtungen (DD), an deren Endpunkten dann jeweils neue komplexe Koordinaten KK_neu_1, …, KK_neu_n liegen.
  2. Wichtig: eine Zelle enthält über die Informationsmoleküle zwar implizite Präferenzen/ Werte, die die Urform des Denkens steuern, diese Präferenzen werden aber nicht von der Zelle selbst generiert, sondern entstehen aus einem Wechselspiel/ aus einer Interaktion mit der Umgebung! Biologische Strukturen (bis heute nur bekannt auf dem Planeten Erde in unserem Sonnensystem in einem geschützten Bereich der Galaxie Milchstraße des uns bekannten Universums) kommen nie isoliert vor, sondern als Teil einer Umgebung, die über sogenannte freie Energie verfügt.

OHNE ENERGIE GEHT NICHTS

  1. Biologische Zellen sind Gebilde, die für ihre Konstruktion und für ihr Funktionieren solche freie Energie brauchen. Der Umfang ihrer Strukturen wie auch die Dauer ihres Funktionierens hängt direkt und ausschließlich von der Verfügbarkeit solcher freien Energie ab. Bezogen auf den kombinatorischen Raum, der durch die Kombination (Informationsmoleküle, Transformationsmolekül, Bausteine) potentiell gegeben ist, ist unter Berücksichtigung der notwendigen Fähigkeit zum Finden und Verarbeiten von freier Energie nicht neutral! Definieren wir den potentiellen kombinatorischen Raum PKK für biologische Zellen als Raum für mögliche komplexe Koordination KK (also KK in PKK), dann sind im potentiellen kombinatorischen Raum nur jene Teilräume von Interesse, in denen die biologische Zelle über hinreichende Fähigkeiten verfügt, freie Energie zu finden und zu nutzen. Nennen wir die Gesamtheit dieser interessanten Teilräume PKK+, mit PKK+ subset PKK.

GEBORGTE PRÄFERENZEN

  1. Da die individuelle biologische Zelle selbst über keinerlei explizite Informationen verfügt, wo überall im potentiell kombinatorischen Raum PKK die interessanten Teilräume PKK+ liegen, stellt sie – trotz ihrer eigenen Reproduktionstätigkeit – eher ein passives Element dar, das sich mit geborgten Präferenzen im potentiellen kombinatorischen Raum PKK bewegt, ohne explizit wissen zu können, ob es auf seinem Weg durch den potentiellen kombinatorischen Raum PKK auch tatsächlich auf solche komplexen Koordinaten KK+ stößt, die ihr eine minimale Lebensfähigkeit erlauben.
  2. Da wir vom Jahr 2016 rückwärts blickend wissen, dass diese passiven Elemente es in ca. 4 Mrd Jahren geschafft haben, komplexe Strukturen unvorstellbaren Ausmaßes zu generieren (ein Exemplar des homo sapiens soll z.B. ca. 37 Billionen Körperzellen haben (davon ca. 100 Mrd als Gehirnzellen), dazu ca. 200 Billionen Bakterien in seinem Körper plus ca. 220 Milliarden auf seiner Haut (siehe dazu Kegel-Review Doeben-Henisch), muss man konstatieren, dass die permanente Interaktion zwischen biologischer Zelle und ihrer Umgebung offensichtlich in der Lage war, all diese wichtigen Informationen PKK+ im potentiellen kombinatorischen Raum PKK zu finden und zu nutzen!
  3. Für die Frage der potentiellen Präferenzen/ Werte gilt für diesen gesamten Zeitraum, dass sich die implizit gespeicherten Präferenzen nur dadurch bilden konnten, dass bestimmte generierte Strukturen (M_inf, M_tr, MM_prot) sich immer von einer positiven komplexen Koordinate zur nächsten positiven Koordinate bewegen konnten. Dadurch konnten die gespeicherten Informationen kumulieren. Aus der Evolutionsgeschichte wissen wir, dass ein Exemplar des homo sapiens im Jahr 2016 eine Erfolgsspur von fast 4 Mrd Jahren repräsentiert, während in diesem Zeitraum eine unfassbar große Zahl von zig Mrd anderen generierte Strukturen (M_inf, M_tr, MM_prot) irgendwann auf eine negative komplexe Koordinate KK- geraten sind. Das war ihr Ende.

ERHÖHUNG DER ERFOLGSWAHRSCHEINLICHKEIT

  1. Für den Zeitraum bis zum Auftreten des homo sapiens müssen wir konstatieren, dass es Präferenzen/ Werte für ein biologisches System nur implizit geben konnte, als Erinnerung an einen erreichten Erfolg im Kampf um freie Energie. Unter Voraussetzung, dass die umgebende Erde einigermaßen konstant war, war die Wahrscheinlichkeit, von einer positiven Koordinate KK+ u einer weiteren komplexen Koordinate KK+ zu kommen um ein Vielfaches höher als wenn das biologische System nur rein zufällig hätte suchen müssen. Die gespeicherten Informationen in den Informationsmolekülen M_inf stellen somit sowohl erste Abstraktionen von potentiellen Eigenschaften wie auch von Prozessen dar. Damit war es Anfangshaft möglich, die impliziten Gesetzmäßigkeiten der umgebenden Welt zu erkennen und zu nutzen.

URSPRUNG VON WERTEN

  1. Es fragt sich, ob man damit einen ersten Ort, einen ersten Ursprung potentieller Werte identifizieren kann.
  2. Vom Ergebnis her, von den überlebensfähigen biologischen Strukturen her, repräsentieren diese einen partiellen Erfolg von Energienutzung entgegen der Entropie, ein Erfolg, der sich in der Existenz von Populationen von solchen erfolgreichen Strukturen als eine Erfolgsspur darstellt. Aber sie alleine bilden nur die halbe Geschichte. Ohne die umgebende Erde (im Sonnensystem, in der Galaxie…), wäre dieser Erfolg nicht möglich. Andererseits, die umgebende Erde ohne die biologischen Strukturen lässt aus sich heraus nicht erkennen, dass solche biologische Strukturen möglich noch wahrscheinlich sind. Bis heute ist die Physik mehr oder weniger sprachlos, wirkt sie wie paralysiert, da sie mit ihren bisherigen (trotz aller mathematischen Komplexität weitgehend naiven) Modellen nicht einmal ansatzweise in der Lage ist, die Entstehung dieser biologischen Strukturen zu erklären. Von daher müssen wir fordern, dass die umgebende Erde die andere Hälfte des Erfolgs darstellt; nur beide zusammen geben das ganze Phänomen. In diesem Fall würde ein reduktiver Ansatz nicht vereinfachen, sondern das Phänomen selbst zerstören!

ONTOLOGISCHE GELTUNG VON BEZIEHUNGEN

  1. Dies führt zu einem bis heute ungeklärten philosophischen Problem der ontologischen Geltung von Funktionen. In der Mathematik sind Funktionen die Grundbausteine von allem, und alle Naturwissenschaften wären ohne den Funktionsbegriff aufgeschmissen. Eine Funktion beschreibt eine Beziehung zwischen unterschiedlichen Elementen. In der Mathematik gehören diese Elemente in der Regel irgendwelchen Mengen an, die einfach unterstellt werden. Wendet man das mathematische Konzept Funktion auf die empirische Wirklichkeit an, dann kann man damit wunderbar Beziehungen beschreiben, hat aber ein Problem, die in der Mathematik unterstellten Mengen in der Realität direkt erkennen zu können; man muss sie hypothetisch unterstellen. Was man direkt beobachten und messen kann sind nicht die funktionalen Beziehungen selbst, sondern nur isolierte Ereignisse in der Zeit, die der Beobachter in seinem Kopf (Gehirn, Gehirnzellen…) verknüpft zu potentiellen Beziehungen, die dann, wenn sie sich hinreichend oft wiederholen, als gegebener empirischer Zusammenhang angenommen werden. Was ist jetzt empirisch real: nur die auslösenden konkreten individuellen Ereignisse oder das in der Zeit geordnete Nacheinander dieser Ereignisse? Da wir ja die einzelnen Ereignisse protokollieren können, können wir sagen, dass auch das Auftrete in der Zeit selbst empirisch ist. Nicht empirische ist die Zuordnung dieser protokollierten Ereignisse zu einem bestimmten gedachten Muster/ Schema/ Modell, das wir zur gedanklichen Interpretation benutzen. Die gleichen Ereignisse lassen in der Regel eine Vielzahl von unterschiedlichen Mustern zu. Einigen wir uns kurzfristig mal auf ein bestimmtes Muster, auf den Zusammenhang R(X, …, Z), d.h. zwischen den Ereignissen X, …, Z gibt es eine Beziehung R.
  2. Biologische Systeme ohne Gehirn konnten solche Relationen in ihrem Informations-Moleküle zwar speichern, aber nicht gedanklich variieren. Wenn die Beziehung R stimmte, dann führte sie zur nächsten positiven komplexen Koordinate KK+, was R im Nachhinein bestätigen würde; wenn R aber zu einer negativen komplexen Koordinate KK- führen würde, dann war dies im Nachhinein eine Widerlegung, die nicht mehr korrigierbar ist, weil das System selbst verschwunden (ausgestorben) ist.
  3. Im Gehirn des homo sapiens können wir ein Beziehungsmuster R(X, …, Z) denken und können es praktisch ausprobieren. In vielen Fällen kann solch ein Interpretationsversuch scheitern, weil das Muster sich nicht reproduzieren lässt, und in den meisten solchen Fällen stirbt der Beobachter nicht, sondern hat die Chance, andere Muster R‘ auszuprobieren. Über Versuch und Irrtum kann er so – möglicherweise irgendwann – jene Beziehung R+ finden, die sich hinreichend bestätigt.
  4. Wenn wir solch ein positiv bestätigtes Beziehungsmuster R+ haben, was ist dann? Können wir dann sagen, dass nicht nur die beteiligten empirischen Ereignisse empirisch real sind, sondern auch das Beziehungsmuster R+ selbst? Tatsächlich ist es ja so, dass es nicht die einzelnen empirischen Ereignisse als solche sind, die wir interessant finden, sondern nur und ausschließlich die Beziehungsmuster R+, innerhalb deren sie uns erscheinen.
  5. In der Wechselwirkung zwischen umgebender Erde und den Molekülen ergab sich ein Beziehungsmuster R+_zelle, das wir biologische Zelle nennen. Die einzelnen Elemente des Musters sind nicht uninteressant, aber das wirklich frappierende ist das Beziehungsmuster selbst, die Art und Weise, wie die Elemente kooperieren. Will man dieses Beziehungsmuster nicht wegreden, dann manifestiert sich in diesem Beziehungsmuster R+_zelle ein Stück möglicher und realer empirisches Wirklichkeit, das sich nicht auf seine Bestandteile reduzieren lässt. Es ist genau umgekehrt, man versteht die Bestandteile (die vielen Milliarden Moleküle) eigentlich nur dadurch, dass man sieht, in welchen Beziehungsmustern sie auftreten können.
  6. Vor diesem Hintergrund plädiere ich hier dafür, die empirisch validierten Beziehungsmuster als eigenständige empirische Objekte zu betrachten, sozusagen Objekte einer höheren Ordnung, denen damit eine ontologische Geltung zukommt und die damit etwas über die Struktur der Welt aussagen.
  7. Zurück zur Frage der Präferenzen/ Werte bedeutet dies, dass man weder an der Welt als solcher ohne die biologischen Systeme noch an den biologischen Strukturen als solche ohne die Welt irgendwelche Präferenzen erkennen kann. In der Wechselwirkung zwischen Erde und biologischen Strukturen unter Einbeziehung einer Irreversibilität (Zeit) werden aber indirekt Präferenzen sichtbar als jener Pfad im potentiellen Möglichkeitsraum der komplexen Koordinaten KK, der die Existenz biologischer Systeme bislang gesichert hat.
  8. Dieser Sachverhalt ist für einen potentiellen Beobachter unaufdringlich. Wenn der Beobachter nicht hinschauen will, wenn er wegschaut, kann er diesen Zusammenhang nicht erkennen. Wenn der Beobachter aber hinschaut und anfängt, die einzelnen Ereignisse zu sortieren und versucht, aktiv Beziehungsmuster am Beispiel der beobachteten Ereignispunkte auszuprobieren (was z.B. die Evolutionsbiologie tut), dann kann man diese Strukturen und Prozesse erkennen, und dann kann man als Beobachter Anfangshaft begreifen, dass hier ein Beziehungsmuster R+_zelle vorliegt, das etwas ganz Außerordentliches, ja Einzigartiges im ganzen bekannten Universum darstellt.

Fortsetzung folgt

Einen Überblick von allen Beiträgen des Autors cagent in diese blog nach Titeln findet sich HIER.

IST DIE SELBSTVERSKLAVUNG DER MENSCHEN UNTER DIE MASCHINEN EVOLUTIONÄR UNAUSWEICHLICH?

  1. In diesem Blog gab es in der Vergangenheit schon mehrere Einträge (z.B. den ersten großen Beitrag Kann es doch einen künstlichen Geist geben?), die sich mit der Frage beschäftigt haben, inwieweit Maschinen die Lernfähigkeit und die Intelligenz von Menschen erreichen oder sogar übertreffen können.
  2. In vielen wichtigen Punkten muss man diese Frage offensichtlich bejahen, obgleich es bis heute keine Maschine gibt, die das technische Potential voll ausnutzt.
  3. Umso bemerkenswerter ist es, welche Wirkungen Maschinen (Computer) auf die Gesellschaft erzielen können, obgleich sie noch weitab von ihrem Optimum agieren.
  4. In einem Blogeintrag anlässlich eines Vortrags Über Industrie 4.0 und Transhumanismus. Roboter als Volksverdummung? Schaffen wir uns selbst ab? hatte ich noch eine grundsätzlich positive Grundstimmung bzgl. dessen, was auf uns zukommt. Ich schrieb damals:
  5. Das Ganze endet in einem glühenden Plädoyer für die Zukunft des Lebens in Symbiose mit einer angemessenen Technik. Wir sind nicht das ‚Endprodukt‘ der Evolution, sondern nur eine Durchgangsstation hin zu etwas ganz anderem!
  6. Mittlerweile beschleicht mich der Verdacht, dass wir aktuellen Menschen die nächste Phase der Evolution möglicherweise unterschätzen.
  7. Auslöser war der persönliche Bericht eines Managers in einem weltweiten IT-Konzern, der – von Natur aus ein Naturwissenschaftler, ‚knochentrocken‘, immer sachlich, effizient – zum ersten Mal nach vielen Jahren Ansätze von Emotionen zeigte, was die Entwicklung seiner Firma angeht. Die Firma (und nicht nur diese Firma, s.u.) entwickelt seit vielen Jahren ein intelligentes Programm, das eine Unzahl von Datenbanken auswerten kann, und zwar so, dass die Anfrage von Menschen ‚interpretiert‘, die Datenbanken daraufhin gezielt abgefragt und dem anfragenden Menschen dann mitgeteilt werden. Das Ganze hat die Form eines passablen Dialogs. Das Verhalten dieses intelligenten Programms ist mittlerweile so gut, dass anfragende Menschen nicht mehr merken, dass sie ’nur‘ mit einer Maschine reden, und dass die Qualität dieser Maschine mittlerweile so gut ist, dass selbst Experten in vielen (den meisten?) Fällen schlechter sind als diese Maschine (z.B. medizinische Diagnose!). Dies führt schon jetzt dazu, dass diese Beratungsleistung nicht nur nach außen als Dienstleistung genutzt wird, sondern mehr und mehr auch in der Firma selbst. D.h. die Firma beginnt, sich von ihrem eigenen Produkt – einem in bestimmtem Umfang ‚intelligenten‘ Programm – ‚beraten‘ (und damit ‚führen‘?) zu lassen.
  8. Wenn man sich in der ‚Szene‘ umhört (man lese nur den erstaunlichen Wikipedia-EN-Eintrag zu deep learning), dann wird man feststellen, dass alle großen global operierenden IT-Firmen (Google, Microsoft, Apple, Facebook, Baidu und andere), mit Hochdruck daran arbeiten, ihre riesigen Datenbestände mit Hilfe von intelligenten Maschinen (im Prinzip intelligenten Algorithmen auf entsprechender Hardware) dahingehend nutzbar zu machen, dass man aus den Nutzerdaten nicht nur möglichst viel vom Verhalten und den Bedürfnissen der Nutzer zu erfahren, sondern dass die Programme auch immer ‚dialogfähiger‘ werden, dass also Nutzer ’natürlich (= menschlich)‘ erscheinende Dialoge mit diesen Maschinen führen können und die Nutzer (= Menschen) dann zufrieden genau die Informationen erhalten, von denen sie ‚glauben‘, dass es die ‚richtigen‘ sind.
  9. Auf den ersten Blick sieht es so aus, als ob die Manager dieser Firmen dank ihrer überlegenen Fähigkeiten die Firmen technologisch aufrüsten und damit zum wirtschaftlichen Erfolg führen.
  10. Tatsache ist aber, dass allein aufgrund der Möglichkeit, dass man ein bestimmtes Informationsverhalten von Menschen (den aktuellen ‚Kunden‘!) mit einer neuen Technologie ‚bedienen‘ könnte, und dass derjenige, der dies zu ‚erschwinglichen Preisen‘ als erster schafft, einen wirtschaftlichen Erfolg erzielen kann (zu Lasten der Konkurrenz), diese rein gedachte Möglichkeit einen Manager zwingt (!!!), von dieser Möglichkeit Gebrauch zu machen. Tut der Manager es nicht läuft er Gefahr, dass die Konkurrenz es tut, und zwar vor ihm, und dass er dadurch möglicherweise auf dem Markt so geschwächt wird, dass die Firma sich davon u.U. nicht mehr erholt. Insofern ist der Manager (und die ganze Firma) ein Getriebener (!!!). Er kann gar nicht anders!
  11. Das, was den Manager ‚treibt‘, das ist die aktuelle technische Möglichkeit, die sich aufgrund der bisherigen technischen Entwicklung ergeben hat. Für die bisherige technische Entwicklung gilt aber für jeden Zeitpunkt die gleiche Logik: als die Dampfmaschine möglich wurde, hatte nur noch Erfolg, wer sie als erster und konsequent eingesetzt hat; als die Elektrizität verfügbar, nicht anders, dann Radio, Fernsehen, Auto, Computer, ….
  12. Die ‚Manager‘ und ‚Unternehmensgründer‘, die wir zurecht bewundern für ihre Fähigkeiten und ihren Mut (nicht immer natürlich), sind trotz all dieser hervorstechenden Eigenschaften und Leistungen dennoch nicht autonom, nicht freiwillig; sie sind und bleiben Getriebene einer umfassenderen Logik, die sich aus der Evolution als Ganzer ergibt: die Evolution basiert auf dem bis heute nicht erklärbaren Prinzip der Entropie-Umkehr, bei dem freie Energie dazu genutzt wird, den kombinatorischen Raum möglicher neuer Zustände möglichst umfassend abzusuchen, und in Form neuer komplexer Strukturen in die Lage zu versetzen, noch mehr, noch schneller, noch effizienter zu suchen und die Strukturen und Dynamiken der vorfindlichen Welt (Universum) darin zu verstehen.
  13. Während wir im Falle von Molekülen und biologischen Zellen dazu tendieren, diese eigentlich ungeheuren Vorgänge eher herunter zu spielen, da sie quasi unter unserer Wahrnehmungsschwelle liegen, wird uns heute vielleicht dann doch erstmalig, ansatzweise, etwas mulmig bei der Beobachtung, dass wir Menschen, die wir uns bislang für so toll halten, dazu ganze riesige globale Firmen, die für Außenstehende beeindruckend wirken und für Firmenmitglieder wie überdimensionale Gefängnisse (? oder Irrenanstalten?), dass wir ‚tollen‘ Menschen also ansatzweise spüren, dass die wahnwitzige Entwicklung zu immer größeren Metropolen und zu immer intelligenteren Maschinen, die uns zunehmen die Welt erklären (weil wir es nicht mehr schaffen!?), uns dies alles tun lassen, weil der einzelne sich machtlos fühlt und die verschiedenen Chefs auf den verschiedenen Hierarchieebenen total Getriebene sind, die ihre Position nur halten können, wenn sie hinreichend effizient sind. Die Effizienz (zumindest in der freien Wirtschaft) wird jeweils neu definiert durch das gerade Machbare.
  14. Politische Systeme haben zwar immer versucht – und versuchen es auch heute – sich ein wenig vor dem Monster der Innovation abzuschotten, aber dies gelingt, wenn überhaupt, in der Konkurrenz der Gesellschaftssysteme nur für begrenzte Zeiten.
  15. Was wir also beobachten ist, dass die immense Informationsflut, die das einzelne Gehirn hoffnungslos überfordert, Lösungen mit intelligente Maschinen auf den Plan ruft, die das Sammeln, Sortieren, Klassifizieren, Aufbereiten usw. übernehmen und uns Menschen dann auf neue Weise servieren. So betrachtet ist es hilfreich für alle, nützlich, praktisch, Lebensfördernd.
  16. Beunruhigend ist einmal die Art und Weise, das Wie: statt dass es wirklich allen hilft, hat man den Eindruck, dass es die globalen Konzerne sind, die einseitig davon Vorteile haben, dass das bisherige Ideal der Privatheit, Freiheit, Selbstbestimmung, Würde usw. aufgelöst wird zugunsten einer völlig gläsernen Gesellschaft, die aber nur für einige wenige gläsern ist. Demokratische Gesellschaften empfinden dies u.U, stärker als nicht-demokratische Gesellschaften.
  17. Beunruhigend ist es auch, weil wir als Menschen erstmalig merken, dass hier ein Prozess in Gang ist, der eine neue Qualität im Verhältnis Mensch – Technik darstellt. In primitiveren Gesellschaften (und auch noch in heutigen Diktaturen) war es üblich , dass wenige Menschen die große Masse aller anderen Menschen quasi ‚versklavt‘ haben. Unter absolutistischen Herrschern hatten alle einem Menschen zu gehorchen, ob der nun Unsinn redete oder Heil verkündete. Nach den verschiedenen demokratischen Revolutionen wurde dieser Schwachsinn entzaubert und man wollte selbst bestimmen, wie das Leben zu gestalten ist.
  18. In der fortschreitenden Komplexität des Alltags merken wir aber, dass das sich selbst Bestimmen immer mehr vom Zugang zu Informationen abhängig ist und von der kommunikativen Abstimmung mit anderen, die ohne erheblichen technischen Aufwand nicht zu leisten sind. Die dazu notwendigen technischen Mittel gewinnen aber im Einsatz, im Gebrauch eine solche dominante Rolle, dass sie immer weniger nur die neutralen Vermittler von Informationen sind, sondern immer mehr ein Eigenleben führen, das sich ansatzweise und dann immer mehr auch von denen abkoppelt, die diese vermittelnden Technologien einsetzen. Kunden und Dienstleister werden werden gleichzeitig abhängig. Wirtschaftlich können die Dienstleister nicht mehr dahinter zurück und lebenspraktisch ist der Verbraucher, der Kunde immer mehr von der Verfügbarkeit dieser Leistung abhängig. Also treiben beide die Entwicklung zu noch größerer Abhängigkeit von den intelligenten Vermittlern voran.
  19. Eine interessante Entwicklung als Teil der übergreifenden Evolution. Wo führt sie uns hin?
  20. Die Frage ist spannend, da die heute bekannten intelligenten Maschinen noch weitab von den Möglichkeiten operieren, die es real gibt. Die Schwelle ist bislang die Abhängigkeit von den begrenzten menschlichen Gehirnen. Unsere Gehirne tun sich schwer mit Komplexität. Wir brauchen Computer, um größere Komplexität bewältigen zu können, was zu noch komplexeren (für uns Menschen) Computern führt, usw. Dabei haben wir noch lange nicht verstanden, wie die etwa 200 Milliarden einzelne Nervenzellen in unserem Gehirn es schaffen, im Millisekundenbereich miteinander so zu reden, dass all die wunderbaren Leistungen der Wahrnehmens, Denkens, Erinnerns, Bewegens usw. möglich sind.
  21. Heutige Computer haben mittlerweile eine begrenzte lokale Lernfähigkeit realisiert, die ihnen den Zugang zu begrenzter Intelligenz erlaubt. Heutige Computer sind aber weder im lokalen wie im strukturellen voll Lernfähig.
  22. Einige meinen, dass die Zukunft im Sinne von technischer-Singularität zu deuten ist, dass die intelligenten Maschinen dann irgendwann alles übernehmen. Ich wäre mir da nicht so sicher. Das Hauptproblem einer vollen Lernfähigkeit ist nicht die Intelligenz, sondern die Abhängigkeit von geeigneten Präferenzsystemen (Werte, Normen, Emotionen, Bedürfnissen, …). Dieses Problem begegnen wir beim Menschen auf Schritt und Tritt. Die vielen Probleme auf dieser Welt resultieren nicht aus einem Mangel an Intelligenz, sondern aus einem Mangel an geeigneten von allen akzeptierten Präferenzsystemen. Dass Computer die gleichen Probleme haben werden ist den meisten (allen?) noch nicht bewusst, da die Lernfähigkeit der bisherigen Computer noch so beschränkt ist, dass das Problem nicht sichtbar wird. Sobald aber die Lernfähigkeit von Computern zunehmen wird, wird sich dieses Problem immer schärfer stellen.
  23. Das einzige wirklich harte Problem ist jetzt schon und wird in der Zukunft das Werteproblem sein. Die bisherigen Religionen haben unsere Blicke mit vielen falschen Bildern vernebelt und uns im Glauben gelassen, das Werteproblem sei ja gelöst, weil man ja an Gott glaubt (jede Religion tat dies auf ihre Weise). Dieser Glaube ist aber letztlich inhaltsleer und nicht geeignet, die realen Wertprobleme zu lösen.
  24. Man kann nur gespannt sein, wie die Menschheit als Teil des umfassenden Lebensphänomens mit einer immer leistungsfähigeren Technik auf Dauer das Werteproblem lösen wird. Die einzige Hoffnung ruht in der Logik des Prozesses selbst. Der Mensch in seiner unfassbaren Komplexität ist ein Produkt der Evolutionslogik; wir selbst sind weit entfernt davon, dass wir etwas Vergleichbares wie uns selbst schaffen könnten. Darf man also darauf vertrauen, dass die in allem Leben innewohnende Logik der Evolution uns Menschen als Werkzeuge benutzt zu noch mehr Komplexität, in der wir alle kleine Rädchen im Ganzen sind (als was erscheint uns  ein einzelner Mensch in einer 30-Millionen Metropole?)

Einen Überblick über alle Einträge von cagent nach Titeln findet sich HIER

Buch: Die andere Superintelligenz. Oder: schaffen wir uns selbst ab? – Kapitel 5 – neu – Version 2

VORBEMERKUNG: Der folgende Text ist ein Vorabdruck zu dem Buch Die andere Superintelligenz. Oder: schaffen wir uns selbst ab?, das im November 2015 erscheinen soll.

Was ist Leben?

Erst die Erde

Etwa 9.2 Mrd Jahre nach dem sogenannten Big Bang kam es zur Entstehung unseres Sonnensystems mit der Sonne als wichtigstem Bezugspunkt. Nur ca. 60 Mio Jahre später gab es unsere Erde. Die Zeitspanne, innerhalb der Spuren von Leben auf der Erde bislang identifiziert wurden, liegt zwischen -4 Mrd Jahre von heute zurück gerechnet bis ca. -3.5 Mrd Jahre. Oder, vom Beginn der Erde aus gesehen, ca. 540 Mio Jahre bis ca. 1 Mrd Jahre nach der Entstehung der Erde.

Alte Bilder vom Leben

Wenn man vom Leben spricht, von etwas Belebtem im Gegensatz zum Unbelebtem, fragt man sich sofort, wie man ‚Leben‘ definieren kann? In der zurückliegenden Geschichte gab es viele Beschreibungs- und Definitionsversuche. Einer, der heute noch begrifflich nachwirkt, ist die Sicht der Philosophie der Antike (ca. -600 bis 650) . Hier wurde das ‚Atmen‘ (gr. ‚pneo‘) als charakteristisches Merkmal für ‚Lebendiges‘ genommen, wodurch es vom ‚Unbelebtem‘ abgegrenzt wurde. Aus dem ‚Atmen‘ wurde zugleich ein allgemeines Lebensprinzip abgeleitet, das ‚Pneuma‘ (im Deutschen leicht missverständlich als ‚Geist‘ übersetzt, im Lateinischen als ’spiritus‘), das sich u.a. im Wind manifestiert und ein allgemeines kosmologisches Lebensprinzip verkörpert, das sowohl die Grundlage für die psychischen Eigenschaften eines Lebewesens bildet wie auch für seine körperliche Lebendigkeit. In der Medizin gab es vielfältige Versuche, das Pneuma im Körper zu identifizieren (z.B. im Blut, in der Leber, im Herzen, im Gehirn und den Nerven). Im philosophischen Bereich konnte das Pneuma ein heißer Äther sein, der die ganze Welt umfasst. Eine andere Auffassung sieht das Pneuma zusammengesetzt aus Feuer und Luft, woraus sich alle Körper der Welt bilden. Das Pneuma wird auch gesehen als die ‚Seele‘, die allein das Leben des Körpers ermöglicht. Bei den Stoikern wird das Pneuma-Konzept zum allumfassenden Begriff einer Weltseele gesteigert. Mit der Zeit vermischte sich der Pneuma-Begriff mit dem Begriff ’nous‘ (Kurzform für ’noos‘)(Englisch als ‚mind‘ übersetzt; Deutsch ebenfalls als ‚Geist‘), um darin die kognitiv-geistige Dimension besser auszudrücken. Weitere einflussreiche begriffliche Koordinierungen finden statt mit dem lateinischen ‚mens‘ (Deutsch auch übersetzt mit ‚Geist‘) und dem hebräischen ‚ruach‘ (im Deutschan ebenfalls mit ‚Geist‘ übersetzt; bekannt in der Formulierung ‚Der Geist Gottes (= ‚ruach elohim‘) schwebte über den Wassern‘; in der Septuaginta, der griechischen Übersetzung der hebräischen Bibel, heißt es ‚pneuma theou‘ (= der Geist Gottes)) (Anmerkung: Diese Bemerkungen sind ein kleiner Extrakt aus der sehr ausführlichen begriffsgeschichtlichen Herleitung in Sandkühler 2010)

Die Zelle im Fokus

War es für die antiken Philosophen, Mediziner und Wissenschaftler noch praktisch unmöglich, die Frage nach den detaillierten Wirkprinzipien des ‚Lebens‘ genauer zu beantworten, erarbeitete sich die moderne Naturwissenschaft immer mehr Einsichten in die Wirkprinzipien biologischer Phänomene (bei Tieren, Pflanzen, Mikroben, molekularbiologischen Sachverhalten), so dass im Laufe des 20.Jahrhunderts klar wurde, dass die Gemeinsamkeit aller Lebensphänomene auf der Erde in jener Superstruktur zu suchen ist, die heute (biologische) Zelle genannt wird.

Alle bekannten Lebensformen auf der Erde, die mehr als eine Zelle umfassen (wir als Exemplare der Gattung homo mit der einzigen Art homo sapiens bestehen aus ca. 10^13 vielen Zellen), gehen zu Beginn ihrer körperlichen Existenz aus genau einer Zelle hervor. Dies bedeutet, dass eine Zelle über alle notwendigen Eigenschaften verfügt, sich zu reproduzieren und das Wachstum eines biologischen Systems zu steuern.

So enthält eine Zelle (Anmerkung: Für das Folgende benutze ich B.Alberts et.al (2008)) alle Informationen, die notwendig sind, um sowohl sich selbst zu organisieren wie auch um sich zu reproduzieren. Die Zelle operiert abseits eines chemischen Gleichgewichts, was nur durch permanente Aufnahme von Energie realisiert werden kann. Obwohl die Zelle durch ihre Aktivitäten die Entropie in ihrer Umgebung ‚erhöht‘, kann sie gegenläufig durch die Aufnahme von Energie auch Entropie verringern. Um einen einheitlichen Prozessraum zu gewährleisten, besitzen Zellen eine Membran, die dafür sorgt, dass nur bestimmte Stoffe in die Zelle hinein- oder herauskommen.

Keine Definition für außerirdisches Leben

Obgleich die Identifizierung der Zelle samt ihrer Funktionsweise eine der größten Errungenschaften der modernen Wissenschaften bei der Erforschung des Phänomens des Lebens darstellt, macht uns die moderne Astrobiologie darauf aufmerksam, dass eine Definition der Lebensphänomene mit Einschränkung des Blicks auf die speziellen Bedingungen auf der Erde nicht unproblematisch ist. Wunderbare Bücher wie „Rare Earth“ von Peter Douglas Ward (Geboren 1949) und Donald Eugene Brownlee (Geboren 1943) „ASTROBIOLOGY. A Multidisciplinary Approach“ von Jonathan I.Lunine (Geb. 1959) machen zumindest sichtbar, wo die Probleme liegen könnten. Lunine diskutiert in Kap.14 seines Buches die Möglichkeit einer allgemeineren Definition von Leben explizit, stellt jedoch fest, dass es aktuell keine solche eindeutige allgemeine Definition von Leben gibt, die über die bekannten erdgebundenen Formen wesentlich hinausgeht. (Vgl. ebd. S.436)

Schrödingers Vision

Wenn man die Charakterisierungen von Leben bei Lunine (2005) in Kap.14 und bei Alberts et.al (2008) in Kap.1 liest, fällt auf, dass die Beschreibung der Grundstrukturen des Lebens trotz aller Abstraktionen tendenziell noch sehr an vielen konkreten Eigenschaften hängen.

Erwin Rudolf Josef Alexander Schrödinger (1887-1961), der 1944 sein einflussreiches Büchlein „What is Life? The Physical Aspect of the Living Cell“ veröffentlichte, kannte all die Feinheiten der modernen Molekularbiologie noch nicht . Schrödinger unterzog das Phänomen des Lebens einer intensiven Befragung aus Sicht der damaligen Physik. Auch ohne all die beeindruckenden Details der neueren Forschung wurde ihm klar, dass das hervorstechendste Merkmal des ‚Biologischen‘, des ‚Lebendigen‘ die Fähigkeit ist, angesichts der physikalisch unausweichlichen Zunahme der Entropie einen gegensätzlichen Trend zu realisieren; statt wachsender Unordnung als Entropie diagnostizierte er eine wachsende Ordnung als negative Entropie, also als etwas, was der Entropie entgegen wirkt.

Diesen Gedanken Schrödingers kann man weiter variieren und in dem Sinne vertiefen, dass der Aufbau einer Ordnung Energie benötigt, mittels der Freiheitsgrade eingeschränkt und Zustände temporär ‚gefestigt‘ werden können.

Fragt sich nur, warum?

Alberts et.al (2008) sehen das Hauptcharakteristikum einer biologischen Zelle darin, dass sie sich fortpflanzen kann, und nicht nur das, sondern dass sie sich selbstmodifizierend fortpflanzen kann. Die Realität biologischer Systeme zeigt zudem, dass es nicht nur um ‚irgendeine‘ Fortpflanzung ging, sondern um eine kontinuierlich optimierende Fortpflanzung.

Metastrukturen

Nimmt man diese Eckwerte ernst, dann liegt es nahe, biologische Zellen als Systeme zu betrachten, die einerseits mit den reagierenden Molekülen mindestens eine Objektebene [O] umfasst und in Gestalt der DNA eine Art Metaebene [M]; zwischen beiden Systemen lässt sich eine geeigneten Abbildung [R] in Gestalt von Übersetzungsprozessen realisieren, so dass die Metaebene M mittels Abbildungsvorschrift R in eine Objektebene O übersetzt werden kann (R: M \longmapsto O). Damit eine Reproduktion grundsätzlich gelingen kann, muss verlangt werden, dass das System mit seiner Struktur ‚lang genug‘ stabil ist, um solch einen Übersetzungsprozess umsetzen zu können. Wie diese Übersetzungsprozesse im einzelnen vonstatten gehen, ist letztlich unwichtig. Wenn in diesem Modell bestimmte Strukturen erstmals realisiert wurden, dann fungieren sie als eine Art ‚Gedächtnis‘: alle Strukturelemente von M repräsentieren potentielle Objektstrukturen, die jeweils den Ausgangspunkt für die nächste ‚Entwicklungsstufe‘ bilden (sofern sie nicht von der Umwelt ‚aussortiert‘ werden).

Die Rolle dieser Metastrukturen lässt sich letztlich nicht einfach mit den üblichen chemischen Reaktionsketten beschreiben; tut man es dennoch, verliert man die Besonderheit des Phänomens aus dem Blick. Eine begriffliche Strategie, um das Phänomen der ‚wirkenden Metastrukturen‘ in den Griff zu bekommen, war die Einführung des ‚Informationsbegriffs‘.

Information

Grob kann man hier mindestens die folgenden sprachlichen Verwendungsweisen des Begriffs ‚Information‘ im Kontext von Informationstheorie und Molekularbiologie unterscheiden:

  1. Unreflektiert umgangssprachlich (‚Information_0‘)
  2. Anhand des Entscheidungsaufwandes (Bit) (‚Information_1‘)
  3. Rein statistisch (a la Shannon 1948) (‚Information_2‘)
  4. Semiotisch informell (ohne die Semiotik zu zitieren) (‚Semantik_0‘)
  5. Als komplementär zur Statistik (Deacon) (‚Semantik_1‘)
  6. Als erweitertes Shannonmodell (‚Semantik_2‘)

Information_0

Die ‚unreflektiert umgangssprachliche‘ Verwendung des Begriffs ‚Information‘ (hier: ‚Information_0‘) brauchen wir hier nicht weiter zu diskutieren. Sie benutzt den Begriff Information einfach so, ohne weitere Erklärungen, Herleitungen, Begründungen. (Ein Beispiel Küppers (1986:41ff))

Information_1

Die Verwendung des Begriffs Information im Kontext eines Entscheidungsaufwandes (gemessen in ‚Bit‘), hier als ‚Information_1‘ geht auf John Wilder Tukey (1915-2000) zurück.

Information_2

Shannon (1948) übernimmt zunächst diesen Begriff Information_1, verzichtet dann aber im weiteren Verlauf auf diesen Informationsbegriff und führt dann seinen statistischen Informationsbegriff ein (hier: ‚Information_2‘), der am Entropiekonzept von Boltzmann orientiert ist. Er spricht dann zwar immer noch von ‚Information‘, bezieht sich dazu aber auf den Logarithmus der Wahrscheinlichkeit eines Ereignisses, was alles und jedes sein kann. Ein direkter Bezug zu einem ’speziellen‘ Informationsbegriff (wie z.B. Information_1) besteht nicht. Man kann die logarithmierte Wahrscheinlichkeit eines Ereignisses als ‚Information‘ bezeichnen (hier: ‚Information_2‘), aber damit wird der Informationsbegriff inflationär, dann ist alles eine Information, da jedes Ereignis mindestens eine Wahrscheinlichkeit besitzt. (Leider benutzt auch Carl Friedrich von Weizsäcker (1971:347f) diesen inflationären Begriff (plus zusätzlicher philosophischer Komplikationen)). Interessanterweise ist es gerade dieser inflationäre statistische Informationsbegriff Information_2, der eine sehr starke Resonanz gefunden hat.

Semantik 0

Nun gibt es gerade im Bereich der Molekularbiologie zahlreiche Phänomene, die bei einer Beschreibung mittels eines statistischen Informationsbegriffs wichtige Momente ihres Phänomens verlieren. (Dazu eine kleine Übersicht bei Godfrey-Smith, Kim Sterelny (2009)) Ein Hauptkritikpunkt war und ist das angebliche Fehlen von Bedeutungselementen im statistischen Modell von Shannon (1948). Man spricht auch vom Fehlen einer ‚Semantik‘. Allerdings wird eine Diskussion der möglichen Bedeutungsmomente von Kommunikationsereignissen unter Verwendung des Begriffs ‚Semantik‘ auch oft unreflektiert alltagssprachlich vorgenommen (hier: Semantik_0′), d.h. es wird plötzlich von Semantik_0 gesprochen (oft noch erweitert um ‚Pragmatik‘), ohne dass die Herkunft und Verwendung dieses Begriffs in der Wissenschaft der Semiotik weiter berücksichtigt wird. (Ein Beispiel für solch eine verwirrende Verwendungsweise findet sich z.B. wieder bei Weizsäcker (1971:350f), wo Information_0, Information_2 sowie Semantik_0 miteinander frei kombiniert werden, ohne Berücksichtigung der wichtigen Randbedingungen ihrer Verwendung; ganz ähnlich Küppers (1986:61ff); zur Semiotik siehe Noeth (2000)). Ein anderes neueres Beispiel ist Floridi (2015:Kap.3+4) Er benutzt zwar den Begriff ‚Semantik‘ extensiv, aber auch er stellt keinen Bezug zur semiotischen Herkunft her und verwendet den Begriff sehr speziell. Seine Verwendung führt nicht über den formalen Rahmen der statistischen Informationstheorie hinaus.

Semantik 1

Sehr originell ist das Vorgehen von Deacon (2007, 2008, 2010). Er diagnostiziert zwar auch einen Mangel, wenn man die statistische Informationstheorie von Shannon (1948) auf biologische Phänomene anwenden will, statt sich aber auf die schwierige Thematik einer expliziten Semantik einzulassen, versucht er über die Ähnlichkeit des Shannonschen statistischen Informationsbegriffs mit dem von Boltzmann einen Anschluss an die Thermodynamik zu konstruieren. Von dort zum Ungleichgewicht biologischer Systeme, die durch Arbeit und Energieaufnahme ihr Gleichgewicht zu halten versuchen. Diese Interaktionen des Systems mit der Umgebung modifizieren die inneren Zustände des Systems, die wiederum dann das Verhalten des Systems ‚umweltgerecht‘ steuern. Allerdings belässt es Deacon bei diesen allgemeinen Annahmen. Die ‚Abwesenheit‘ der Bedeutung im Modell von Shannon wird über diese frei assoziierten Kontexte – so vermutet man als Leser – mit den postulierten internen Modifikationen des interagierenden Systems begrifflich zusammengeführt. Wie dies genau gedacht werden kann, bleibt offen.

Semantik 2

So anregend die Überlegungen von Deacon auch sind, sie lassen letztlich offen, wie man denn – auch unter Berücksichtigung des Modells von Shannon – ein quasi erweitertes Shannonmodell konstruieren kann, in dem Bedeutung eine Rolle spielt. Hier eine kurze Skizze für solch ein Modell.

Ausgehend von Shannons Modell in 1948 besteht die Welt aus Sendern S, Empfängern D, und Informationskanälen C, über die Sender und Empfänger Signale S eingebettet in ein Rauschen N austauschen können (<S,D,S,N,C> mit C: S —> S x N).

Ein Empfänger-Sender hat die Struktur, dass Signale S in interne Nachrichten M dekodiert werden können mittels R: S x N —> M. Umgekehrt können auch Nachrichten M in Signale kodiert werden mit T: M —> S. Ein minimaler Shannon Sender-Empfänger hat dann die Struktur <M, R, T>. So gesehen funktionieren R und T jeweils als ‚Schnittstellen‘ zwischen dem ‚Äußeren‘ und dem ‚Inneren‘ des Systems.

In diesem minimalen Shannonmodell kommen keine Bedeutungen vor. Man kann allerdings annehmen, dass die Menge M der Nachrichten eine strukturierte Menge ist, deren Elemente Paare der Art (m_i,p_i) in M mit ‚m_i‘ als Nachrichtenelement und ‚p_i‘ als Wahrscheinlichkeit, wie oft dieses Nachrichtenelement im Kanal auftritt. Dann könnte man Shannons Forml H=-Sum(p_i * log2(p_i)) als Teil des Systems auffassen. Das minimale Modell wäre dann <M, R, T, H>.

Will man ‚Bedeutungen‘ in das System einführen, dann muss man nach der Semiotik einen Zeichenbegriff für das System definieren, der es erlaubt, eine Beziehung (Abbildung) zwischen einem ‚Zeichenmaterial‚ und einem ‚Bedeutungsmaterial‚ zu konstruieren. Nimmt man die Signale S von Shannon als Kandidaten für ein Zeichenmaterial, fragt sich, wie man das Bedeutungsmaterial B ins Spiel bringt.

Klar ist nur, dass ein Zeichenmaterial erst dann zu einem ‚Zeichen‘ wird, wenn der Zeichenbenutzer in der Lage ist, dem Zeichenmaterial eine Bedeutung B zuzuordnen. Eine einfache Annahme wäre, zu sagen, die dekodierten Nachrichten M bilden das erkannte Zeichenmaterial und der Empfänger kann dieses Material irgendwelchen Bedeutungen B zuordnen, indem er das Zeichenmaterial M ‚interpretiert‚, also I : M —> B. Damit würde sich die Struktur erweitern zu <B, M, R, T, H, I>. Damit nicht nur ein Empfänger ‚verstehen‘ kann, sondern auch ‚mitteilen‘, müsste der Empfänger als Sender Bedeutungen auch wieder ‚umgekehrt lesen‘ können, also -I: B —> M. Diese Nachrichten könnten dann wieder mittels T in Signale übersetzt werden, der Kanal sendet diese Signale S angereichert mit Rauschen N zum Empfänger, usw. Wir erhalten also ein minimal erweitertes Shannon Modell mit Bedeutung als <B, M, R, T, H, I, -I>. Ein Sender-Empfänger kann also weiterhin die Wahrscheinlichkeitsstruktur seiner Nachrichten auswerten; zusätzlich aber auch mögliche Bedeutungsanteile.

Bliebe als Restfrage, wie die Bedeutungen B in das System hineinkommen bzw. wie die Interpretationsfunktion I entsteht?

An dieser Stelle kann man die Spekulationen von Deacon aufgreifen und als Arbeitshypothese annehmen, dass sich die Bedeutungen B samt der Interpretationsbeziehung I (und -I) in einem Adaptionsprozess (Lernprozess) in Interaktion mit der Umgebung entwickeln. Dies soll an anderer Stelle beschrieben werden.

Für eine komplette Beschreibung biologischer Phänomene benötigt man aber noch weitere Annahmen zur Ontogense und zur Phylogense. Diese seien hier noch kurz skizziert. (Eine ausführliche formale Darstellung wird anderswo nachgeliefert).

Ontogenese

Von der Lernfähigkeit eines biologischen Systems muss man die Ontogenese unterscheiden, jenen Prozess, der von der Keimzelle bis zum ausgewachsenen System führt.

Die Umsetzung der Ontogenese in einem formalen Modell besteht darin, einen Konstruktionsprozess zu definieren, das aus einem Anfangselement Zmin das endgültige System Sys in SYS erstellen würde. Das Anfangselement wäre ein minimales Element Zmin analog einer befruchteten Zelle, das alle Informationen enthalten würde, die notwendig wären, um diese Konstruktion durchführen zu können, also Ontogenese: Zmin x X —> SYS. Das ‚X‘ stünde für alle die Elemente, die im Rahmen einer Ontogenese aus der Umgebung ENV übernommen werden müssten, um das endgültige system SYS = <B, M, R, T, H, I, -I> zu konstruieren.

Phylogenese

Für die Reproduktion der Systeme im Laufe der Zeiten benötigte man eine Population von Systemen SYS, von denen jedes System Sys in SYS mindestens ein minimales Anfangselement Zmin besitzt, das für eine Ontogenese zur Verfügung gestellt werden kann. Bevor die Ontogenese beginnen würde, würden zwei minimale Anfangselemente Zmin1 und Zmin2 im Bereich ihrer Bauanleitungen ‚gemischt‘. Man müsste also annehmen, dass das minimale System um das Element Zmin erweitert würde SYS = <B, M, Zmin, R, T, H, I, -I>.

Erstes Zwischenergebnis

Auffällig ist also, dass das Phänomen des Lebens

  1. trotz Entropie über dynamische Ungleichgewichte immer komplexere Strukturen aufbauen kann.
  2. innerhalb seiner Strukturen immer komplexere Informations- und Bedeutungsstrukturen aufbaut und nutzt.

So wie man bislang z.B. die ‚Gravitation‘ anhand ihrer Wirkungen erfasst und bis heute erfolglos zu erklären versucht, so erfassen wir als Lebende das Leben anhand seiner Wirkungen und versuchen bis heute auch erfolglos, zu verstehen, was hier eigentlich passiert. Kein einziges physikalisches Gesetzt bietet auch nur den leisesten Anhaltspunkt für dieses atemberaubende Geschehen.

In dieser Situation den Menschen als eine ‚vermutlich aussterbende Art‘ zu bezeichnen ist dann nicht einfach nur ‚gedankenlos‘, sondern im höchsten Maße unwissenschaftlich, da es letztlich einer Denkverweigerung nahe kommt. Eine Wissenschaft, die sich weigert, über die Phänomene der Natur nachzudenken, ist keine Wissenschaft.

Fortsetzung Folgt.

QUELLEN

  1. H.J. Sandkühler (Hg.), 2010, „Enzyklopädie Philosophie“, Hamburg: Felix Meiner Verlag, Band 1: Von A bis H, Kapitel: Geist, SS.792ff
  2. B.Alberts et.al (Hg.), 2008, „Molecular Biology of the CELL“, Kap.1, 5.Aufl., New York: Garland Science, Taylor & Francis Group
  3. Peter Douglas Ward und `Donald Eugene Brownlee (2000),“Rare Earth: Why Complex Life Is Uncommon in the Universe“, New York: Copernikus/ Springer,
  4. Jonathan I.Lunine (2005), „ASTROBIOLOGY. A Multidisciplinary Approach“, San Francisco – Boston – New York et al.: Pearson-Addison Wesley
  5. Zu Schroedinger 1944: Based on Lectures delivered under the auspices of the Institute at Trinity College, Dublin, in February 1943, Cambridge: University Press. 1944. Ich selbst habe die Canto Taschenbuchausgabe der Cambridge University von 1992 benutzt. Diese Ausgabe enthält ‚What is Life?‘, ‚Mind from Matter‘, sowie autobiographischen Angaben und ein Vorwort von Roger Penrose
  6. Anmerkung zu Schroedinger 1944: Sowohl James D. Watson (2003) wie auch ähnlich Francis Crick (1990) berichten, dass Schrödingers Schrift (bzw. einer seiner Vorträge) sie für ihre Erforschung der DNA stark angeregt hatte.
  7. James D.Watson und A.Berry(2003), „DNA, the Secret of Life“, New York: Random House
  8. Francis Crick (1990),„What Mad Pursuit: A Personal View of Scientific Discovery“, Reprint, Basic Books
  9. Peter Godfrey-Smith und Kim Sterelny (2009) Biological Information“, in: Stanford Enyclopedia of Philosophy
  10. Carl Friedrich von Weizsäcker (1971), „Die Einheit der Natur“, München: Carl Hanser Verlag
  11. Bernd-Olaf Küppers (1986), „Der Ursprung biologischer Information. Zur Naturphilosophie der Lebensentstehung“, München – Zürich: Piper Verlag.
  12. Claude E. Shannon, A mathematical theory of communication. Bell System Tech. J., 27:379-423, 623-656, July, Oct. 1948
  13. Claude E. Shannon; Warren Weaver (1949) „The mathematical theory of communication“. Urbana – Chicgo: University of Illinois Press.
  14. Noeth, W., Handbuch der Semiotik, 2. vollst. neu bearb. und erw. Aufl. mit 89 Abb. Stuttgart/Weimar: J.B. Metzler, xii + 668pp, 2000
  15. Luciano Floridi (2015) Semantic Conceptions of Information, in: Stanford Enyclopedia of Philosophy
  16. Deacon, T. (2007), Shannon-Boltzmann-Darwin: Redfining information. Part 1. in: Cognitive Semiotics, 1: 123-148
  17. Deacon, T. (2008), Shannon-Boltzmann-Darwin: Redfining information. Part 2. in: Cognitive Semiotics, 2: 167-194
  18. Terrence W.Deacon (2010), „What is missing from theories of information“, in: INFORMATION AND THE NATURE OF REALITY. From Physics to Metaphysics“, ed. By Paul Davies & Niels Henrik Gregersen, Cambridge (UK) et al: Cambridge University Press, pp.146 – 169

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

BUCHPROJEKT 2015 – Zwischenreflexion 23.August 2015 – INFORMATION – Jenseits von Shannon

Der folgende Beitrag bezieht sich auf das Buchprojekt 2015.

VORHERIGE BEITRÄGE

1. Im Beitrag von John Maynard Smith hatte dieser Kritik geübt an der Informationstheorie von Shannon. Dabei fokussierte er im wesentlichen auf die direkte Anwendung des Shannonschen Begriffs auf die informationsvermittelnden Prozesse bei der Selbstreproduktion der Zelle, und er konnte deutlich machen, dass viele informationsrelevanten Eigenschaften bei dem Reproduktionsprozess mit dem Shannonschen Informationsbegriff nicht erfasst werden. Anschließend wurde ein Beitrag von Terrence W.Deacon diskutiert, der den Shannonschen Informationsbegriff als Ausgangspunkt nutzte, den er it dem Entropiebegriff von Boltzmann verknüpfte, von dort die Begriffe thermodynamisches Ungleichgewicht, Arbeit und Evolution nach Darwin benutzte, um die Idee anzudeuten, dass jene Zustände in einem System, die bedeutungsrelevant sein könnten (und von Shannon selbst nicht analysiert werden) in Interaktion mit der Umwelt entstanden sind und entstehen.

ZWISCHENSTAND
2. Was sowohl bei Maynard Smih wie auch bei Deakon auffällt, ist, dass sie sich wenig um den möglichen Kontext des Begriffs ‚Information‘ bemühen. Wie wurde der Begriff der Information im Laufe der Ideengeschichte verstanden? Welche Besonderheiten gibt es in den verschiedenen Disziplinen?

HISTORISCH-SYSTEMATISCHE PERSPEKTIVE

3. In einem umfangreichen und detailliertem Überblick von Pieter Adriaans (2012) in der Standford Encyclopedia of Philosophy findet man ein paar mehr Zusammenhänge.

4. Zwar heißt es auch hier mehrfach, dass ein erschöpfender Überblick und eine alles umfassende Theorie noch aussteht, aber ausgehend von der antiken Philosophie über das Mittelalter, die Renaissance bis hin zu einigen modernen Entwicklungen findet man wichtige Themen und Autoren.

5. Zusammenfassend sei hier nur festgestellt, dass Aspekte des Informationsbegriffs auf unterschiedlich Weise bis zum Ende des 19.Jahrhunderts feststellbar sind, ohne dass man von einer eigentlich Philosophie der Information oder einer Informationstheorie im modernen Sinne sprechen kann. Als grobe Koordinaten, die den Ausgangspunkt für die neuere Entwicklung einer Informationstheorie markieren, nennt Adriaans (i) Information als ein Prozess, der Systeme prägen/ formieren/ informieren kann; (ii) Information als ein Zustand, der sich bei einem System einstellt, nachdem es informiert wurde; (iii) Information als die Fähigkeit eines Systems, seine Umgebung zu prägen/ formen/ informieren.

6. Weiterhin identifiziert er zusammenfassend einige Bausteine der modernen Informationstheorie: (i) Information ist ‚extensiv‘ insofern die Bestandteile in das übergreifende Ganze eingehen und sie vermindert Unsicherheit; (ii) man benötigt eine formale Sprache zu ihrer Darstellung; (iii) ein ‚optimaler‘ Kode ist wichtig; (iv) die Verfügbarkeit eines optimierten Zahlensystems (binär, Stellen, Logarithmus) spielte eine Rolle; ausgehend von konstituierenden Elementen die Idee der Entropie in Kombination mit der Wahrscheinlichkeit; (v) die Entwicklung einer formalen Logik für Begriffe wie ‚Extension/ Intension‘, ‚Folgerung‘, ‚Notwendigkeit‘, ‚mögliche Welten‘, ‚Zustandsbeschreibungen‘ und ‚algorithmische Informationstheorie‘.

7. Andere wichtige Themen sind (i) Information als Grad der Widerlegbarkeit (Popper); (ii) Information in Begriffen der Wahrscheinlichkeit (Shannon); (iii) Information als Länge des Programms (Solomonoff, Kolmogorov, Chaitin).

SHANNON ERSCHEINT ÜBERMÄCHTIG

8. Was man bei Adriaans vermisst, das ist der Bezug zur semantischen Dimension. Hierzu gibt es einen anderen sehr umfangreichen Beitrag von Floridi (2015), auf den auch Adriaans verweist. Floridi behandelt die Frage der Semantischen Information quantitativ sehr ausführlich, inhaltlich aber beschränkt er sich weitgehend auf eine formale Semantik im Umfeld einer mathematischen Informationstheorie auf der Basis von Shannon 1948. Dies verwundert. Man kann den Eindruck gewinnen, dass die ‚konzeptuelle Gravitation‘ des Shannonschen Modells jede Art von begrifflicher Alternative im Keim erstickt.

BEFREIUNG DURCH BIOLOGIE

9. Bringt man die Informationstheorie in das begriffliche Gravitationsfeld der Biologie, insbesondere der Molekularbiologie, dann findet man in der Tat auch andere begrifflich Ansätze. Peter Godfrey-Smith und Kim Sterelny (2009) zeigen am Beispiel der Biologie und vieler molekularbiologischer Sachverhalte auf, dass man das enge Modell von Shannon durch weitere Faktoren nicht nur ergänzen kann, sondern muss, will man den besonderen biologischen Sachverhalten Rechnung tragen. Allerdings führen sie ein solches Modell nicht allgemein aus. Kritiker weisen darauf hin, dass solche zusätzlichen Abstraktionen die Gefahr bieten – wie in jeder anderen wissenschaftlichen Disziplin auch –, dass sich Abstraktionen ‚ontologisch verselbständigen‘; ohne erweiternde Begrifflichkeit kann man allerdings auch gar nichts sagen.

THEORIE A LA BOLTZMANN VOR MEHR ALS 100 JAHREN

10. Diese ganze moderne Diskussion um die ‚richtigen formalen Modelle‘ zur Erklärung der empirischen Wirklichkeit haben starke Ähnlichkeiten mit der Situation zu Zeiten von Ludwig Boltzmann. In einer lesenswerten Rede von 1899 zur Lage der theoretischen Physik ist er konfrontiert mit der stürmischen Entwicklung der Naturwissenschaften in seiner Zeit, speziell auch der Physik, und es ist keinesfalls ausgemacht, welches der vielen Modelle sich in der Zukunft letztlich als das ‚richtigere‘ erweisen wird.

11. Boltzmann sieht in dieser Situation die Erkenntnistheorie gefragt, die mithelfen soll, zu klären, welche Methoden in welcher Anordnung einen geeigneten Rahmen hergeben für eine erfolgreiche Modellbildung, die man auch als theoretische Systeme bezeichnen kann, die miteinander konkurrieren.

12. Mit Bezugnahme auf Hertz bringt er seinen Zuhörern zu Bewusstsein, „dass keine Theorie etwas Objektives, mit der Natur wirklich sich Deckendes sein kann, dass vielmehr jede nur ein geistiges Bild der Erscheinungen ist, das sich zu diesen verhält wie das Zeichen zum Bezeichneten.“ (Boltzmann 1899:215f) Und er erläutert weiter, dass es nur darum gehen kann, „ein möglichst einfaches, die Erscheinungen möglichst gut darstellendes Abbild zu finden.“ (Boltzmann 1899:216) So schließt er nicht aus, dass es zum gleichen empirischen Sachverhalt zwei unterschiedliche Theorien geben mag, die in der Erklärungsleistung übereinstimmen.

13. Als Beispiel für zwei typische theoretische Vorgehensweisen nennt er die ‚Allgemeinen Phänomenologen‘ und die ‚Mathematischen Phänomenologen‘. Im ersteren Fall sieht man die theoretische Aufgabe darin gegeben, alle empirischen Tatsachen zu sammeln und in ihrem historischen Zusammenhang darzustellen. Im zweiten Fall gibt man mathematische Modelle an, mit denen man die Daten in allgemeine Zusammenhänge einordnen, berechnen und Voraussagen machen kann. Durch die Einordnung in verallgemeinernde mathematische Modelle geht natürlich die Theorie über das bis dahin erfasste Empirische hinaus und läuft natürlich Gefahr, Dinge zu behaupten die empirisch nicht gedeckt sind, aber ohne diese Verallgemeinerungen kann ein Theorie nichts sagen. Es kann also nicht darum gehen, ’nichts‘ zu sagen, sondern das, was man theoretisch sagen kann, hinreichend auf Zutreffen bzw. Nicht-Zutreffen zu kontrollieren (Poppers Falsifizierbarkeit). Boltzmann bringt seitenweise interessante Beispiele aus der damals aktuellen Wissenschaftsdiskussion, auf die ich hier jetzt aber nicht eingehe.

WIE SHANNON ERWEITERN?

14. Stattdessen möchte ich nochmals auf die Fragestellung zurück kommen, wie man denn vorgehen sollte, wenn man erkannt hat, dass das Modell von Shannon – so großartig es für die ihm gestellten Aufgaben zu sein scheint –, bzgl. bestimmter Fragen als ‚zu eng‘ erscheint. Hier insbesondere für die Frage der Bedeutung.

15. Im Beitrag von Deacon konnte man eine Erweiterungsvariante in der Weise erkennen, dass Deacon versucht hatte, über die begriffliche Brücke (Shannon-Entropie –> Boltzmann-Entropie –>Thermodynamik → Ungleichgewicht → Aufrechterhaltung durch externe Arbeit) zu der Idee zu kommen, dass es in einem biologischen System Eigenschaften/ Größen/ Differenzen geben kann, die durch die Umwelt verursacht worden sind und die wiederum das Verhalten des Systems beeinflussen können. In diesem Zusammenhang könnte man dann sagen, dass diesen Größen ‚Bedeutung‘ zukommt, die zwischen Systemen über Kommunikationsereignisse manifestiert werden können. Ein genaueres Modell hatte Deacon dazu aber nicht angegeben.

16. Wenn Deacon allerdings versuchen wollte, diese seine Idee weiter zu konkretisieren, dann käme er um ein konkreteres Modell nicht herum. Es soll hier zunächst kurz skizziert werden, wie solch ein Shannon-Semantik-System aussehen könnte. An anderer Stelle werde ich dies Modell dann formal komplett hinschreiben.

SHANNON-SEMANTIK MODELL SKIZZE

17. Als Ausgangspunkt nehme ich das Modell von Shannon 1948. (S.381) Eine Quelle Q bietet als Sender Nachrichten M an, die ein Übermittler T in Kommunikationsereignisse S in einem Kommunikationskanal C verwandelt (kodiert). In C mischen sich die Signale S mit Rauschelementen N. Diese treffen auf einen Empfänger R, der die Signale von den Rauschanteilen trennt und in eine Nachricht M* verwandelt (dekodiert), die ein Empfänger D dann benutzen kann.

18. Da Shannon sich nur für die Wahrscheinlichkeit bestimmter Signalfolgen interessiert hat und die Kapazitätsanforderungen an den Kanal C, benötigt sein Modell nicht mehr. Wenn man aber jetzt davon ausgeht, dass der Sender nur deshalb Kommunikationsereignisse S erzeugt, weil er einem Empfänger bestimmte ‚Bedeutungen‘ übermitteln will, die den Empfänger in die Lage versetzen, etwas zu ‚tun‘, was der übermittelten Bedeutung entspricht, dann muss man sich überlegen, wie man das Shannon Modell erweitern kann, damit dies möglich ist.

19. Das erweiterte Shannon-Semantik Modell soll ein formales Modell sein, das geeignet ist, das Verhalten von Sendern und Empfängern zu beschreiben, die über reine Signale hinaus mittels dieser Signale ‚Bedeutungen‘ austauschen können. Zunächst wird nur der Fall betrachtet, dass die Kommunikation nur vom Sender zum Empfänger läuft.

20. Ein erster Einwand für die Idee einer Erweiterung könnte darin bestehen, dass jemand sagt, dass die Signale ja doch ‚für sich‘ stehen; wozu braucht man die Annahme weiterer Größen genannt ‚Bedeutung‘?

21. Eine informelle Erläuterung ist sehr einfach. Angenommen der Empfänger ist Chinese und kann kein Deutsch. Er besucht Deutschland. Er begegnet dort Menschen, die kein Chinesisch können und nur Deutsch reden. Der chinesische Besucher kann zwar sehr wohl rein akustisch die Kommunikationsereignisse in Form der Laute der deutschen Sprache hören, aber er weiß zunächst nichts damit anzufangen. In der Regel wird er auch nicht in der Lage sein, die einzelnen Laute separat und geordnet aufzuschreiben, obgleich er sie hören kann. Wie wir wissen, braucht es ein eigenes Training, die Sprachlaute einer anderen Sprache zweifelsfrei zu erkennen, um sie korrekt notieren zu können. Alle Deutschen, die bei einer solchen Kommunikation teilnehmen, können die Kommunikationsereignisse wahrnehmen und sie können – normalerweise – ‚verstehen‘, welche ‚anderen Sachverhalte‘ mit diesen Kommunikationsereignissen ‚verknüpft werde sollen‘. Würde der Chinese irgendwann Deutsch oder die Deutschen Chinesisch gelernt haben, dann könnten die Deutschen Kommunikationsereignisse in Chinesische übersetzt werden und dann könnten – möglicherweise, eventuell nicht 1-zu-1 –, mittels der chinesischen Kommunikationsereignisse hinreichend ähnliche ‚adere Sachverhalte‘ angesprochen werden.

22. Diese anderen Sachverhalte B, die sich den Kommunikationsereignissen zuordnen lassen, sind zunächst nur im ‚Innern des Systems‘ verfügbar. D.h. Die Kommunikationsereignisse S (vermischt mit Rauschen N) im Kommunikationskanal C werden mittels des Empfängers R in interne Nachrichten M* übersetzt (R: S x N —> M*), dort verfügt der Empfänger über eine weitere Dekodierfunktion I, die den empfangenen Nachrichten M* Bedeutungssachverhalte zuordnet, also I: M* —> B. Insofern ein Dolmetscher weiß, welche Bedeutungen B durch eine deutsche Kommunikationssequenz im Empfänger dekodiert werden soll, kann solch ein Dolmetscher dem chinesischen Besucher mittels chinesischer Kommunikationsereignisse S_chin einen Schlüssel liefern, dass dieser mittels R: S_chin —> M*_chin eine Nachricht empfangen kann, die er dann mit seiner gelernten Interpretationsfunktion I_chin: M*_chin —> B‘ in solche Bedeutungsgrößen B‘ übersetzen kann, die den deutschen Bedeutungsgrößen B ‚hinreichend ähnlich‘ sind, also SIMILAR(B, B‘).

23. Angenommen, der empfangenen Nachricht M* entspricht eine Bedeutung B, die eine bestimmte Antwort seitens des Empfängers nahelegt, dann bräuchte der Empfänger noch eine Sendeoperation der Art Resp: B —> M* und T: M* —> S.

24. Ein Empfänger ist dann eine Struktur mit mindestens den folgenden Elementen: <S,N,M*,B,R,I,resp,T> (verglichen mit dem ursprünglichen Shannon-Modell: <S,N,M*,-,R,I,-,T>). So einfach diese Skizze ist, zeigt sie doch, dass man das Shannon Modell einfach erweitern kann unter Beibehaltung aller bisherigen Eigenschaften.

25. Natürlich ist eine detaillierte Ausführung der obigen Modellskizze sehr aufwendig. Würde man die Biologie einbeziehen wollen (z.B. im Stile von Deacon), dann müsste man die Ontogenese und die Phylogenese integrieren.

26. Die Grundidee der Ontogenese bestünde darin, einen Konstruktionsprozess zu definieren, der aus einem Anfangselement Zmin das endgültige System Sys in SYS erstellen würde. Das Anfangselement wäre ein minimales Element Zmin analog einer befruchteten Zelle, das alle Informationen enthalten würde, die notwendig wären, um diese Konstruktion durchführen zu können, also Ontogenese: Zmin x X —> SYS. Das ‚X‘ stünde für alle die Elemente, die im Rahmen einer Ontogenese aus der Umgebung ENV übernommen werden müssten, um das endgültige system SYS = <S,N,M*,B,R,I,resp,T> zu konstruieren.

27. Für die Phylogenese benötigte man eine Population von Systemen SYS in einer Umgebung ENV, von denen jedes System Sys in SYS mindestens ein minimales Anfangselement Zmin besitzt, das für eine Ontogenese zur Verfügung gestellt werden kann. Bevor die Ontogenese beginnen würde, würden zwei minimale Anfangselemente Zmin1 und Zmin2 im Bereich ihrer Bauanleitungen ‚gemischt‘, um dann der Ontogenese übergeben zu werden.

QUELLEN

  1. John Maynard Smith (2000), „The concept of information in biology“, in: Philosophy of Science 67 (2):177-194
  2. Terrence W.Deacon (2010), „What is missing from theories of information“, in: INFORMATION AND THE NATURE OF REALITY. From Physics to Metaphysics“, ed. By Paul Davies & Niels Henrik Gregersen, Cambridge (UK) et al: Cambridge University Press, pp.146 – 169
  3. Bernd-Olaf Küppers 2010), „Information and communication in living matter“, in: INFORMATION AND THE NATURE OF REALITY. From Physics to Metaphysics“, ed. By Paul Davies & Niels Henrik Gregersen, Cambridge (UK) et al: Cambridge University Press, pp.170-184
  4. Luciano Floridi (2015) Semantic Conceptions of Information, in: Stanford Enyclopedia of Philosophy
  5. Jesper Hoffmeyer (2010), „Semiotic freedom: an emerging force“, in: INFORMATION AND THE NATURE OF REALITY. From Physics to Metaphysics“, ed. By Paul Davies & Niels Henrik Gregersen, Cambridge (UK) et al: Cambridge University Press, pp.185-204
  6. Stichwort Information in der Stanford Enyclopedia of Philosophy von Pieter Adriaans (P.W.Adriaans@uva.nl) (2012)
  7. Peter Godfrey-Smith, Kim Sterelny (2009) Biological Information“, in: Stanford Enyclopedia of Philosophy
  8. Hans Jörg Sandkühler (2010), „Enzyklopädie Philosophie“, Bd.2, 2., überarbeitete und erweiterte Auflage, Meiner Verlag, Hamburg 2010, ISBN 978-3-7873-1999-2, (3 Bde., parallel dazu auch als CD erschienen)
  9. Ludwig Boltzmann (1899), „Über die Entwicklung der Methoden der theoretischen Physik in neuerer Zeit“, in: „Populäre Schriften“, Leipzig:Verlag von Johann Ambrosius Barth, 1905, SS.198-227
  10. Lawrence Sklar (2015), Philosophy of Statistical Mechanics in Stanford Encyclopedia of Philosophy
  11. Schroedinger, E. „What is Life?“ zusammen mit „Mind and Matter“ und „Autobiographical Sketches“. Cambridge: Cambridge University Press, 1992 (‚What is Life‘ zuerst veröffentlicht 1944; ‚Mind an Matter‘ zuerst 1958)
  12. Claude E. Shannon, A mathematical theory of communication. Bell System Tech. J., 27:379-423, 623-656, July, Oct. 1948
  13. Claude E. Shannon; Warren Weaver (1949) „The mathematical theory of communication“. Urbana – Chicgo: University of Illinois Press.
  14. John Maynard Smith (2000), „The concept of information in biology“, in: Philosophy of Science 67 (2):177-194
  15. Noeth, W., Handbuch der Semiotik, 2. vollst. neu bearb. und erw. Aufl. mit 89 Abb. Stuttgart/Weimar: J.B. Metzler, xii + 668pp, 2000
  16. Monod, Jacques (1971). Chance and Necessity. New York: Alfred A. Knopf
  17. Introduction to Probability von Charles M. Grinstead und J. Laurie Snell, American Mathematical Society; Auflage: 2 Revised (15. Juli 1997)

BUCHPROJEKT 2015 – Zwischenreflexion 18.August 2015 – INFORMATION IN DER MOLEKULARBIOLOGIE – Maynard-Smith

Der folgende Beitrag bezieht sich auf das Buchprojekt 2015.

SPANNENDER PUNKT BEIM SCHREIBEN

1. Das Schreiben des Buches hat zu einem spannenden Punkt geführt, der mich seit Jahren umtreibt, den ich aber nie so richtig zu packen bekommen habe: alle große begriffliche Koordinaten laufen im Ereignis der Zelle als einer zentralen Manifestation von grundlegenden Prinzipien zusammen. Die Physik hat zwar generelle Vorarbeiten von unschätzbarem Wert geleistet, aber erst das Auftreten von selbst reproduzierenden molekularen Strukturen, die wir (biologische) Zellen nennen, macht Dynamiken sichtbar, die ‚oberhalb‘ ihrer ‚Bestandteile‘ liegen. Dies könnte man analog dem physikalischen Begriff der ‚Gravitation‘ sehen: dem physikalischen Begriff entspricht kein direktes Objekt, aber es beschreibt eine Dynamik, eine Gesetzmäßigkeit, die man anhand des Verhaltens der beobachtbaren Materie indirekt ‚ableitet‘.

DYNAMIK BIOLOGISCHER ZELLEN

2. Ähnlich verhält es sich mit verschiedenen Dynamiken von biologischen Zellen. Die Beschreibung ihrer einzelnen Bestandteile (Chromatin, Mitochondrien, Golgiapparat, Membran, …) als solcher sagt nichts darüber aus, was tatsächlich eine biologische Zelle charakterisiert. Ihre Haupteigenschaft ist die generelle Fähigkeit, eingebettet in eine allgemeine Entropiezunahme sich eine Struktur zu generieren, die sich temporär funktionsfähig halten kann und in der Lage ist, Informationen zu sammeln, mittels deren sie sich selbst so kopieren kann, dass die Kopie sich von neuem zu einer funktionsfähigen Struktur aufbauen kann. Wie dies im einzelnen chemisch realisiert wurde, ist beeindruckend, es ist atemberaubend, aber es ist letztlich austauschbar; für die Gesamtfunktion spielen die chemischen Details keine Rolle.

BEGRIFF INFORMATION

3. Und hier beginnt das Problem. Obwohl es von einem theoretischen Standpunkt aus klar ist, dass die Details noch nicht die eigentliche Geschichte erzählen, wird in den vielen umfangreichen Büchern über Genetik und Molekularbiologie die eigentliche ‚Story‘ nicht erzählt. Dies fängt schon an mit dem wichtigen Begriff der Information. Spätestens seit Schrödingers Buch von 1944 „What is Life?“ ist klar, dass das selbstreproduktive Verhalten von Zellen ohne das Genom nicht funktioniert. Und es wurde auch sehr bald der Begriff der Information eingeführt, um den ‚Inhalt‘ des Genoms theoretisch zu klassifizieren. Das Genom enthält ‚Informationen‘, aufgrund deren in einer Vererbung neue hinreichend ähnlich Strukturen entstehen können.

STATISTISCHER INFORMATIONSBEGRIFF

4. Leider wurde und wird der Informationsbegriff im Sinne des rein statistischen Informationsbegriffs von Shannon/ Weaver (1948) benutzt, der explizit Fragen möglicher Bedeutungsbezüge (Semantik) außen vor lässt. Damit ist er eigentlich weitgehend ungeeignet, der Rolle der im Genom verfügbaren Informationen gerect zu werden.

MEHR ALS STATISTIK

5. Einer, der diese Unzulänglichkeit des rein statistischen Informationsbegriffs für die Beschreibung der Rolle der Information im Kontext des Genoms und der Zelle samt ihrer Reproduktionsdynamik immer kritisiert hatte, war John Maynard Smith (1920 – 2004). In seinem Artikel “ The concept of information in biology“ von 2000 kann man dies wunderbar nachlesen.

6. Zwar hat auch Maynard Smith keine explizite übergreifende Theorie der Reproduktionsdynamik, aber er kann an verschiedenen Eigenschaften aufweisen, dass der rein statistische Informationsbegriff nicht ausreicht.

7. Während im Shannon-Weaver Modell ein fester Kode A von einem Sender in Transportereignisse übersetzt (kodiert) wird, die wiederum in den festen Kode A von einem Empfänger zurückübersetzt (dekodiert) werden, ist die Lage bei der Zelle anders.

8. Nimmt man an, dass der zu sendende Kode das DNA-Molekül ist, das in seiner Struktur eine potentielle Informationssequenz repräsentiert, dann ist der Sender eine Zelle in einer Umgebung. Der ‚DNA-Kode‘ (der feste Kode A) wird dann umgeschrieben (Transskription, Translation) in zwei verschiedene Kodes (mRNA, tRNA). Während man die Zustandsform des mRNA-Moleküls noch in Korrespondenz zum DNA-Kode sehen kann (abr nicht vollständig), enthalten die verschiedenen tRNA-Moleküle Bestandteile, die über den ursprünglichen DNA-Kode hinausgehen. Daraus wird dann eine Proteinstruktur erzeugt, die sowohl eine gewisse Kopie des ursprünglichen DNA-Moleküls (Kode A) enthält, aber auch zusätzlich einen kompletten Zellkörper, der mit dem Kode A nichts mehr zu tun hat. Außerdem gibt es den Empfänger bei Beginn der Übermittlung noch gar nicht. Der Empfänger wird im Prozess der Übermittlung erst erzeugt! Anders formuliert: beim biologischen Informationsaustausch im Rahmen einer Selbstreproduktion wird zunächst der potentielle Empfänger (eine andere Zelle) erzeugt, um dann den DNA-Kode im Empfänger neu zu verankern.

9. Innerhalb dieses Gesamtgeschehens gibt es mehrere Bereiche/ Phasen, in denen das Konzept eines rein statistischen Informationsbegriffs verlassen wird.

10. So weist Maynard Smith darauf hin, dass die Zuordnung von DNA-Sequenzen zu den später erzeugten Proteinen mindestens zweifach den statistischen Informationsbegriff übersteigt: (i) die erzeugten Proteinstrukturen als solche bilden keine einfache ‚Übersetzung‘ das DNA-Kodes verstanden als eine syntaktische Sequenz von definierten Einheiten eines definierten endlichen Alphabets. Die Proteinmoleküle kann man zwar auch als Sequenzen von Einheiten eines endlichen Alphabets auffassen, aber es handelt sich um ein ganz anderes Alphabet. Es ist eben nicht nur eine reine ‚Umschreibung‘ (‚Transkription‘), sondern eine ‚Übersetzung‘ (‚Translation‘, ‚Translatio‘), in die mehr Informationen eingehen, als die Ausgangssequenzen im DNA-Kode beinhalten. (ii) Der DNA-Kode enthält mindestens zwei Arten von Informationselementen: solche, die dann in Proteinstrukturen übersetzt werden können (mit Zusatzinformationen), und solche, die die Übersetzung der DNA-Informationselemente zeitlich steuern. Damit enthält der DNA-Kode selbst Elemente, die nicht rein statistisch zu betrachten sind, sondern die eine ‚Bedeutung‘ besitzen, eine ‚Semantik‘. Diese Bedeutung st nicht fixiert; sie kann sich ändern.

ALLGEMEINE ZEICHENLEHRE = SEMIOTIK

11. Für Elemente eines Kodes, denen ‚Bedeutungen‘ zugeordnet sind, gibt es in der Wissenschaft das begriffliche Instrumentarium der allgemeinen Zeichenlehre, spricht ‚Semiotik‘ (siehe z.B. Noeth 2000).

12. Nimmt man die empirischen Funde und die semiotische Begrifflichkeit ernst, dann haben wir es im Fall der Zelle also mit eindeutigen (und recht komplexen) Zeichenprozessen zu; man könnte von der Zelle in diesem Sinne also von einem ’semiotischen System‘ sprechen. Maynard Smith deutet den Grundbegriff von Jacques Lucien Monod (1910-1976) ‚gratuity‘ im Sinne, dass Signale in der Biologie ‚Zeichen‘ seien. Ob dies die Grundintention von Monod trifft, ist eine offene Frage; zumindest lässt die Maschinerie, die Monod beschreibt, diese Deutung zu.

13. Eine zusätzliche Komplikation beim biologischen Zeichenbegriff ergibt sich dadurch, dass eine Zelle ja nicht ‚isoliert‘ operiert. Eine Zelle ist normalerweise Teil einer Population in einer bestimmten Umgebung. Welche Strukturen der Proteinaufbauprozess (Wachstum, Ontogenese) auch hervorbringen mag, ob er gewisse Zeiten überdauert (gemessen in Generationen), hängt entscheidend davon ab, ob die Proteinstruktur in der Interaktion mit der Umgebung ‚hinreichend lange‘ jene ‚Arbeit‘ verrichten kann, die notwendig ist, um eine Selbstreproduktion zu ermöglichen.

14. Ob eine Proteinstruktur in diesem weiterführenden Sinne ‚lebensfähig‘ ist, hängt also entscheidend davon ab, ob sie zur jeweiligen Umgebung ‚passt‘. Eine lebensfähige Proteinstruktur ist in diesem Sinne – von einer höheren theoretischen Betrachtungsweise aus gesehen – nichts anderes als ein auf Interaktion basierendes ‚Echo‘ zur vorgegebenen Umgebung.

15. Dass dies ‚Echo‘ nicht ’stagniert‘, nicht ‚auf der Stelle tritt‘, nicht ‚um sich selbst kreist‘, liegt entscheidend daran, dass die ‚letzte‘ Struktur den Ausgangspunkt für ‚weitere Veränderungen‘ darstellt. Die Zufallsanteile im gesamten Selbstreproduktionsprozess fangen also nicht immer wieder ‚von vorne‘ an (also keine ‚Auswahl mit Zurücklegen‘), sondern sie entwickeln eine Informationsstruktur ‚weiter‘. In diesem Sinne bildet die Informationssequenz des DNA-Moleküls auch einen ‚Speicher‘, ein ‚Gedächtnis‘ von vergangenen erfolgreichen Versuchen. Je mehr Zellen in einer Population verfügbar sind, umso größer ist diese molekulare Erfolgsgedächtnis.

Diese Fortsetzung war nicht die letzte Zwischenreflexion. Es geht noch weiter: HIER

QUELLEN

Schroedinger, E. „What is Life?“ zusammen mit „Mind and Matter“ und „Autobiographical Sketches“. Cambridge: Cambridge University Press, 1992 (‚What is Life‘ zuerst veröffentlicht 1944; ‚Mind an Matter‘ zuerst 1958)
Claude E. Shannon, „A mathematical theory of communication“. Bell System Tech. J., 27:379-423, 623-656, July, Oct. 1948 (URL: http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html; last visited May-15, 2008)
Claude E. Shannon; Warren Weaver (1948) „The mathematical theory of communication“. Urbana – Chicgo: University of Illinois Press.
John Maynard Smith (2000), „The concept of information in biology“, in: Philosophy of Science 67 (2):177-194
Noeth, W., Handbuch der Semiotik, 2. vollst. neu bearb. und erw. Aufl. mit 89 Abb. Stuttgart/Weimar: J.B. Metzler, xii + 668pp, 2000
Monod, Jacques (1971). Chance and Necessity. New York: Alfred A. Knopf

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

Über Industrie 4.0 und Transhumanismus. Roboter als Volksverdummung? Schaffen wir uns selbst ab?

Vortrag am 19.Mai 2015 im Literaturhaus Frankfurt in der Veranstaltung PR-Slam & Ham 2015

In meiner Präsentation hatte ich eine Reihe von Schaubildern gezeigt, die ich dann mündlich kommentiert habe. Einen geschriebenen Text gab es nicht. Ich habe aber die Erläuterung nochmals ’nachgesprochen‘. Aus den 20 Min sind dann ca. 70 Min geworden. Die Bilder unten bilden das Rückgrat der Geschichte; sie sind nummeriert. Im gesprochenen Text nehme ich auf diese Bilder Bezug.

Das Ganze endet in einem glühenden Plädoyer für die Zukunft des Lebens in Symbiose mit einer angemessenen Technik. Wir sind nicht das ‚Endprodukt‘ der Evolution, sondern nur eine Durchgangsstation hin zu etwas ganz anderem!

 

AUDIODATEI DES KOMMENTARS (70 Minuten! mp3)

Gehirn im Körper mit Bild 1: Bewusstsein - Beobachter

Bild 1: Gehirn im Körper mit Bewusstsein – Beobachter

Bild 2: Gehirn im Körper mit Raum der Phänomene. Empirische und nicht-empirische Phänomene

Bild 2: Gehirn im Körper mit Raum der Phänomene. Empirische und nicht-empirische Phänomene

Bild 3: Korrelation zwischen Gehirn, Bewusstsein und Gedächtnis. Gedächtnis mit Sensorik, Arbeitsgedächtnis und Langzeitgedächtnis

Bild 3: Korrelation zwischen Gehirn, Bewusstsein und Gedächtnis. Gedächtnis mit Sensorik, Arbeitsgedächtnis und Langzeitgedächtnis

Bild 4: Mensch im Alltag, umringt von technischen Schnittstellen die mit digitalisierten weltausschnitten verbinden können: viel. schnell, komplex

Bild 4: Mensch im Alltag, umringt von technischen Schnittstellen die mit digitalisierten weltausschnitten verbinden können: viel. schnell, komplex

Bild 5: Menge von Komplexitätsereignissen bisher; Explosion in der Gegenwart

Bild 5: Menge von Komplexitätsereignissen bisher; Explosion in der Gegenwart

Bild 6: Konkrete Zahlen zum vorhergehenden Schaubild mit den Komplexitätsereignissen

Bild 6: Konkrete Zahlen zum vorhergehenden Schaubild mit den Komplexitätsereignissen

Bild 7: Biologischer Reproduktion als Quelle der Kreativität für neue Strukturen

Bild 7: Biologischer Reproduktion als Quelle der Kreativität für neue Strukturen

Bild 8: Struktur der biologischen Reproduktion in 1-zu-1 Isomorphie zur Struktur eines Automaten (Turingmaschine)

Bild 8: Struktur der biologischen Reproduktion in 1-zu-1 Isomorphie zur Struktur eines Automaten (Turingmaschine)

Die Vision, die in dem Audiobeitrag gegen Ende entwickelt wird, soll in dem Emerging-Mind Projekt konkret umgesetzt werden, als Impuls, als Anstoß, als Provokation, als Community, die sich mit dem Thema philosophisch, wissenschaftlich, künstlerisch und theologisch auseinandersetzt.

Eine Übersicht über alle Einträge von cagent in diesem Blog nach Titeln findet sich HIER.

ENTSCHEIDEN IN EINER MULTIKAUSALEN WELT? MEMO ZUR PHILOSOPHIEWERKSTATT VOM Sonntag, 10.Mai 2015 IN DER DENKBAR (Frankfurt)

Begriffsnetzwerk von der Philosophiewerkstatt am 10.Mai 2015

Begriffsnetzwerk von der Philosophiewerkstatt am 10.Mai 2015

Generelles Anliegen der Philosophiewerkstatt ist es, ein philosophisches Gespräch zu ermöglichen, in dem die Fragen der TeilnehmerInnen versuchsweise zu Begriffsnetzen verknüpft werden, die in Beziehung gesetzt werden zum allgemeinen Denkraum der Philosophie, der Wissenschaften, der Kunst und Religion. Im Hintergrund stehen die Reflexionen aus dem Blog cognitiveagent.org, das Ringen um das neue Menschen- und Weltbild.

Aus der letzten Philosophiewerkstatt vom 12.April 2015 resultierte das – nicht ganz schar formulierte – Thema: Kann sich ein einzelner innerhalb einer multikausalen Welt überhaupt noch sinnvoll entscheiden? Kann man überhaupt noch eine Wirkung erzielen? Ist nicht irgendwie alles egal?

1. Trotz strahlendem Sommerwetter fand sich wieder ein bunter Kreis interessierter und engagierter Gesprächsteilnehmer, um sich in der DENKBAR Frankfurt zum Thema auszutauschen. Wie beim jedem Treffen bisher gab es auch dieses Mal neben schon bekannten Teilnehmern wieder auch neue Teilnehmer, die das Gespräch bereicherten.

2. Wie die Gedankenskizze des Gesprächs andeutet, förderte das gemeinsame Gespräch eine Fülle interessanter Aspekte zutage, die auf vielfältige Weise miteinander verknüpft sind. Auch wenn jeder Punkt für sich ein eigenes Thema abgeben könnte, so zeigt gerade der Überblick über und die Vernetzung von den Begriffen etwas von unserer Entscheidungswirklichkeit auf, die im Alltag oft im Dunkeln verbleibt.

INDIVIDUUM – KONTEXT

3. Das Gespräch fokussierte zunächst eher auf den individuellen Träger von Entscheidungen und lies die diverse Einflüsse des Kontextes eher am Rande.

4. Am Entscheidungsprozess traten verschieden ‚Phasen‘ hervor: (i) irgendein ein Anlass. Warum man sich überhaupt mit etwas beschäftigt. Warum öffnet man sich überhaupt für ein Thema? Wendet man sich einem Thema zu, dann gibt es in der Regel mindestens eine Alternative, was man tun könnte. Dies hängt sowohl von den konkreten Umständen wie auch von der verfügbaren Erfahrung und dem verfügbaren Wissen ab. Nach welchen Kriterien/ Präferenzen/ Werten entscheidet man dann, welche der vielen Möglichkeiten man wählen soll? Ist die Entscheidung ‚frei‘ oder durch irgendwelche Faktoren ‚vorbestimmt‘? Gibt es explizite Wissensanteile, aufgrund deren man meint, ‚rational‘ zu handeln, oder ist es eine ‚Bauchentscheidung‘? Wieweit spielen ’nicht-bewusste‘ Anteile mit hinein? Insofern nicht-bewusste Anteile von sich aus nicht bewusst sind, können wir selbst dies gar nicht wissen. Wir bräuchten zusätzliche Hilfen, um dies möglicherweise sichtbar zu machen. Schließlich wurde bemerkt, dass selbst dann, wenn wir sogar zu einer Entscheidung gekommen sind, was wir tun sollten, es sein kann, dass wir die Ausführung lassen. Wir tun dann doch nichts. Sollten wir etwas tun, dann würde unser Tun ‚eine Wirkung‘ entfalten.

ARCHITEKTUR DES INDIVIDUUMS

5. Alle diese Entscheidungsprozesse verlaufen in einer Person; im anderen, in mir. Wir wissen, dass jeder Mensch eine komplexe Architektur besitzt, sehr viele unterschiedliche Komponenten besitzt, die in Wechselwirkung stehen. Folgende drei Bereich wurden genannt, ohne Anspruch auf Vollständigkeit: (i) der Körper selbst, die Physis, das Physiologische. Das Gehirn ist eines der vielen komplexen Organe im Bereich der Physis. Das Physische kann altern, kann zwischen Menschen Varianzen aufweisen. Resultiert aus einem individuellen Wachstumsprozess (Ontogenese), und im Rahmen einer Population resultiert der Bauplan eines individuellen Körpers aus einem evolutionären Prozess (Phylogenese). Sowohl in der Phylogenese wie in der Ontogenese können sich Strukturen umweltabhängig, verhaltensabhängig und rein zufällig verändern. Weiter gibt es (ii) den Komplex, der grob mit Emotionen, Gefühle umschrieben wurde. Es sind Körper- und Gemütszustände, die auf das Bewerten der Wahrnehmung und das Entscheiden Einfluss ausüben können (und es in der Regel immer tun). Schließlich (iii) gibt es den Komplex Wissen/ Erfahrung, der Menschen in die Lage versetzt, die Wahrnehmung der Welt zu strukturieren, Beziehungen zu erkennen, Beziehungen herzustellen, komplexe Muster aufzubauen, usw. Ohne Wissen ist ein Überschreiten des Augenblicks nicht möglich.

WISSEN

6. Aufgrund der zentralen Rolle des Wissens ist es dann sicher nicht verwunderlich, dass es zum Wissen verschiedene weitere Überlegungen gab.

7. Neben der Betonung der zentralen Rolle von Wissen wurde mehrfach auf potentielle Grenzen und Schwachstellen hingewiesen: (i) gemessen an dem objektiv verfügbare Wissen erscheint unser individuelles Wissen sehr partiell, sehr begrenzt zu sein. Es ist zudem (ii) veränderlich durch ‚Vergessen‘ und ‚Neues‘. Auch stellte sich die Frage (iii) nach der Qualität: wie sicher ist unser Wissen? Wie ‚wahr-falsch‘? Woher können wir wissen, ob das, was wir ‚für wahr halten‘, an was wir ‚glauben‘, tatsächlich so ist? Dies führte (iv) zu einer Diskussion des Verhältnisses zwischen ‚wissenschaftlichem‘ Wissen und ‚Alltags-‚ bzw. ‚Bauchwissen‘. Anwesende Ärzte betonten, dass sie als Arzt natürlich nicht einfach nach ‚Bauchwissen‘ vorgehen könnten, sondern nach explizit verfügbarem wissenschaftlichen Wissen. Im Gespräch deutete sich dann an, dass natürlich auch dann, wenn jemand bewusst nach explizit vorhandenem Wissen vorgehen will, er unweigerlich an die ‚Ränder seines individuellen‘ Wissens stoßen wird und dass er dann gar keine andere Wahl hat, als nach zusätzlichen (welche!?) Kriterien zu handeln oder – was vielen nicht bewusst ist – sie ‚verdrängen‘ die reale Grenze ihres Wissens, indem sie mögliche Fragen und Alternativen ‚wegrationalisieren‘ (das ‚ist nicht ernst‘ zu nehmen, das ist ‚unwichtig‘, das ‚machen wir hier nicht so‘, usw.). Ferner wurde (v) der Status des ‚wissenschaftlichen‘ Wissens selbst kurz diskutiert. Zunächst einmal beruht die Stärke des wissenschaftlichen Wissens auf einer Beschränkung: man beschäftigt sich nur mit solchen Phänomenen, die man ‚messen‘ kann (in der Regel ausschließlich intersubjektive Phänomene, nicht rein subjektive). Damit werden die Phänomene zu ‚Fakten‘, zu ‚Daten‘. Ferner formuliert man mögliche Zusammenhänge zwischen den Fakten in expliziten Annahmen, die formal gefasst in einem expliziten Modell repräsentiert werden können. Alle diese Modelle sind letztlich ‚Annahmen‘, ‚Hypothesen‘, ‚Vermutungen‘, deren Gültigkeit von der Reproduzierbarkeit der Messungen abhängig ist. Die Geschichte der Wissenschaft zeigt überdeutlich, dass diese Modelle beständig kritisiert, widerlegt und verbessert wurden. Wissenschaftliches Wissen ist insofern letztlich eine Methode, wie man der realen Welt (Natur) schrittweise immer mehr Zusammenhänge entlockt. Die ‚Sicherheit‘ dieses Wissens ist ‚relativ‘ zu den möglichen Messungen und Modellen. Ihre Verstehbarkeit hängt zudem ab von den benutzten Sprachen (Fachsprachen, Mathematische Sprachen) und deren Interpretierbarkeit. Die moderne Wissenschaftstheorie konnte zeigen, dass letztlich auch empirische Theorien trotz aller Rückbindung auf das Experiment ein Bedeutungsproblem haben, das sich mit der Fortentwicklung der Wissenschaften eher verschärft als vereinfacht. Im Gespräch klang zumindest kurz an (vi), dass jedes explizites Wissen (auch das wissenschaftliche), letztlich eingebunden bleibt in das Gesamt eines Individuums. Im Individuum ist jedes Wissen partiell und muss vom Individuum im Gesamtkontext von Wissen, Nichtwissen, Emotionen, körperlicher Existenz, Interaktion mit der Umwelt integriert werden. Menschen, die ihr Wissen wie ein Schild vor sich hertragen, um damit alles andere abzuwehren, zu nivellieren, leben möglicherweise in einer subjektiven Täuschungsblase, in der Rationalität mutiert zu Irrationalität.

UND DEN KONTEXT GIBT ES DOCH

8. Schließlich gewann der Kontext des Individuums doch noch mehr an Gewicht.

9. Schon am Beispiel des wissenschaftlichen Wissens wurde klar, dass Wissenschaft ja keine individuelle Veranstaltung ist, sondern ein überindividuelles Geschehen, an dem potentiell alle Menschen beteiligt sind.

10. Dies gilt auch für die schier unendlich erscheinende Menge des externen Wissens in Publikationen, Bibliotheken, Datenbanken, Internetservern, die heute produziert, angehäuft wird und in großen Teilen abrufbar ist. Dazu die verschiedenen Medien (Presse, Radio, Fernsehen, Musikindustrie,….), deren Aktivitäten um unsere Wahrnehmung konkurrieren und deren Inhalt, wenn wir es denn zulassen, in uns eindringen. Die Gesamtheit dieser externen Informationen kann uns beeinflussen wie auch ein einzelner dazu beitragen kann, diese Informationen zu verändern.

11. Es kam auch zur Sprache, dass natürlich auch die unterschiedliche Lebensstile und Kulturen spezifisch auf einzelne (Kinder, Jugendliche, Erwachsene…) einwirken bis dahin, dass sie deutliche Spuren sogar im Gehirn (und in den Genen!) hinterlassen, was sich dann auch im Verhalten manifestiert.

12. Besonders hervorgehoben wurden ferner die politischen Prozesse und Teil des Wirtschaftssystems. Die Meinung war stark vertreten, dass wir auch in den Demokratien eine ‚Abkopplung‘ der politischen Prozesse von der wählenden Bevölkerung feststellen können. Der intensive und gesetzmäßig unkontrollierte Lobbyismus im Bereich deutscher Parteien scheint ein Ausmaß erreicht zu haben, das eine ernste Gefahr für die Demokratie sein kann. Die Vertretung partikulärer Interessen (genannt wurde beispielhaft die Pharmaindustrie, aber auch Finanzindustrie und weitere), die gegenläufig zum Allgemeinwohl sind, wurde – anhand von Beispielen – als übermächtiges Wirkprinzip der aktuellen Politik unterstellt. Sofern dies tatsächlich zutrifft, ist damit natürlich die sowieso schon sehr beschränkte Einflussmöglichkeit des Wählers weitgehend annulliert. Die zu beobachtende sich verstärkende Wahlmüdigkeit des Wählers wird damit nur weiter verstärkt. Das Drama ist, dass diejenigen, die das Wählervertrauen durch ihr Verhalten kontinuierlich zerstören, nämlich die gewählten Volksvertreter, den Eindruck erwecken, dass sie selbst alles verhindern, damit der extreme Lobbyismus durch Transparenz und wirksamen Sanktionen zumindest ein wenig eingedämmt wird.

ABSCHLUSS

13. In der abschließenden Reflexion bildete sich die Meinung, dass die Punkte (i) Präferenzen/ Werte/ Kriterien einerseits und (ii) Beeinflussbarkeit politischer Prozesse andererseits in der nächsten (und letzten Sitzung vor der Sommerpause) etwas näher reflektiert werden sollten. Reinhard Graeff erklärte sich bereit, für die nächste Sitzung am So 14.Juni einen Einstieg vorzubereiten und das genaue Thema zu formulieren.

AUSBLICK

14. Am So 14.Juni 2015 16:00 findet nicht nur die letzte Sitzung der Philosophiewerkstatt vor der Sommerpause statt, sondern es soll im Anschluss auch (ca. ab 19:00h) bei Essen und Trinken ein wenig darüber nachgedacht werden, wie man in die nächste Runde (ab November 2015) einsteigen möchte. Soll es überhaupt weitergehen? Wenn ja, was ändern? Usw.

Einen Überblick über alle Beiträge zur Philosophiewerkstatt nach Themen findet sich HIER

Wieweit können wir den ‘biologischen Geist’ durch einen ‘künstlichen Geist’ nachbilden? – Nachreflexion zur Philosophiewerkstatt vom 12.April 2015

Gedankenskizze von der Philosophiewerkstatt am 12-April 2015 in der DENKBAR

Gedankenskizze von der Philosophiewerkstatt am 12-April 2015 in der DENKBAR

1. Trotz wunderbarem Wetter draußen fand sich wieder eine interessante Gruppe von Philosophierenden am 12.April 2015 zur Philosophiewerkstatt in der DENKBAR zusammen.

2. Mittlerweile bildet sich ein ’spezifischer Stil‘ in der Philosophiewerkstatt heraus: Immer weniger vorgefertigter Input durch einen Eingangsvortrag, sondern stattdessen von Anfang an ein ‚gemeinsames Denken‘ entlang einer Fragestellung. Das ‚Gemeinsame‘ wird in einem aktuellen ‚Gedankenbild‘ festgehalten, ‚visualisiert‘, so dass die Vielfalt der Gedanken für alle sichtbar wird. Nichts geht verloren. Dies eröffnet dann jedem die Möglichkeit, anhand der sichtbaren Unterschiede, Lücken und Gemeinsamkeiten ‚fehlende Stücke‘ zu suchen, zu ergänzen, oder vorhandene Begriffe weiter zu erläutern.

3. Als ‚Rhythmus‘ des gemeinsamen Denkens erweist sich ein gemeinsamer Einstieg, dann ‚Blubberpause‘, dann Schlussrunde als sehr produktiv.

GEIST – BIOLOGISCH UND KÜNSTLICH

4. Ausgangspunkt waren die Begriffe ‚Geist‘, ‚Biologisch‘ sowie ‚Künstlich‘.

5. Auf einer Zeitachse betrachtet kann man grob sagen, dass der Begriff ‚Geist‘ in der antiken griechischen Philosophie eine zentrale Rolle gespielt hat, sich bis mindestens ins 19.Jahrhundert durchgehalten hat, dann aber – zumindest im Bereich der Naturwissenschaft – nahezu jegliche Verwendung verloren hat. In den heutigen Naturwissenschaften herrscht der Eindruck vor, man bräuchte den Begriff ‚Geist‘ nicht mehr. Zugleich fehlen damit auch alle ‚Unterstützungsmerkmale‘ für jenes Wertesystem, das einer demokratischen Staatsform wie der deutschen Demokratie zugrunde liegt. ‚Menschenwürde‘ in Art.1 des Grundgesetzes hat im Lichte der aktuellen Naturwissenschaften keine Bedeutung mehr.

6. Gleichfalls auf der Zeitachse beobachten wir, dass das Paradigma der ‚Maschine‘ mit dem Aufkommen des theoretischen Begriffs des Automaten (erste Hälfte des 20.Jahrhunderts) und der Bereitstellung von geeigneter Technologie (Computer) einen neuen Begriff von ‚Künstlichkeit‘ ermöglicht: der Computer als programmierbare Maschine erlaubt die Nachbildung von immer mehr Verhaltensweisen, die wir sonst nur von biologischen Systemen kennen. Je mehr dies geschieht, umso mehr stellt sich die Frage, wieweit diese neue ‚Künstlichkeit‘ letztlich alle ‚Eigenschaften‘ des Biologischen, insbesondere auch ‚intelligentes Verhalten‘ bzw. den ‚Geist im Biologischen‘ nachbilden kann?

GEIST – SUBJEKTIV UND OBJEKTIV NEURONAL

7. Im Bereich des Biologischen können wir seit dem 20.Jahrhundert auch zunehmend differenzieren zwischen der subjektiven Dimension des Geistes im Bereich unseres Erlebens, des Bewusstseins, und den körperlichen, speziell neuronalen Prozessen im Gehirn, die mit den subjektiven Prozessen korrelieren. Zwar ist die ‚Messgenauigkeit‘ sowohl des Subjektiven wie auch des Neuronalen noch nicht besonders gut, aber man kann schon erstaunlich viele Korrelationen identifizieren, die sehr vielen, auch grundsätzlichen subjektiv-geistigen Phänomenen auf diese Weise neuronale Strukturen und Prozesse zuordnen, die zur ‚Erklärung‘ benutzt werden können. Sofern man dies tun kann und es dann auch tut, werden die subjektiv-geistigen Phänomene in die Sprache neuronaler Prozesse übersetzt; damit wirken diese subjektiven Begriffe leicht ‚obsolet‘, ‚überflüssig‘. Zugleich tritt damit möglicherweise eine Nivellierung ein, eine ‚Reduktion‘ von spezifischen ‚Makrophänomenen‘ auf unspezifische neuronale Mechanismen, wie sie sich in allen Lebewesen finden. Erklärung im Stil von Reduktion kann gefährlich sein, wenn man damit interessante Phänomene ‚unsichtbar‘ macht, die eigentlich auf komplexere Mechanismen hindeuten, als die ‚einfachen‘ Bestandteile eines Systems.

MATERIE – INFORMATION1 und INFORMATION2

8. Im Bereich der materiellen Struktur unseres Universums hat es sich eingebürgert, dass man die physikalische Entropie mit einem Ordnungsbegriff korreliert und darüber auch mit dem statistischen Informationsbegriff von Shannon. Ich nenne diesen Informationsbegriff hier Information1.

9. Davon zu unterscheiden ist ein anderer Informationsbegriff – den ich hier Information2 nenne –, der über die Statistik hinausgeht und eine Abbildung impliziert, nämlich die Abbildung von einer Struktur auf eine andere. Im Sinne der Semiotik (:= allgemeine Lehre von den Zeichen) kann man dies als eine ‚Bedeutungsbeziehung‘ deuten, für die es auch den Begriff ’semantische Beziehung‘ gibt. Für die Realisierung einer Bedeutungsbeziehung im Sinne von Information2 benötigt man im physikalischen Raum minimal drei Elemente: eine Ausgangsgröße, eine Zielgröße und eine ‚vermittelnde Instanz‘.

10. Im Falle der Selbstreproduktion der biologischen Zellen kann man genau solch eine Struktur identifizieren: (i) die Ausgangsgröße sind solche Moleküle, deren physikalische Eigenschaften ‚für den Vermittler‘ als ‚Informationen2‘ gedeutet werden können; (ii) die Zielgröße sind jene Verbindungen von Molekülen, die generiert werden sollen; (iii) die vermittelnde Instanz sind jene Moleküle, die die Moleküle mit Information2 ‚lesen‘ und dann die ‚Generierungsprozesse‘ für die Zielgrößen anstoßen. Dies ist ein komplexes Verhalten, das sich aus den beteiligten Elementen nicht direkt ableiten lässt. Nur auf den Prozess als solchen zu verweisen, ‚erklärt‘ in diesem Fall eigentlich nichts.

11. Interessant wird dies nun, wenn man bedenkt, dass das mathematische Konzept, das den heutigen Computern zugrunde liegt, der Begriff des programmierten Automaten, ebenfalls solch eine Struktur besitzt, die es ermöglicht, Information2 zu realisieren.

12. Dies bedeutet, dass sowohl der ‚Kern‘ des Biologischen wie auch der ‚Kern‘ des neuen Künstlichen beide die Grundstruktur von Information2 repräsentieren.

13. Sofern nun das ‚Lebendige‘, das ‚Geistige‘ reduzierbar sind auf eine Information2-fähige Struktur, müsste man nun folgern, dass die Computertechnologie das gleiche Potential besitzt wie das Biologische.

OFFENE FRAGEN

14. Offen bleibt – und blieb bei dem Werkstattgespräch –, ob diese Reduktion tatsächlich möglich ist.

15. Die Frage, ob eine reduktionistische Erklärungsstrategie ausreichend und angemessen ist, um die komplexen Phänomene des Lebens zu deuten, wird schon seit vielen Jahren diskutiert.

16. Eine reduktionistische Erklärungsstrategie wäre ‚unangemessen‘, wenn man sagen könnte/ müsste, dass die Angabe einer Verhaltensfunktion f: I –-> O auf der Basis der beobachteten Reaktionen (Input I, Output O) eines Systems ‚Eigenschaften des Systems‘ sichtbar macht, die sich durch die bekannten Systembestandteile als solche nicht erklären lassen. Dies gilt verstärkt, wenn die Bestandteile eines Systems (z.B.die physikalischen Gatter im Computer oder die Neuronen im Gehirn) von sich aus keinerlei oder ein rein zufälliges Verhalten zeigen, es sei denn, man würde – im Falle des Computers – ‚in‘ die Menge der Gatter eine ‚Funktion‘ ‚hineinlegen‘, die dazu führt, dass sich die Gatter in dieser bestimmten Weise ‚verhalten‘. Würde man nun dieses spezifische Verhalten dadurch ‚erklären‘ wollen, dass man einfach die vorhandenen Gatter verweist, würde man gerade nicht erklären, was zu erklären wäre. Überträgt man diesen Befund auf biologische oder generell physikalische Systeme, dann müsste man mindestens mal die Frage stellen, ob man mit den reduktionistischen Strategien nicht genau das vernichtet, was man erklären sollte.

17. Eine Reihe von Physikern (Schrödinger, Davis) haben das Auftreten von Information2 im Kontexte des Biologischen jedenfalls als eigenständiges Phänomen gewürdigt, das man nicht einfach mit den bekannten physikalischen Erklärungsmodellen ‚erklären‘ kann.

AUSBLICK PHILOSOPHIEWERKSTATT MAI UND JUNI

18. Die nächste Philosophiewerkstatt am 10.Mai 2015 will sich der Frage widmen, wie ein einzelner innerhalb einer multikausalen Welt überhaupt noch sinnvoll entscheiden kann. Speziell auch die Frage, welche Wirkung man überhaupt noch erzielen kann? Ist nicht irgendwie alles egal?

19. Die Philosophiewerkstatt am 14.Juni ist die letzte Werkstatt vor der Sommerpause. Es wird im Anschluss an die Sitzung ein offener Abend mit voller Restauration angeboten werden und mit der Möglichkeit, über das weitere Vorgehen zu diskutieren (welche Formate, zusätzliche Ereignisse,…).

Einen Überblick über alle Beiträge zur Philosophiewerkstatt nach Themen findet sich HIER