AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 19

(Letzte Änderung: 3.Oktober 2014, 08:47h)

VORGESCHICHTE

Für einen Überblick zu allen vorausgehenden Beiträgen dieser rekonstruierenden Lektüre von Avicennas Beitrag zur Logik siehe AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT.

1. Bei der Beschreibung der ‚Bedeutung‘ der logischen Ausdrücke in einer syllogistischen Figur wurde im letzten Beitrag Gebrauch gemacht von Diagrammen, in denen ‚Kreise‘ ‚Mengen‘ repräsentieren und die Anordnung der Kreise ‚Mengenverhältnisse‘.

2. Diese Vorgehensweise ist nicht neu und wird vielfach benutzt. Am bekanntesten ist wohl der Begriff ‚Venn-Diagramm‘.

3. So bekannt die Methode von verdeutlichenden Mengendiagrammen einerseits ist, so wenig tragen diese Methoden bislang zum wirklichen Verständnis des Gesamtzusammenhanges bei. Uns interessiert ja hier der Mensch als ’semiotisches System‘, als ein ‚adaptives Input-Output-System‘, das sowohl Objektstrukturen perc(X,W)=I, O \subseteq I aus der umgebenden Welt W wahrnehmen kann wie auch – von den Objekten unterschiedene – Ausdrucksstrukturen perc(X,W)=I, E \subseteq I, die sich auf die Objektstrukturen beziehen können.

Übersicht zum Wissen K bestehend aus Ausdrücken E, Objekten O sowie Bedeutungsbeziehungen M

Übersicht zum Wissen K bestehend aus Ausdrücken E, Objekten O sowie Bedeutungsbeziehungen M

4. Entsprechend der Begriffe, die in Teil 14b eingeführt worden sind (und dann in den nachfolgenden Beiträgen weiter differenziert wurden), bilden die Objekte O eine dynamische Hierarchie mit impliziten Raum-, Zeit- und Anzahlstrukturen, angereichert mit diversen Beziehungen innerhalb dieser Strukturen. Wenn wir von der ‚Bedeutung‘ M der logischen Ausdrücke E – also M(E) — sprechen wollen, dann müssen wir diese gesamte dynamische Objektstruktur ins Auge fassen. Man wird zwar erwarten, dass sich die Strukturen, die in Mengendiagrammen verdeutlicht werden, in der dynamischen Objektstruktur ‚wiederfinden‘, aber man muss in einzelnen konkreten Schritten (‚konstruktiv‘) aufzeigen, wie dies gehen könnte.

FIGUR 1 MIT DEN QUANTOREN AAA

5. Betrachten wir die Struktur des ersten Syllogismus mit der Quantorenkombination (A F B), (A B H) und (A F H).

6. Wenn gesagt wird, dass ‚Alle F sind B‘ und ‚Alle B sind H‘, dann handelt es sich bei dem Quantor ‚Alle‘ um einen ‚Anzahlquantor‘, der sich auf Objekte bezieht, die entsprechend Elemente enthalten, über die man solche Aussagen machen kann. Nach der bisherigen Analyse geht dies nur, wenn sich die Ausdrücke ‚F‘, ‚B‘ und ‚H‘ auf ‚echte Objekte‘ aus Oa beziehen. Die Menge der ‚Elemente‘ eines echten Objektes kann man in der Tat mittels eines ‚Kreises‘ ‚modellieren‘ in dem Sinne, dass die Kreisfläche alle Elemente symbolisiert, die zum echten Objekt gehören.

7. Da wir es im ersten Beispiel (A F B), (A B H) und (A F H) ausschließlich mit echten Objekten zu tun haben, könnten wir für jedes dieser Objekte ein Kreismodell benutzen.

8. Die Aussagen (A F sind B), (A B sind H) und (A F sind H) stellen jeweils (i) eine Beziehung zwischen den Elementen von zwei Mengen her und (ii) machen Angaben zu der Anzahl; in diesem Fall ‚Alle‘.

9. Grundsätzlich gibt es folgende Möglichkeiten: ELEMENTSCHAFT: (i) Ein Element x aus einer Menge A ist auch Element von einer anderen Menge B oder (ii) eben nicht. Zusätzlich gibt es die ANZAHL: (iii) Die festgestellte Elementschaft trifft auf ‚Alle‘ Elemente zu oder (iv) ’nicht‘ auf ‚alle‘, d.h. ‚einige‘. Oder (v) ‚Für Alle nicht‘, also ‚keine‘.
10. Benutzt man das Kreismodell, dann kann man die Elementschaftsbeziehung eines Elementes x dadurch ausdrücken, dass man x ‚in‘ einem Kreis notiert oder ‚außerhalb‘.

11. Die Anzahlbeziehung könnte man dann grundsätzlich so ausdrücken, dass (i) bei ‚Allen‘ Elementen alle Elemente eines Objektes A auch im Objekt B sind, d.h. die beiden Kreise überdecken sich vollständig. Bei (ii) ‚Nicht Alle = Einige‘ gibt es Elemente eines Objektes A, die auch im Objekt B sind, aber nicht alle. In diesem Fall würden sich im Kreismodell die beiden Kreise A und B teilweise überdecken/ überlappen. (iii) Bei einer Aussage wie ‚Einige A sind nicht B‘ ist zwar klar, dass einige Elemente von A definitiv nicht in B sind, aber was weiß man von den anderen Elementen von A? Kann man zwingend davon ausgehen, dass diese dann in B sind? Denkbar wäre, dass alle anderen Elemente von A, die nicht in B sind zu einer anderen Menge C gehören und man nur darauf hinweisen wollte, dass einige mit Blick auf B nicht in B seien. Insofern wäre eine Aussage wie ‚Einige A sind nicht B‘ zunächst ‚unterbestimmt’/ ’nicht vollständig definiert‘, solange man keine speziellen Verabredungen trifft. Schließlich (iv) hat man noch den Fall ‚Alle A sind nicht B‘. Dies ist wieder eindeutig. Fasst man alle Elemente außerhalb von B als das ‚Komplement von B‘ (\overline{B}) auf, dann kann man sagen, dass alle Elemente von A in dem Komplement sind; keines ist in B.

Modellierung von Objekten mitels Kreisen

Modellierung von Objekten mitels Kreisen

12. Grafisch sieht dies so aus (siehe Diagramm): (i) zwei Kreise sich entweder vollständig überlappen (zwei Objekte sind ‚identisch gleich‘) – was im Beispiel nicht vorkommt –, oder (ii) ein Kreis ist völlig in einen anderen eingebettet (ein Objekt ist eine Teilmenge von einem anderen), oder (iii) zwei Kreise überschneiden sich partiell, oder (iv) zwei Kreise sind völlig voneinander getrennt (was man alternativ auch so ausdrücken kann, dass der eine Kreis eine Teilmenge des Komplements des anderen Kreises ist.

Modellierung von Objekten mittels Kreisen im Fall von Komplementen

Modellierung von Objekten mittels Kreisen im Fall von Komplementen

13. Während sich der explizite Bezug eines Objektes A zu einem Objekt B konkret und konstruktiv darstellen lässt, zeigen sich im Falle von ‚Komplementbildungen‘ (siehe Diagramm) Probleme. Die rein grafische Modellierung erlaubt keine klare Zuordnung von zwei Komplementen. Dazu bräuchte man zusätzliche Informationen. Diese könnte man z.B. durch explizite Aufstellung von ‚Axiomen‘ gewinnen. Will man aber die ‚Logik des tatsächlichen Sprachgebrauchs‘ nicht ‚verbiegen‘, muss man zuvor die Frage stellen, ob sich Anhaltspunkte aus dem dynamischen Objektmodell gewinnen lassen.

14. Nimmt man beispielsweise an, dass das dynamische Objektmodell ein ‚bottom-up‘ Modell ist, das seinen Ausgang bei konkreten, endlichen Wahrnehmungsereignissen Os nimmt, die mittels einer vorgegebenen Verarbeitungsmaschinerie (Gehirn, Algorithmus) in eine abstrakte Struktur von Objektebenen übersetzt werden, dann würde man vermuten, dass diese Maschinerie grundsätzlich von endlichen Mengen ausgeht, deren Informationsgehalt durch entsprechende Operationen ‚ausgewertet‘ wird. Die Bildung von – quasi ‚unendlichen‘ – ‚Komplementen‘ zu endlichen Strukturen ist dann zwar als Operation definierbar, aber wäre nur erklärt für den ‚endlichen Anteil‘. Das ‚Verhalten im quasi Unendlichen‘ wäre nicht wirklich definiert; es würde dann zwar ‚begrifflich existieren‘, aber wäre ‚praktisch nicht nutzbar‘. Letzteres wäre auch ’systemgefährdend‘, da die Annahme von Elementen in einem nur abstrakt konstruierbaren ‚unendlichen Raum‘ schnell in ‚Gefahrenzonen‘ führen kann.

15. Würde man dies die ‚generelle Endlichkeitsannahme‘ [GenEndl] nennen, dann wäre dies eine Art ‚Meta-Axiom‘, mit dem man die verschiedenen logischen Beziehungen als ‚zulässig‘ oder ’nicht zulässig‘ qualifizieren könnte [Mit dem philosophischen Konstruktivismus hat diese Endlichkeitsthese hier nur bedingt etwas zu tun].

ECHTE OBJEKTE und VERERBUNG

16. Es wurde oben schon festgestellt, dass die in der ersten Figur zugrunde liegende Annahme bzgl. der Art der Objekte in der Rekonstruktion dieses Blogs ‚echte Objekte‘ sein müssen, also Objektrepräsentationen, in denen Objekte repräsentiert werden, die echte Eigenschaften haben und denen man aufgrund dieser Charakterisierung andere Eigenschaftsvorkommnisse als Elemente zuordnen kann. Ferner gilt in dieser Rekonstruktion, dass die dynamische Objektstruktur automatisch auch Raum und Zeit bereitstellt sowie eine Vielzahl von impliziten Beziehungen.

17. Wenn nun das Schema sagt ‚Alle F sind B‘ und ‚Alle B sind H‘ gefolgt von ‚Alle F sind H‘, dann haben wir drei echte Objekte F, B und H, die so beschaffen sein müssen, dass man über die potentiellen Elemente dieser echten Objekte reden kann.

18. In der dynamischen Objekthierachie O werden ‚echte Objekte‘ im Bereich O – Os primär über ihr ‚Objektprofil‘ repräsentiert (eine Menge charakteristischer Eigenschaften) ergänzt um eine endliche Menge von ‚Beispielen‘. Sei P_F das Profil für echte Objekte der Art F, P_B und P_H entsprechend die Profile für die Objektmengen B und H.

19. Zu sagen, dass ‚Alle F sind B‘ würde dann bedeuten, dass alle charakterisierenden Eigenschaften des Objektprofils P_F auch im Objektprofil von P_B vorkommen. Dies würde gelten, unabhängig davon, wie viele ‚reale‘ Elemente beide echten Objekte tatsächlich enthalten! Man könnte daher auch direkt hinschreiben P_{F} \subseteq P_{B}, P_{B} \subseteq P_{H}, P_{F} \subseteq P_{H} . Hier zeigt sich eine ‚transitive‘ Beziehung des Enthaltenseins.

20. Das Auftreten von drei echten Objekten in einer syllogistischen Schlussfigur stellt allerdings – gemessen am alltäglichen Denken – eine Art Spezialfall dar. In vielen – den meisten ? — Fällen setzen wir nicht echte Objekte alleine in Beziehung sondern betten echte Objekte ein in Veränderungsbeziehungen wie z.B. ‚Hans schaut Sonja an‘, ‚Die Sonne geht gerade auf‘, ‚Das berühmte rote Auto biegt um die Ecke‘, ‚Alle Nachbarn von Sonja sehen das rote Auto‘, ‚Hans ist ein Nachbar von Sonja‘, usw.

21. In solchen Sätzen nach dem Schema ‚S P‘ repräsentiert das Prädikat P dann eben die Veränderung und mögliche Begleitumstände.

22. Setzen wir F= ‚Die Nachbarn von Sonja‘ und ‚B1= ‚Das rote Auto‘, dann können wir schreiben (A F sehen B1). Setzen wir H1= ‚Hans‘, dann können wir schreiben (– H1 ist F). Da der Ausdruck ’sehen‘ keine ‚Enthaltensbeziehung‘ repräsentiert, sondern eine bestimmte Form von Aktivität, liegt keine mögliche Enthaltensbeziehung zwischen F und B1 vor. Wohl aber zwischen F und H1 im Sinne von B1 \in F. Dann kann man fragen, ob die Aktivität, die für ‚Alle F‘ gilt, damit auch für H1 gilt, da H1 ja ein Element von F ist. Von der Grundstruktur her würde unser Denken dies bejahen; wir denken einfach so. Also folgern wir ‚automatisch‘ (– H1 sieht B1).

23. Dies bedeutet, wenn es Profile von echten Objekten gibt, denen zusätzliche Eigenschaften zugeordnet werden – z.B. Aktivitäten –, dann wird gefolgert dass die zugeordneten Aktivitäten auf alle Elemente des Profils ‚übertragen‘ werden, oder, anders formuliert, alle Elemente eines Profils P eines echten Objektes ‚erben‘ die zugesprochenen Eigenschaften. Wenn ‚Alle‘ Elemente dieser Eigenschaften haben, dann erben alle, wenn ‚Nicht Alle‘, also ‚Einige‘, dann erben nur einige, oder ‚Alle nicht‘, dann erbt ‚Kein‘ Element.

24. Über die ‚Enthaltensbeziehung‘ (wie ‚ist‘, ’sind’…) werden also quasi ‚Vererbungsverhältnisse‘ repräsentiert. Über ‚Aktivitätszuweisungen‘ (‚läuft‘, ’spricht‘ …) werden zusätzliche ‚Eigenschaften‘ (‚unechte Objekte‘) repräsentiert, die für ausgewählte Elemente eines echten Objekts gelten.

QUANTORENVIELFALT

25. Betrachtet man alle Quantorenkombinationen der syllogistischen Muster, dann stellt man fest, dass es sich ausschließlich um ‚Anzahlquantoren‘ handelt, also Quantoren, die sich auf die potentiellen Elemente eines echten Objekts beziehen. ‚Potentielle Element‘, da diese Anzahlquantoren sich – wie gesagt – auf die Eigenschaften des Profils eines echten Objektes beziehen, mittels deren potentielle Elemente bestimmt werden, nicht auf die tatsächlichen Elemente.

26. In der dynamischen Objektstruktur gibt es aber auch ‚Raum-‚ und ‚Zeit-Quantoren‘.Warum kommen diese in den syllogistischen Mustern nicht vor? Die Beschränkung auf Anzahlquantoren stellt somit eine weitere starke Einschränkung dar.

27. Würde man sagen ‚Immer geht nach X Stunden wieder die Sonne auf‘, ‚X Stunden sind seit dem letzten Sonnenaufgang vergangen‘, dann könnte man daraus folgern, ‚jetzt wird die Sonne aufgehen‘. Setzt man eine Zeitachse mit Zeitpunkten voraus, für die mit ‚Immer = Zu allen Zeitpunkten = At‘ gesagt wird, dass eine Eigenschaft ‚F1=die Sonne‘ ‚geht auf‘ sich nach einem festen Abschnitt von ‚X Stunden‘ gesagt wird, dass sich diese Eigenschaft ‚wiederholt, also (At ‚X Stunden‘ geht auf F1), (Jetzt ist ‚X Stunden‘), (‚Jetzt ‚geht auf‘ F1). Implizit hat man hier auch die Struktur von echten Objekten (‚die Sonne‘) mit zugeordneten Eigenschaften ‚geht auf‘ bzw. den Zeitobjekten ‚Jetzt‘, ’10 Stunden‘.

28. Entsprechend kann man die Frage nach den Raum-Quantoren stellen. warum werden diese ausgeklammert? ‚Überall brennt die Sonne‘, ‚Hans wohnt in Berlin‘, ‚In Berlin brennt die Sonne‘. ‚Überall = An allen Orten = Ar‘, F1=’die Sonne‘, B1=’Hans‘, Berlin ist ein Ort, (Ar Orte brennt F1), (H1 wohnen Berlin), und über ‚Vererbung der Eigenschaft von allen Orten erbt der Ort Berlin die Eigenschaft (Berlin brennt F1).

OBJEKTIFIZIERUNG, ENTHALTENSEIN, ZUSCHREIBUNG, VERERBUNG

29. Aus den bisherigen Überlegungen lassen sich die Umrisse einer möglichen ‚Logik‘ auf der Basis einer ‚dynamischen Objektstruktur‘ erkennen.

30. Basis für alles andere sind ‚Objektifizierungen‘ von Eigenschaftsdimensionen wie ‚echte Objekte‘, ‚Raumgebiete‘ und ‚Zeitachse‘.

31. Zwischen echten Objekten, Raumpunkten und Zeitpunkten kann es ‚Enthaltensbeziehungen‘ geben. Z.B. (i) Von den Profileigenschaften von zwei echten Objekten A und B kann man sagen, dass ‚Alle‘ oder ‚Nicht Alle = Einige‘ oder ‚Alle nicht = Kein‘ Element von A auch Element von B ist. (ii) Die Wohnung von Hans ist Teil des Gebäudes X. Das Gebäude X gehört zum Ort Y…. (iii) Der 5.Oktober 1948 gehört schon zum Nachkriegsdeutschland. Nachkriegsdeutschland ist Teil des 20.Jahrhunderts. Das 20.Jahrhundert gehört zur Periode des homo sapiens.

32. Sofern Objektifizierungen angegeben sind, kann man diesen diverse Eigenschaften zuweisen (Das Auto ist rot; Die Nachbarn von Sonja sehen das rote Auto; die Sonne geht alle X Stunden auf; …)

33. Wenn man Objekten Eigenschaften zugeschrieben hat, dann kann man diese Eigenschafte ‚übertragen’/ ‚vererben‘ auf alle Elemente, die in dem betreffenden Objekt ‚enthalten sind‘. Wenn es zu allen Zeiten Kriege gab, dann gibt es auch zum aktuellen Zeitpunkt einen Krieg; wenn überall die Sonne scheint, dann auch dort, wo man ist; Wenn alle Menschen Lebewesen sind und von Lebewesen gesagt wird, dass sie sterben, dann sterben auch die Menschen.

Fortsetzung folgt

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Immanuel Kant, Critik der reinen Vernunft‘, Riga, 1781
  • Konrad Lorenz, 1973, ‚Die Rückseite des Spiegels. Versuch einer Naturgeschichte des menschlichen Erkennens‘, München, Zürich: Piper
  • Nicholas Rescher (1928 – ),The Development of Arabic Logic. University of Pittsburgh Press, 1964
  • Hans-Jörg Sandkühler (Hg.) unter Mitwirkung von Dagmar Borchers, Arnim Regenbogen, Volker Schürmann und Pirmin Stekeler-Weithofer, ‚Enzyklopädie Philosophie‘, 3 Bd., Hamburg: FELIX MEINER VERLAG, 2010 (mit CD-ROM)
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 13

(Letzte Änderung 8.Sept.2014, 02:59h)

VORGESCHICHTE

Für einen Überblick zu allen vorausgehenden Beiträgen dieser rekonstruierenden Lektüre von Avicennas Beitrag zur Logik siehe AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT.

AVICENNAS DISKUSSION VON UMWANDLUNG (‚Conversion‘)

1. Aus der englischen Übersetzung ist nicht klar zu entnehmen, ob der Begriff ‚Umwandlung‘ (engl.: ‚conversion‘) tatsächlich eine Form von ‚Umwandlung’/ ‚Umformung’/ ‚Konvertierung‘ meint oder spezieller eine Umformung von Aussagen, die letztlich eine ‚logische Folgerung‘ darstellen. Letztere Interpretation wird angeregt, da er dann tatsächlich an entscheidender Stelle zum ersten Mal in der ganzen Abhandlung eine Folge von Aussagen präsentiert, die man als ‚Folgerungstext‘ interpretieren kann.

2. In seiner Kerndefinition gleich zu Beginn charakterisiert er den Ausdruck ‚Umformung‘ mit Bezug auf zwei Ausdrücke A und B, die Subjekte, Prädikate, Antezedenz und Konsequenz enthalten können (implizit auch Quantoren, da er diese im folgenden Text beständig benutzt). Jede der beiden Aussagen hat eine Bedeutung M(A) bzw. M(B). Umformung hat jetzt damit zu tun, dass einzelne dieser logischen Rollen (Q, S, P, …) ‚ausgetauscht‘ werden, ohne dass dadurch die ‚Bedeutung‘ verändert wird.

3. [Anmerkung: Hier gibt es folgende Unklarheiten: (i) Sollen die Bedeutungen M(A) und M(B) von vornherein ‚gleich‘ sein, und zwar so, dass sie nach dem Austausch unverändert sind? oder (ii) sind die Bedeutungen M(A) und M(B) von vornherein ungleich, sollen aber, jede für sich, auch nach der Umformung gleich sein? In beiden Fällen – so interpretiere ich seine Aussage von Avicenna, gibt es eine Bedeutung vor der Umformung – eine gemeinsame oder eine individuelle –, die nach der Umformung ‚gleich‘ geblieben ist. Schreiben wir für die Umformung als \vdash, dann würde bedeuten ‚A \vdash B‚ A wird nach B umgeformt, so dass die Bedeutung von A und B – gemeinsam oder individuell – erhalten bleibt. Es stellt sich hier wieder das Problem – wie im gesamten vorausgehenden Text –, dass der Begriff ‚Bedeutung‘ bei Avicenna nicht scharf definiert ist. Er kann alles und nichts bedeuten. Die ‚Gleichheit‘ von zwei Bedeutungen M_vorher und M_nachher ist also ein ‚offener Begriff‘.]

4. In dem folgenden Text präsentiert Avicenna einerseits einige Beispiele von Umformungen ohne genauere Begründungen, in einem Fall präsentiert er aber das Beispiel einer ausführlicheren Begründung, die wie eine Folgerungstext (wie ein logischer Beweis) aussieht. Beginnen wir mit den Beispielen ohne Begründung.

5. Mögliche Konversion: Von ‚Kein Mensch ist unsterblich‘ (\neg\exists (Mensch)(ist)(unsterblich)) kann man bedeutungserhaltend umformen in ‚Kein Unsterblicher ist ein Mensch‘ ((\neg\exists (Unsterblicher)(ist)(Mensch)).

6. Avicenna stellt die Regel auf: Von einer affirmativen All-Aussage kann ich nicht zu einer anderen affirmativen All-Aussage konvertieren.

7. Beispiel: Von ‚Jeder Mensch ist ein Lebewesen‘ kann ich nicht umformen zu ‚Jedes Lebewesen ist ein Mensch‘ (mehr formalisiert: (\forall (Mensch)(ist)(Lebwesen)) kann nicht umgeformt werden zu (\forall (Lebewesen)(ist)(Mensch)).

8. Avicenna stellt die Regel auf: Die Umformung einer affirmativen All-Aussage ist eine affirmative Partikular-Aussage.

9. Beispiel: Die Aussage ‚Alle F sind B‘ kann umgeformt werden zu ‚Einige B sind F‘ (Formalisierter: Den Ausdruck \forall (F)(sind)(B)) kann man umformen zu (\exists(B)(ist)(F)))

10. Avicenna stellt die Regel auf: Eine affirmative Partikular-Aussage kann umgeformt werden in eine affirmative Partikular-Aussage.

11. Beispiel: Der Ausdruck ‚Einige F sind B‘ kann umgeformt werden zu ‚Einige B sind F‘ (Formalisierter: (\exists (F)(sind)(B)) \vdash (\exists (B)(sind)(F))).

12. Avicenna stellt die Regel auf: Eine negative Partikular-Aussage kann nicht konvertiert werden.

13. Beispiel: Die Aussage ‚Kein Lebewesen ist ein Mensch‘ kann nicht konvertiert werden zu ‚Kein Mensch ist ein Lebewesen‘. (mehr formalisiert: (\neg\exists (Lebewesen)(ist)(Mensch)) \not\vdash (\neg\exists (Mensch)(ist)(Lebewesen)))

14. [Anmerkung: Hier gibt es einigen Diskussionsbedarf. Bevor die Diskussion eröffnet wird, hier aber noch das Konvertierungsbeispiel, das wie ein Folgerungstext aussieht.]

15. Ausgangspunkt ist die Regel: Eine negative All-Aussage kann in eine negative All-Aussage konvertiert werden mit dem Beispiel: Von (\neg\exists (Mensch)(ist)(Unsterblicher)) \vdash (\neg\exists (Unsterblicher)(ist)(Mensch)).

16. Avicenna nennt die nun folgende ‚Folge von Aussagen‘ explizit einen ‚Beweis‘ (engl.: ‚proof‘).

17. Wenn es ‚wahr‘ ist, dass gilt (Kein F ist B), dann ist es auch wahr, dass (Kein B ist F). Andernfalls [wäre der Wenn-Dann-Zusammenhang nicht wahr] würde der Widerspruch (engl.: ‚contradictory‘) folgen (Einige B sind F).

18. [Anmerkung: Zur Erinnerung, die Negation einer Implikation (Wenn A dann B) ist nur wahr, wenn A wahr wäre und zugleich B falsch, also ’nicht B‘, d.h. ’nicht(Kein B ist F)‘ d.h. (einige B sind F). Insofern bildet die Aussage (Einige B sind F) einen logischen Widerspruch zu (Kein B ist F). ]

19. Der Beweis beginnt damit, dass Avicenna eine Abkürzung einführt: Er definiert ‚H := ‚Einige B‘. [ein sehr gefährliches Unterfangen…]

20. Dann folgert er ‚H ist gleichbedeutend mit F‘

21. Er folgert weiter: ‚H ist sowohl F als auch B [Damit unterschlägt er, dass H eigentlich nur ‚einige‘ B meinen sollte]

22. Er folgert weiter: Dann gibt es ein F, das auch B ist (\exists (F)(ist)(B)

23. Er folgert weiter: Nehme ich die Aussage (Einige B sind F) als wahr an, dann komme ich zu der Aussage (Einige F sind B); dies steht aber im Widerspruch zu der Ausgangsbehauptung, das ‚Kein F ist B‘.

24. Er folgert weiter: Deshalb ist es nicht möglich, von der Ausgangsbehauptung ‚Wenn es ‚wahr‘ ist, dass gilt (Kein F ist B), dann ist es auch wahr, dass (Kein B ist F)‘ auf den Widerspruch ‚Einige F sind B‘ zu schließen.

25. Avicenna folgert weiter: Von daher, wenn es gilt, dass ‚Kein F ist B‘, dann gilt auch die Konvertierung ‚Kein B ist F‘.

DISKUSSION

KONVERTIERBARKEIT DER FORMEN (Q (A B)) zu (Q (B A)) – BEDEUTUNGSABHÄNGIG

26. In den Beispielen, die Avicenna präsentiert, gibt es zwei Beispiele, die verwirrend sind. Im einen Fall will er über ’negative All-Aussagen‘ (\neg\forall) sprechen und im anderen Fall über ’negative Partikular-Aussagen‘ (\neg\exists). Das Beispiel für negative All-Aussagen lautet ‚Kein Mensch ist unsterblich‘. Der Quantor ‚kein‘ ist aber definiert als ’nicht einige‘ bzw. ‚\neg\exists‚. Dies aber ist gleichbedeutend mit einer negativen Partikular-Aussage. Später präsentiert er als Beispiel für negative Partikular-Aussagen den Ausdruck ‚Kein Lebewesen ist ein Mensch‘ (\neg\exists (Lebewesen)(ist)(Mensch)).

27. Damit haben wir es mit folgenden Widersprüchlichkeiten zu tun: (i) Avicenna interpretiert seinen Begriff der negativen Allaussagen mit einem Beispiel, das eine negative Partikular-Aussage repräsentiert; (ii) Mit einem Beispiel, das eine negative Partikular-Aussage repräsentiert, argumentiert er, dass man bedeutungserhaltend negative All-Aussagen konvertieren kann; (iii) Mit einem anderen Beispiel einer negativen Partikularaussage argumentiert er, man könne dieses nicht konvertieren.

28. Da das Beispiel zu (ii) zeigt, dass man sehr wohl eine negative Partikular-Aussage konvertieren kann, fragt man sich, warum es in einem anderen Fall nicht gehen soll. Dazu kommt, dass das konkrete Beispiel, das Avicenna präsentiert, aus sich heraus fragwürdig erscheint: ‚Kein Lebewesen ist ein Mensch‘ soll nicht konvertierbar sein zu ‚Kein Mensch ist ein Lebewesen‘. (mehr formalisiert: (\neg\exists (Lebewesen)(ist)(Mensch)) \not\vdash (\neg\exists (Mensch)(ist)(Lebewesen)))

29. Bekannt ist – zumindest bezogen auf diese Begriffe –, dass sehr wohl einige Lebewesen Menschen sind, also eher gilt \neg\neg\exists (Lebewesen)(ist)(Mensch), d.h. \exists (Lebewesen)(ist)(Mensch). Von einer Aussage wie \neg\exists (Mensch)(ist)\neg(Lebewesen)) könnte man allerdings nicht konvertieren zu \neg\exists (Lebewesen)(ist)\neg(Mensch)).

30. Trotzdem gibt es eine mögliche Konvertierung von (\neg\exists (Mensch)(ist)(Unsterblich))) zu (\neg\exists (Unsterblich)(ist)(Mensch))).

31. Diese Beispiele legen die Vermutung nahe, dass die bisherigen ‚Konvertierungsregeln‘ von Avicenna nicht unabhängig sind von der jeweils unterstellten Bedeutung der beteiligten Subjekte und Prädikate.

32. Bezogen auf die Struktur (Q (A B)) \vdash (Q (B A)) hängt die Möglichkeit oder Unmöglichkeit einer Konvertierung in den Beispielen davon ab, wie sich die Bedeutungen von A und B, also M(A) und M(B), zueinander verhalten.

33. Zwei Hauptfälle kann man unterscheiden: (i) die Bedeutung von beiden Ausdrücken ist ‚gleich‘, d.h. M(A) = M(B), oder (ii) die Bedeutungen sind ungleich in dem Sinne, dass zwar alle Elemente, die zu M(B) gehören auch in M(A) sind, aber nicht umgekehrt, also M(B) \subseteq M(A).

34. Wenn wir Fall (i) M(A) = M(B) unterstellen können, dann kann man von \forall A sind B auf \forall B sind A schließen, oder \exists A sind B und umgekehrt. Die Aussage \neg\forall A sind B wäre formal zwar möglich, wäre aber ’semantisch‘ (aufgrund der angenommenen Bedeutung) aber nicht möglich. Genau sowenig wie \neg\exists A sind B semantisch möglich wäre, wohl aber syntaktisch.

35. Unterstellen wir hingegen den Fall (ii) M(B) \subseteq M(A), dann würde die Konvertierung von \forall A sind B auf \forall B sind A nicht gelten. Entsprechend kann man die wahre Aussage \forall B sind A nicht konvertieren zu \forall A sind B. Die Konvertierung \exists A sind B würde gehen wie auch umgekehrt. Die Aussage \neg\forall A sind B ist wahr, die Konvertierung zu \neg\forall B sind A wäre falsch. Usw.

36. Diese Beispiele verdeutlichen, dass die Konvertierbarkeit von Ausdrücken der Form (Q (A B)) zu (Q (B A)) eindeutig von der angenommenen Bedeutungsstruktur abhängig ist (zumindest in dem Kontext, den Avicenna diskutiert). Betrachten wir seine anderen Konvertierungsregeln.

37. (i) Von einer affirmativen All-Aussage kann ich nicht zu einer anderen affirmativen All-Aussage konvertieren.

38. (ii) Die Umformung einer affirmativen All-Aussage ist eine affirmative Partikular-Aussage.

39. (iii) Eine affirmative Partikular-Aussage kann umgeformt werden in eine affirmative Partikular-Aussage.

40. (iv) Eine negative Partikular-Aussage kann nicht konvertiert werden.

41. Zu (i): Nehmen wir an, dass gilt (M(A) = M(B)), dann trifft diese Regel zu. Nehmen wir aber an, dass gilt (M(B) \subseteq M(A)), dann gilt diese Regel nicht.

42. Zu (ii) und (iii): Nehmen wir an, dass gilt (M(A) = M(B)), dann trifft diese Regel zu. Nehmen wir aber an, dass gilt (M(B) \subseteq M(A)), dann gilt diese Regel auch.

43. Zu (iv): Dieser Fall ist von der Form her (rein syntaktisch) möglich, von der Bedeutung her (rein semantisch) aber ausgeschlossen.

44. Bei allen bisherigen Konvertierungsbeispiele von Avicenna ist zu beachten, dass sich die Bedeutung des Subjekts S und des Prädikats P in einer Aussage (S P) in der Art M(A) = M(B) oder M(B) \subseteq M(A) beschreiben lässt. Dies setzt voraus, dass sich ein Prädikat P auch als eine Menge von Objekten auffassen lässt, denen eine bestimmte Eigenschaft E zukommt, also etwa P := ‚eine Menge von Elementen, die die Eigenschaft P haben‘. Zu sagen ‚S ist P‘ würde dann sagen, dass die Elemente die S sind auch die Elemente sind, die P sind.

45. Man muss hier die Frage stellen, ob Prädikate immer diese Form haben.

KONVERTIERUNG OHNE BEDEUTUNG?

46. Macht man die Konvertierbarkeit von Ausdrücken der Form (Q (A B)) und (Q (B A)) von der Bedeutung M der Ausdrücke A und B abhängig, dann hängt die Formulierung der Konvertierungsregeln ab von einer brauchbaren Definition des zugrundeliegenden Bedeutungsraumes samt seiner Interaktion mit den Ausdrucksformen. Im weiteren Verlauf soll dies explizit untersucht werden. Es stellt sich aber auch die Frage, ob man Konvertierungsregeln nicht auch ohne Rückgriff auf die Bedeutung der Teilausdrücke formulieren kann.

47. Hat man nur die Ausdrücke (Q (S P)) mit der Verallgemeinerung, dass S und P ‚gleichwertig‘ sein können im Sinne von (Q (A B)) \vdash (Q (B A)), dann stellt sich die Frage welche Kriterien man hätte, gäbe es keinen Bedeutungsbezug?

48. Man muss feststellen, dass ohne irgendeinen Bedeutungsbezug die Ausdrücke als solche keinerlei Ansatzpunkt bieten, eine Konvertierung zuzulassen oder sie zu verbieten.

49. Wenn aber Konvertierungsregeln ohne Bedeutung keinen Sinn machen, dann muss man sich fragen, welche Bedeutungsstrukturen man benötigt, dass man solche Konvertierungsregeln sinnvoll einführen kann.

KONVERTIERUNG MIT BEDEUTUNG – MIT WELCHER?

50. Wenn es also ohne Bezug auf eine Bedeutung nicht geht, stellt sich die Frage, wie eine solche Bedeutungsstruktur aussehen muss, damit solche – oder auch andere – Konvertierungsregeln formuliert werden können.

51. Die weitere Diskussion wird in einem neuen Blogeintrag fortgeführt werden.

Fortsetzung folgt

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Nicholas Rescher (1928 – ),The Development of Arabic Logic. University of Pittsburgh Press, 1964
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 11

Bildskizzen zu Avicennas Diskussion der Aussagetypen Disjunktive und Konjuntive Konditionale

Bildskizzen zu Avicennas Diskussion der Aussagetypen Disjunktive und Konjuntive Konditionale

VORGESCHICHTE

Für einen Überblick zu allen vorausgehenden Beiträgen dieser rekonstruierenden Lektüre von Avicennas Beitrag zur Logik siehe AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT.

Aufgrund des großen Umfangs enthält dieser Blogeintrag zu Avicennas Logik – im Gegensatz zu den vorausgehenden Blogeinträgen 1-9 – nur den Diskussionsteil von Blogeintrag 10. In Blogeintrag 10 wurde weiter die Position Avicennas beschrieben. Ziel der Lektüre ist die Rekonstruktion einer möglichen Theorie der Alltagslogik, wie sie dann in künstlichen lernenden Systemen eingesetzt werden soll (hier trifft die Philosophie direkt auf die Ingenieurskunst ….; man nennt dies ‚Informatik‘).

DISKUSSION

26. Wie schon mehrfach bemerkt, erscheint die Verwendungsweise der meisten Begriffe in Avicennas Abhandlung über die Logik ‚fließen‘ oder – mit einem Begriff aus der modernen Logik – ‚fuzzy‘.

27. Dies hat damit zu tun, dass Avicenna für die Verwendung seiner Begriffe keine klaren Kriterien benutzt. Typisches Beispiel ist sein Begriff der ‚Harmonie‘, den er für die Klassifikation von Antezedenz – Konsequenz Verhältnisse benutzt. Klar ist, dass er für diesen Begriff auf die Bedeutungsdimension zurückgreift; unklar ist, wie genau er dies versteht, da das, was er praktisch überall als ‚Bedeutung unterstellt‘, nirgendwo präzisiert wird. Will man diesen Nachteil beheben, muss man einen Weg finden, die Kriterien zu klären. Ein erprobtes Mittel dafür ist, alle die Umstände explizit zu machen, zu benennen, die man als für ein Kriterium ‚relevant‘ erachtet. Dies ist in der modernen Wissenschaft eine Mischung aus kontrollierten Beobachtungen und theoretischen Annahmen. Und da keine Beobachtung einen ‚Sinn‘ ergibt ohne Bezug zu vorausgesetzten Beziehungen/ Relationen/ Strukturen/ Modellen beginnt jede Klärung eines vagen Zusammenhangs mit ersten ‚theoretischen Annahmen‘ darüber, welche Zusammenhänge man für wichtig hält, mit denen man bekannte – oder noch zu messende – Phänomene ‚erklären‘ möchte.

28. Beginnen wir mit den letzten Annahmen von Avicenna.

AUSSAGEN – AUSSAGESTRUKTUREN

29. Ausgangspunkt sind solche Ausdrücke E, die ‚wahr‘ oder ‚falsch‘ sein können; er nennt sie ‚Aussagen‘ [PROP]: PROP \subseteq E.
30. Aus logischer Sicht hat Avicenna bislang vier funktionale Rollen innerhalb einer Aussage unterschieden: ‚Subjekt‘, ‚Prädikat‘, ‚Aussageoperatoren‘ sowie ‚Quantoren‘.
31. Minimal benötigen wir ‚Subjekt‘ S und ‚Prädikat‘ P, so dass man im Prädikat P etwas über das Subjekt S aussagen kann: (S P)
32. Zusätzlich gibt es die Rolle der logischen ‚Aussage-Operatoren‘ ‚Negation‘ \neg, ‚Exklusive Disjunktion‘ (auch ‚Kontravalenz‘ oder ‚X-OR‘) \sqcup, und ‚Quantoren‘ Q. Hier unterscheidet er Quantoren über die ‚Anzahl‘ Q_{q}, und Quantoren über die ‚Zeit‘ Q_{t}. Man solle gleich noch die Quantoren über den ‚Raum‘ Q_{s} ergänzen; diese erwähnt er nicht explizit, aber im Bereich des Bedeutungsraumes spielt die Dimension des Raumes eine wichtige Rolle und begegnet uns in sehr vielen Aussagen.
33. Bei der Verwendung von Quantoren bezieht man sich immer auf eine Gesamtheit. Im Falle von Zeit-Quantoren Q_{t} sind dies Zeitpunkte angeordnet auf einem Zeitstrahl. Im Falle von Anzahl-Quantoren Q_{q} bezieht man sich auf die Objekte, zu denen das Subjekt einer Aussage in einer Beziehung steht; im Falle von Raum-Quantoren Q_{s} bezieht man sich auf zu definierende ‚Raumstellen‘.
34. Unter der Voraussetzung, dass eine Aussage A = (S P) ‚wahr‘ oder ‚falsch‘ sein kann, kann man sagen, dass \neg A ‚wahr‘ ist, wenn ‚A‘ alleine ‚falsch‘ ist, d.h. wenn die Aussage A= (S P) nicht zutrifft; d.h. (S \neg P) trifft zu.
35. Die Aussage ‚Entweder A oder B‘ (A \sqcup B) ist ‚wahr‘, wenn entweder A wahr und B falsch ist oder B wahr und A falsch. Die Verneinung von \neg(A \sqcup B) ist wahr, wenn entweder A und B zusammen wahr oder zusammen falsch sind.
36. Die Aussage ‚Wenn A dann B‘ (A \rightarrow B) ist nur dann falsch, wenn A zutrifft und zugleich B falsch ist. In allen anderen Fällen ist die Implikation wahr. Die Verneinung \neg(A \rightarrow B) wäre dementsprechend wahr, wenn A wahr wäre und B nicht; in allen anderen Fällen falsch
37. Es sei angemerkt, dass die Implikation (A \rightarrow B) äquivalent ist zu \neg(A \wedge \neg B), wobei das Zeichen ‚\wedge‚ den aussagenlogischen Operator ‚Konjunktion‘ (‚und‘) repräsentiert. (A \wedge B sind nur wahr, wenn A und B zugleich wahr sind, sonst falsch.
38. Quantoren werden Aussagen vorangestellt, also (Q A) bzw. (Q (S P)).
39. Anzahl-Quantoren Q_{q} wären ‚alle‘ und verneint \neg Q_{q} ’nicht alle‘, definiert durch ‚einige := nicht alle‘.
40. Zeit-Quantoren Q_{t} wären ‚immer‘ und verneint \neg Q_{t} ’nicht immer‘, definiert durch ‚manchmal := nicht immer‘.
41. Raum-Quantoren Q_{s} wären ‚überall‘ und verneint \neg Q_{s} ’nicht überall‘, definiert durch ‚einige := nicht überall‘.
42. Als Schreibweisen hat sich herausgebildet, im Falle von ‚alle’/ ‚immer’/ ‚überall‘ von ‚All-Quantoren‘ zu sprechen und zu schreiben \forall(x). Das ‚x‘ steht dann für die Art von Objekten, über deren Gesamtheit quantifiziert wird. Im Fall von ‚einige’/ ‚manchmal“ spricht man von ‚Partikularquantoren‘ (missverständlich auch ‚Existenzquantoren‘) und schreibt \exists(x). Das ‚x‘ steht wieder für die Art von Objekten, über deren Gesamtheit quantifiziert wird.
43. Im Falle von Partikularquantoren von ‚Existenzquantoren‘ zu sprechen ist leicht irreführend, da ein Existenzquantor \exists(x) keine Aussage über die reale Existenz in der umgebenden Welt W trifft, sondern nur angibt, über wie wieviele Objekte x einer Art gesprochen werden soll.
44. Beispiel: ‚Manchmal ist der Himmel grau‘ \exists(t)(der Himmel)(t)(ist grau). Es gibt einige Zeitpunkte t (aus der Gesamtheit der geordneten Zeitpunkte T), an denen vom Himmel gesagt werden kann, dass er grau ist.
45. Beispiel: ‚Überall scheint die Sonne‘ \forall(s)(die Sonne)(scheint). An allen Raumpunkten s (aus der Gesamtheit der Raumpunkte S), kann von der Sonne gesagt werden kann, dass sie scheint.
46. Beispiel: ‚Alle Menschen sind sterblich‘ \forall(x)(Menschen)(sind sterblich). Für alle Objekte aus der Gesamtheit der Menschen kann gesagt werden, dass sie sterblich sind.
47. Beispiel: ‚Nicht alle Menschen sind sterblich‘ \neg\forall(x)(Menschen)(sind sterblich) wird übersetzt \exists(x)(Menschen)(sind nicht sterblich), \exists(x)(S)(\neg P), d.h. für einige Objekte aus der Gesamtheit der Menschen kann gesagt werden, dass sie nicht sterblich sind.

WAHRHEITSBEDINGUNGEN – BEDEUTUNGSRAUM

48. Mit der Einführung der Begriffe ‚Aussage‘, ‚Subjekt‘, ‚Prädikat‘, ‚Aussage-Operator‘, ‚Quantor‘ wurden Strukturelemente von Ausdrücken beschrieben. Allerdings wurde bei der ‚Charakterisierung‘ der unterschiedlichen logischen Rollen immer schon – mehr oder weniger explizit – Bezug genommen auf einen unterstellten ‚Bedeutungsraum‘ M.
49. Der wichtige Punkt hier ist, dass man den Unterschied zwischen dem Bedeutungsraum M und den Eigenschaften X der umgebenden Welt W beachtet.
50. Wie schon zuvor herausgestellt, ist der Bedeutungsraum M, auf den sich die Aussagen mit ihren Strukturen primär beziehen, zu einem gewissen Teil eine Konstruktion über bestimmten Ereignissen X in der umgebenden Welt W.
51. Dieser Unterschied ist die Voraussetzung für Begriffe wie z.B. ‚Existenz‘, ‚wahr’/ ‚falsch‘ und ‚möglich‘.
52. Denn mittels einer Aussage A bestimmte Bedeutungselemente m \subseteq M zu benennen, zu aktivieren, ist zwar eine Grundvoraussetzung dafür, dass ein Ausdruck e als Aussage A überhaupt eine ‚Bedeutung‘ hat, diese Bedeutungselemente m sind als solche aber weder ‚wahr‘ noch ‚falsch‘; ihre ‚Existenz‘ ist unklar; ob sie ‚real‘ oder ‚möglich‘ sind folgt aus der primären Bedeutung nicht.
53. Erst wenn man davon ausgeht, dass es innerhalb des Bedeutungsraumes M solche Bedeutungselemente m* gibt, die sich von anderen Bedeutungselementen m0 dadurch unterscheiden, dass ihnen ein ‚Aktualitätsbezug‘ zu aktuellen Wahrnehmungen zusprechen kann, nur dann kann es ein Kriterium geben, wodurch eine Aussage A ’nur‘ eine ‚wahrheitsneutrale‘ Bedeutung m0 hat oder eben durch die ‚Aktualitätseigenschaft‘ m* als ‚zutreffend in der umgebenden Welt M‘ charakterisiert werden kann. An dieser Eigenschaft des ‚aktuell Zutreffens‘ in der umgebenden Welt W lassen sich die Begriffe ‚wahr‘ und ‚falsch‘ ‚anhängen‘: gibt es eine Bedeutung m0, die eine hinreichende Ähnlichkeit mit einer Bedeutung m* hat, dann kann man von der Aussage, die die Bedeutung m0 bezeichnet, sagen, dass sie ‚zutrifft‘ und damit ‚wahr‘ ist; gibt es zu einer aktuell bezeichneten Bedeutung m0 einer Aussage A keine hinreichend ähnliche Bedeutung m*, dann trifft die Bedeutung m0 der Aussage A nicht zu, d.h. sie ist falsch.
54. Sofern wir über ‚Erinnerungen‘ an Bedeutungen m(m*) verfügen, die zu ‚vorausgehenden Zeitpunkten‘ einmal ‚wahr‘ waren, kann dieses Wissen m(m*) dazu benutzt werden, um eine ‚Erwartung‘ über die umgebenden Welt W aufzubauen, dass der Sachverhalt m(m*) sich als aktuelle Wahrnehmung m* ‚reproduzieren‘ lässt; dafür, dass dem so ist, gibt es keine ‚Garantie‘; selbst die sogenannten ‚Naturgesetze‘ sind keine 100%ige Garantie dafür, dass eine erinnerbare Eigenschaft m(m*) aufgrund ihres ‚früheren‘ Auftretens als m* nochmals als m* auftreten wird.

MÖGLICH

55. Ich würde den Begriff der Möglichkeit auch an dieser Differenz aufhängen: einerseits ‚aktuell wahrgenommene‘ Bedeutungselemente m* bzw. ‚erinnert als schon mal aktuell wahrgenommen‘ m(m*)‘ und andererseits nur ‚gedacht’/ ‚vorstellbar‘ als m0 ohne Entsprechung zu einem m* bzw m(m*). Eine ‚Differenz‘ zwischen allgemein vorstellbar/ denkbar und aktuell wahrnehmbar bzw. erinnert als aktuell mal wahrgenommen ist generell ein Hinweis auf Möglichkeit. Wie ‚wahrscheinlich‘ solche möglichen Bedeutungselemente m0 mal als m* reproduziert werden können, ist allgemein kaum anzugeben. Basierend auf dem bislang verfügbaren erinnerbaren Wissen M(M*) insgesamt kann man zwar gewisse ‚Erwartungen‘ konstruieren; dies können aber – wie wir aus der Geschichte wissen – unzuverlässig sein, da sie auf falschen Annahmen bzw. Interpretationen beruhen können (‚Sonne bewegt sich um die Erde‘ oder ‚Erde bewegt sich um die Sonne‘).

WELT ALS FIKTION

56. Aus der bisherigen Rekonstruktion folgt, dass der Begriff der ‚umgebenden Welt W‘ streng genommen eine ‚Fiktion‘ ist. Was es gibt, sind Erregungszustände m* im Gehirn, die es zum überwiegenden Teil nicht selbst verursacht; sie werden in die Erregungsmenge des Gehirns ‚induziert‘. Verglichen damit sind die anderen (bewussten) Erregungszustände m0 ‚von innen‘ (endogen) erzeugt. Unser Gehirn nimmt diese nicht-selbst induzierten (bewussten) Erregungszustände m* als ‚etwas von ihm Verschiedenes‘, an dem sich viele ‚Eigenschaften‘ unterscheiden lassen, u.a. auch eine implizite Raumstruktur. Der Begriff der ‚Welt‘ ist in diesen nicht-selbst induzierten Erregungszuständen m* fest gemacht. Als m* sind diese Erregungszustände ‚unmittelbar‘, ‚direkt‘, so, als ob wir die ‚Welt‘ ‚direkt‘ erleben würden. Wie wir aber heute wissen (können), sind diese direkt erlebbaren Erregungszustände m* das ‚Produkt‘ eines komplizierten Übersetzungsmechanismus, den wir sinnliche Wahrnehmung perc() nennen. Im Prozess der sinnlichen Wahrnehmung perc() werden einige der Weltereignisse X in sinnliche Zustände m_{p} abbgebildet: perc: X \longrightarrow M_{p}. Zusätzlich wissen wir heute, dass die schon verfügbaren Bedeutungselemente M auf diesen Wahrnehmungsprozess Einfluss nehmen können (Stichwort ‚Erwartungen‘, ‚Vorurteile‘ , …): perc: X \times M \longrightarrow M_{p}.
57. Dabei sind es normalerweise nicht die sinnlichen Erregungszustände M_{p}, die wir wahrnehmen, sondern die Objekte der nächsten Verarbeitungsstufe, die aus den sinnlichen Elementen als Objektelemente heraus abstrahiert werden: \alpha: M_{p} \times M \longrightarrow M_{o}. Auch hier wirken sich die schon vorhandenen Bedeutungselemente M auf den Abstraktionsprozess aus. Statt M_{o} wird hier auch verkürzend oft nur von den ‚Objekten‘ O gesprochen, da Objekte immer nur als Elemente des Bedeutungsraumes M vorkommen.
58. Die zuvor erwähnten aktuellen Wahrnehmungen m* sind eine Teilmenge der Objektelementen M_{o}, also m* \subseteq M_{o}. Die Objektelemente ohne die aktuellen Wahrnehmungen m* gehören zu den ‚denkbaren‘ Objektelementen, also (M_{o} - m*) \subseteq M0. Dies ist möglich, weil im Gehirn ja nicht ‚reale‘ Objekte mit ‚gedachten‘ Objekten verglichen werden, sondern die ‚realen‘ Objekte treten im Gehirn schon als ‚gezähmte‘ Objekte auf, d.h. was immer an Eigenschaften X in der realen Welt W zur Konstruktion der aktuellen Wahrnehmungen m* geführt hat, m* selbst ist ein Konstrukt wie m0 auch. Deswegen lassen sich beide ‚vergleichen‘ und mit den Mitteln des ‚Denkens‘ ‚bearbeiten‘.

ERGEBNISSE

59. An dieser Stelle könnte man jetzt eine eigene große Abhandlung zur Alltagslogik schreiben. Um den Gang der weiteren Untersuchung von Avicennas Abhandlung damit aber nicht vollständig zu sprengen, beende ich hier die rekonstruierenden Überlegungen und wende mich wieder der Lektüre des Textes zu. Wie man sieht, kann solch eine Lektüre extrem anregend sein.

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 9

(Mit Nachtrag vom 1.Sept.2014)

VORGESCHICHTE

Für einen Überblick zu allen vorausgehenden Beiträgen dieser rekonstruierenden Lektüre von Avicennas Beitrag zur Logik siehe AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT.

Nach der üblichen Darstellung der Position von Avicenna folgt dann der Teil ‚DISKUSSION‘, in der seine Position kritisch hinterfragt und die Rekonstruktion einer möglichen Theorie der Alltagslogik fortgesetzt wird.

KATEGORISCH – AFFIRMATIV/ NEGATION – UNIVERSAL/ PARTIKULÄR

1. Im folgenden Abschnitt treten Begriffe auf, die z.T. schon zuvor auftraten (‚Kategorisch‘, ‚Negation‘, ‚Universal‘, ‚Partikulär‘), die aber jetzt mit neuen Randbedingungen nochmals diskutiert werden.

KATEGORISCH ALS AFFIRMATIV/ NEGATIV

2. Der Abschnitt beginnt mit einer Diskussion von ‚kategorischen‘ (‚kategorisierenden‘) Aussagen und der Frage, wann sie ‚affirmativ‘ und wann sie ’negativ‘ sind.

SUBJEKT – PRÄDIKAT, EINFACH – ZUSAMMENGESETZT

3. Zusätzlich zu den Unterscheidungen ‚affirmativ‘ – ’negativ‘ im Kontext einer ‚kategorisierenden‘ Aussage berücksichtigt Avicenna auch hier wieder Teilausdrücke. Während er zuvor die semantisch motivierten Begriffe ‚Name‘, ‚Verb‘ (auch ‚Term‘ genannt), sowie ‚Präposition‘ erwähnt hatte, benutzt er nun auch das Begriffspaar ‚Subjekt‘ und ‚Prädikat‘. Beide sind – wie sich aus dem Verwendungskontext nahelegt – ’semantisch‘ motiviert, d.h. nur durch Rückgriff auf die Bedeutung kann man zur Klassifikation ‚Subjekt‘ bzw. ‚Prädikat‘ kommen.
4. Versucht man die Begriffe ‚Name‘, ‚Verb‘ (‚Term‘), sowie ‚Präposition‘ mit den neuen Begriffen ‚Subjekt‘ und ‚Prädikat‘ in Beziehung zu setzen, dann gibt es eine gewisse Korrelation zwischen ‚Name‘ und ‚Subjekt‘ einerseits sowie ‚Verb‘ und ‚Prädikat‘ andererseits. Da Avicenna selbst keinerlei weitere Hinweise auf eine mögliche Beziehung liefert, bleibt an dieser Stelle einiges unklar.
5. Deutlich ist nur, dass Avicenna die Ausdrucksseite eines Ausdrucks e = <e1, e2, …> durch Rückgriff auf eine – nicht explizit beschriebene – Bedeutungsstruktur so analysiert, dass er sagen kann, welche ‚Teile‘ des Ausdrucks e als ‚Subjekt‘ zu nehmen sind, und welche Teile als ‚Prädikat‘.
6. So unterscheidet er im Bedeutungsraum zwischen ‚dem, über das‘ eine Feststellung getroffen wird, und ‚dem, was‘ in dieser Feststellung gesagt wird.
7. Im Beispielsatz N:(der Mensch)V:(ist)N:(ein Lebewesen) analysiert er den Teil [N:(der Mensch)] als ‚Subjekt‘ und den Teil [V:(ist)N:(ein Lebewesen)] als ‚Prädikat‘.
8. Ein anderer Beispielsatz (Wer immer)(sein)N:(Essen)OP:(nicht)V:(kaut)(der)V:(schädigt)(seinen)N:(Darm) enthält Aussageteile, für die Avicenna bislang keine semantisch motivierte grammatische Beschreibungskategorien eingeführt hat. Avicenna analysiert den Ausdruck wie folgt: Subjekt = [(Wer immer)(sein)N:(Essen)OP:(nicht)V:(kaut)] und Prädikat = [(der)V:(schädigt)(seinen)N:(Darm)].
9. Den Unterschied zwischen Subjekt = [N:(der Mensch)] und Subjekt = [(Wer immer)(sein)N:(Essen)OP:(nicht)V:(kaut)] charakterisiert Avicenna als Unterschied zwischen einem ‚einfachen‘ und einem ‚zusammengesetzten‘ Subjekt. Entsprechend auch für das Prädikat: Prädikat = [V:(ist)N:(ein Lebewesen)] und Prädikat = [(der)V:(schädigt)(seinen)N:(Darm)].
10. Sowohl für die Verwendung der Begriffe ‚Subjekt/ Prädikat‘ wie auch ‚einfach/ zusammengesetzt‘ liefert Avicenna keine explizite Kriterien. Er zitiert nur einige Ausdrücke als Beispiele und appelliert an die sprachliche Intuition des Lesers, die implizit verwendeten Analysekriterien zu verstehen.

AFFIRMATIV – NEGATIV

11. In den soeben erwähnten Kontexten wie auch in nachfolgenden Beispielen diskutiert er auch die Begriffe ‚affirmativ‘ und ’negativ‘.
12. Sein Hauptkriterium zur Verwendung der Begriffe ‚affirmativ‘ und ’negativ‘ ist der (semantische, bedeutungsgeleitete!) Aspekt, ob das, was in einer Aussage in einem Prädikat von einem Subjekt behauptet wird, ‚zutrifft’/ ‚der Fall ist‘ oder ’nicht zutrifft’/ ’nicht der Fall ist‘. Trifft das im Prädikat behauptete zu, dann will er es ‚affirmativ‘ nennen, ansonsten ’negativ‘.
13. Im vorausgehenden Abschnitt waren diese Verwendungskriterien auch benutzt worden, um zu sagen, wann eine Aussage ‚wahr‘ bzw. ‚falsch‘ ist. Nach den bisherigen Kriterien müsste man dann sagen, dass ‚wahr‘ und ‚affirmativ‘ einerseits und ‚falsch‘ und ’negativ‘ dann bedeutungsgleich wären.
14. In einem weiteren Beispiel benutzt Avicenna die Aussage SUBJ[N:(Zid)] PRÄD[V:(ist)(ohne)N:(Sicht)] – engl.: ‚Zid is without sight‘ – als ein Beispiel für eine ‚affirmative‘ Aussage, da das Prädikat PRÄD[V:(ist)(ohne)N:(Sicht)] eine Eigenschaft beschreibt, die auf das Subjekt (Zid) zutrifft.
15. Andererseits wird der Teilausdruck ‚ist ohne Sicht‘ bedeutungsmäßig als eine ‚Negation‘ verstanden im Sinne von ‚hat keine Sicht‘ im Gegensatz zu ‚hat Sicht‘. D.h. eine bedeutungsmäßige ‚Verneinung‘ kann durch verschiedene Ausdruckselemente realisiert werden, auch ohne den Ausdruck ’nicht‘. Dies würde bedeuten, dass eine ‚ausdrucksmäßig realisierte Verneinung‘ das Fehlen einer bestimmten Eigenschaft aussagen kann. Nach den Worten Avicennas kann aber genau solche eine Feststellung, dass eine bestimmte Eigenschaft fehlt, eine ‚Affirmation‘ sein, eben das Festellen, dass es der Fall ist, dass eine bestimmte Eigenschaft fehlt.
16. Wenn also eine Affirmation das Absprechen einer Eigenschaft beinhalten kann, wie sieht dann eine Verneinung einer solchen Affirmation aus?
17. Avicenna bringt folgendes Beispiel: SUBJ[N:(Zid)] PRÄD[V:(ist)(nicht)(ohne)N:(Sicht)]. Für ihn ist dieses eine ‚Negation‘, da die Affirmation, eine bestimmte Eigenschaft sei nicht da, verneint wird.
18. Mann könnte das Beispiel auch umschreiben zu: (Es ist nicht der Fall, dass) SUBJ[N:(Zid)] PRÄD[V:(ist)(ohne)N:(Sicht)].
19. Ersetzt man die Teilausdrücke durch Buchstaben – was Avicenna im Text auch einmal demonstriert –, dann könnte man auch schreiben (Es ist nicht der Fall, dass) (A)(B), bzw. dann (A)\neg(B).

EXISTENZ

20. Zwischendrin bemerkt Avicenna auch mal, dass das Treffen einer Feststellung, eigentlich nur Sinn mache, wenn dasjenige, von dem etwas ausgesagt wird, auch existiere. Doch wird dieser Punkt nicht weiter diskutiert.

UNIVERSELL – PARTIKULÄR – QUANTITÄT – QUANTOREN

21. Vom Subjekt einer Aussage sagt Avicenna, sie kann ‚partikulär‘ oder ‚universell‘ sein. Falls universell, dann kann man unterscheiden, ob sie ‚unbestimmt‘ (engl.: ‚indeterminate‘) ist – wie viele genau involviert sind — oder eben ‚bestimmt‘ (engl.: ‚determinate‘).
22. Im Beispielausdruck (Zid)(ist)(ein)(Lebewesen) ist (Zid) ‚partikulär‘.
23. Im Beispielausdruck (Menschen)(bewegen)(sich) ist nach Avicenna unklar, ob ‚alle‘ Menschen gemeint sind oder nur ‚einige‘.
24. Die ‚bestimmten universellen Aussagen‘ teilt Avicenna in vier Klassen ein:
25. Typ 1: Subjekt = Alle, Affirmativ (Bsp.: Q=[(Jeder)]S=[(Mensch)]P=[(ist)(ein)(Lebewesen)]
26. Typ 2: Subjekt = Alle, Negativ (Bsp.: Q=[(Kein)]S=[(Mensch)]P=[(ist)(sterblich)](?)
27. Typ 3: Subjekt = Einige, Affirmativ Q=[(Einige)]S=[(Mensch)]P=[(sind)(Schriftsteller)]
28. Typ 4: Subjekt = Einige, Negativ Q=[(Nicht alle)]S=[(Mensch)]P=[(sind)(Schriftsteller)] (?)
29. Hier sind nur einige von Avicennas Beispielsätzen angeführt. Einige Beispiele werfen Fragen auf (?).
30. Mehrfach formuliert Avicenna auch folgendes ‚Metaprinzip‘: Wenn eine Aussage über ‚Alle‘ spricht, dann sei es unsicher, ob wirklich alle gemeint sind; sicher sei es aber, dass wenigstens ‚einige‘ gemeint sind.
31. Aus all diesen Überlegungen leitet er dann folgende Fallunterscheidungen her (von mir abgekürzt ‚+‘ für ‚affirmativ‘, ‚-‚ für negativ‘, ‚1‘ für ‚partikulär‘, ‚0‘ für ‚unbestimmt‘ und ‚a‘ für universell‘:
32. (+,1)
33. (-,1)
34. (0,+)
35. (0,-)
36. (a,+)
37. (a,-)
38. (1,+)
39. (1,-)
40. Die Fälle (+,1) und (-,1) bezeichnet Avicenna als ’nutzlos für die Wissenschaft‘ und die Fälle (0,+) und (0,-) sollten vermieden werden, da sie ‚verwirrend‘ sind.

NOTWENDIG – KONTINGENT

41. Am Beispiel der kategorisierenden Aussagen illustriert Avicenna auch die Begriffe ’notwendig‘ und ‚kontingent‘. Die Verwendung dieser Begriffe stimmt überein mit den zuvor eingeführten Begriffe ‚wesentlich‘ und ‚akzidentell‘.

MÖGLICH

42. Auch erwähnt Avicenna hier den Begriff ‚möglich‘. Er sieht mindestens zwei Verwendungsweisen von ‚möglich‘: einmal als (i) ’nicht unmöglich‘ und (ii) im Sinne von ‚kann existieren‘ und ‚kann nicht existieren‘. Fall (ii) ist für ihn das ‚real mögliche‘ und stimmt nach Ihm mit dem normalsprachlichen Gebrauch überein.
43. Die Verwendungsweise in Fall (i) von ‚möglich := nicht unmöglich‘ widerspricht eigentlich den Regel einer expliziten Definition, wie er sie an früherer Stelle aufgestellt hatte. Dort hatte er verlangt, dass der neu zu definierende Ausdruck e_new nicht auf der rechten Seite bei den definierenden – als bekannt vorausgesetzten – Ausdrücken vorkommen darf, also e_neu := <e_alt1, …, e_altn>.
44. Der Ausdruck ‚möglich := nicht unmöglich‘ entspricht dem Ausdruck ‚möglich := nicht nicht möglich‘. Darin wird der neue Ausdruck über sich selbst definiert, was ‚zirkulär‘ ist.

DISKUSSION

45. Dieser neue Text verstärkt den Eindruck der vorausgehenden Seiten, dass Avicenna keine wirklich systematische Theorie hat. Er folgt den in der Literatur vorkommenden Begriffen nach keiner erkennbaren Regel, und seine Analyse benutzt Kriterien, die höchst selten explizit benannt werden. Vorzugsweise stellt er Beispielsätze vor, die er nach impliziten Kriterien diskutiert. Auch wiederholt er scheinbar ähnliche Bedeutungszusammenhänge mit jeweils neuen Begriffen. Dennoch besteht noch immer der Eindruck, dass sich der bislang gewählte Interpretationszusammenhang durchhalten lässt.

REKONSTRUIERENDE ECKWERTE BISHER

46. Als Eckwerte der rekonstruierenden Interpretation gilt bislang die Unterscheidung vom (i) ‚wissenden System‘ S in einer (ii) umgebenden realen Welt W und der Fähigkeit des wissenden Systems, (iii) bestimmte Ereignisse X der realen Welt W über einen Verarbeitungsprozess \lambda in einen (iv) internen Bedeutungsraum M zu übersetzen. Parallel zum Bedeutungsraum M gibt es (v) eine Menge von Ausdrücken E, die (vi) auf unterschiedliche Weise mit dem Bedeutungsraum E innerhalb einer gewussten Beziehung K \subseteq E \times M verknüpft werden können. Im Bereich des Bedeutungsraumes M kann (vii) unterschieden werden zwischen ‚aktuellen‘ Bedeutungsrepräsentationen M_now, die von aktuellen Ereignissen X der realen Welt verursacht sind, und ‚zeitlosen‘ Bedeutungsrepräsentationen M_0, mit M_{now} \cap M_{0} = \emptyset, M_{now} \subseteq M, M_{0} \subseteq M. Der Unterschied zwischen M_{now}, M_{0} bezieht sich auf die zeitliche Komponente T in M_{now}, M_{0}. Würde man die zeitliche Komponente T aus M_{now} ‚herausrechnen (also etwa M_{now0} = M_{now} - T), dann könnten die beiden Mengen M_{now}, M_{0} gemeinsame Elemente enthalten (M_{now0} \cap M_{0} \neq \emptyset ). Dies bedeutet, dass die charakterisierenden Eigenschaften der Objekte in M_{now*}, M_{0} wissensmäßig ‚gleich‘ sein können. Durch (viii) Vergleich von Elementen aus M_now0 und M_0 kann dann entschieden werden, ob es der Fall ist, dass Elemente aus M_0 in M_now vorkommen oder nicht; falls sie vorkommen, dann ist eine feststellende (affirmative oder negative) Aussage ‚wahr‘, ansonsten ‚falsch‘.

REKONSTRUKTION: AFFIRMATIV – NEGATIV

47. Schon bei den von Avicenna angeführten Beispielen und deren Diskussion wird deutlich, dass eine gewisse Unklarheit darüber existiert, wie ’negative Ausdruckselemente‘ (wie z.B. ’nicht‘, ‚ohne‘) innerhalb des Begriffspaares ‚affirmativ/ negativ‘ zu bewerten sind. Zwar macht Avicenna darauf aufmerksam, dass das ‚Fehlen von etwas‘ eine Eigenschaft sein kann, die man ja gerade – affirmativ — aussagen möchte, aber es fehlt letztlich ein hartes Kriterium, wann das ‚Fehlen‘ von etwas nur ein ‚Ausdruckselement‘ ist oder ein ’semantischer Tatbestand‘, der ‚oberhalb‘ der Ausdruckselemente liegt, also wo es gerade das ‚Fehlen von etwas‘ ist, das man aussagen will.
48. In dieser Rekonstruktion wird davon ausgegangen, dass jede Aussage – entsprechend den Aussagen von Avicenna – entweder ‚wahr‘ oder ‚falsch‘ ist. Dies setzt voraus, dass jede Aussage als solche ‚grundsätzlich affirmativ‘ ist, sie will etwas über ein Subjekt aussagen. Für diese Aussage wird ein Ausdruck e generiert (in der Regel mit mehreren Teilausdrücken, mindestens Subjekt und Prädikat), der einen Sachverhalt m_p mittels des Prädikats über ein Subjekt m_s behauptet. Innerhalb der Aussage e kann der Sachverhalt m_p sowohl ‚zusprechend‘ (affirmativ) im Sinne von ‚ist ein…’/ ‚hat …‘ sein oder absprechend, negierend ‚ist nicht …‘, ‚hat nicht …‘ usw. Unabhängig davon ob die kombinierten Sachverhalte (m_s, m_p) ‚zusprechend‘ oder ‚absprechend‘ sind, können sie ‚wahr‘ (in der realen Welt W zutreffend) oder ‚falsch‘ (in der realen Welt W nicht zutreffend) sein.
49. Während die Frage von ‚wahr’/ ‚falsch‘ eine rein semantische Angelegenheit ist, die durch die simultane wissensmäßige Unterscheidung von ’nur gewusst/ gedacht/ vorgestellt/ erinnert/ im Sinne von M_{0} einerseits und ‚als aktuell wahrgenommen gewusst‘ im Sinne von M_{now} möglich ist, hängt die Unterscheidung von ‚affirmativ/ negativ‘ davon ab, ob es Ausdruckselemente gibt, die explizit so vereinbart sind, dass sie in einem S-P-Urteilszusammenhang als ‚zusprechend‘ oder ‚absprechend‘ identifiziert werden können. Wenn niemand weiß, dass ’nicht‘ in der Deutschen Sprache eine ‚Verneinung‘ darstellt, kann auch kein ‚Absprechen von etwas‘ erkennen. Wenn jemand aber weiß, dass mit dem Ausdruckselement ’nicht‘ etwas verneint wird, dann weiß er aufgrund der Aussagensemantik, dass der Ausdruck ‚ist nicht sterblich‘ eben die Verneinung von ‚ist sterblich‘ ist (unabhängig von ‚wahr‘ und ‚falsch‘). Und da die Bedeutung der Verneinung an den Ausdruck ’nicht‘ geknüpft ist, wird diese Bedeutung jedes mal aktiviert, wenn das Ausdruckselement ’nicht‘ auftritt: ‚ist nicht sterblich‘, ‚ist nicht nicht sterblich‘, ‚es gilt nicht, dass Zid nicht unsterblich ist‘, usw. Allerdings sind die Konventionen in jeder Sprache unterschiedlich, wie das Auftreten von negierenden Ausdruckselementen vorzunehmen ist (während im Deutschen eine Häufung wie ’nicht nicht‘ in Grenzfällen noch gehen mag, geht ’nicht nicht nicht‘ normalerweise nicht mehr. Darüber hinaus gibt es zahllose andere Ausdruckselemente (wie z.B. ‚kein(e), mit, ohne, haben, …), die auch negierende Funktionen übernehmen können.
50. Ein Ausdruck wie (Zid (ist ohne Sicht)), bedeutungsmäßig äquivalent etwa zu zu (Zid (hat keine Sicht)) oder (Zid (kann nicht sehen)), sagt affirmativ ein Fehlen aus. Ob dies während der Aussage in der realen Welt zutrifft (= wahr) oder nicht (=falsch), folgt aus der Aussage selbst nicht.
51. Eine Verneinung dieser Aussagen geschieht zunächst auf der Ausdrucksebene, und dann kann man den so konstruierten Sachverhalt bzgl. Wahrheit oder Falschheit bewerten.
52. Es hängt von geltenden Konventionen ab, wie man die Verneinung der Aussage (Zid (ist ohne Sicht)) auf der Ausdrucksebene realisiert. Eine Möglichkeit besteht darin, auf einer Metaebene zu sagen, ‚Die Aussage (Zid (ist ohne Sicht)) trifft nicht zu. Dies würde primär aber meinen, dass diese Aussage in der realen Welt W nicht zutrifft. Würde man die interne Struktur der Aussage (Zid (ist ohne Sicht)) ändern, dann würde man eine neue Aussage schaffen, von der man wiederum fragen kann, ob sie in der realen Welt W zutrifft oder nicht. Also man könnte natürlich formulieren (Zid (ist nicht ohne Sicht)); damit würde man verneinen, dass Zid ohne Sicht sei, also eine Verneinung der vorhergehenden Aussage. Aber auch diese neuerliche Verneinung wäre grundsätzlich eine Affirmation, nämlich etwas, was man über Zid Aussagen will.
53. Die rekonstruierende Hypothese lautet also: jeder Ausdruck e vom Typ Aussage PROP impliziert die Affirmation eines Sachverhaltes m_p über ein Subjekt m_s unabhängig davon, wie viele Negationen/ Verneinungen der Ausdruck e enthält. Eine so realisierte affirmative Aussage zu (m_s, m_p) kann wahr oder falsch sein.

EXISTENZ

54. Das von Avicenna nur kursorisch erwähnte Moment der Existenz ist in der aktuell rekonstruierenden Interpretation gegeben durch die Annahme der umgebenden realen Welt W, deren aktuelle induzierten Bedeutungsrepräsentationen M_now als Bezugspunkt für die Charakterisierungen wahr/ falsch genutzt werden kann. In diesem Rahmen können beliebige Aussagen gebildet werden ,unabhängig davon, ob sie aktuell wahr/ falsch sind.

MÖGLICH

55. Die Kategorie ‚möglich‘ ist durch die bloße Angabe ‚kann existieren und kann nicht existieren‘ kaum erklärt. Zu sagen, dass ein B über ein gegebenes/ bekanntes A ‚hinausgeht‘, setzt eigentlich voraus, dass man die Ereignisse X der realen Welt W zunächst mal überhaupt als ‚exstierend‘ erkennen kann \lambda(X) , so dass dann relativ zu diesem Wissen \lambda(X) ein anderes Element Y als ’neu‘ oder als ‚möglich‘ explizit gedacht werden könnte. Wir wissen vom menschlichen Denken, dass wir uns allerlei Dinge als M_0 ‚vorstellen‘, ‚denken‘, ‚träumen‘ … können, von denen zum Zeitpunkt des Vorstellens nicht bekannt ist, ob sie sich genauso auch ereignen werden. Bei einigen dieser Vorstellungen M_0* haben wir ein zusätzliches Wissen K*, aufgrund dessen wir aus der Vergangenheit wissen, dass sie mit einer gewissen Wahrscheinlichkeit eintreten können; von daher räumen wir diesen mittels K* als ‚eintretbar‘ klassifizierten Vorstellungen M_0* eine gewisse Möglichkeit ein. Bei anderen Vorstellungen M_{X} = M_{0} - M_{0*} ist es uns weniger bis gar nicht klar, ob sie eintreten können, da das zugehörige Wissen K_X zu schwach ist.

QUNATITÄT – QUANTOREN

56. Im Kontext der schon zuvor erwähnten Begriffe ‚universell‘ und ‚partikulär‘ führt Avicenna nun den Gedanken der ‚Bestimmtheit’/ ‚Unbestimmtheit‘ ein und entwickelt daraus die Idee der Quantität in Gestalt von Quantoren.
57. Dies führt zu der grundsätzlichen Erweiterung (Q,S,P), d.h. das Zutreffen eines Sachverhaltes m_p wird nicht mehr nur für ein Subjekt S allgemein behauptet, sondern das Objekt m_s, das bedeutungsmäßig ein Subjekt fundiert, wird bezüglich seiner Quantität Q weiter spezifiziert als ‚Alle/ Jeder‘, ‚Nicht Alle/Einige‘, ‚Alle – nicht/ Keine(r)‘.
58. Bei der konkreten Angabe der sich daraus ergebenden möglichen Klassen kommt es aber dann bei Avicenna zu Unklarheiten, da er bei dieser Einteilung sein Begriffspaar ‚affirmativ/ negativ‘ benutzt, von dem wir zuvor gesehen haben, dass es möglicherweise ‚fehlerhaft‘ ist, da er den Begriff ‚affirmativ‘ und ’negativ‘ auf die gleiche semantische Stufe stellt. Wie zuvor aber schon festgestellt worden ist, muss man diese beiden Begriffe trennen. Wenn Avicenna z.B. die beiden ersten Typen seiner Aussagen klassifiziert als
59. Typ 1: Subjekt = Alle, Affirmativ (Bsp.: Q=[(Jeder)]S=[(Mensch)]P=[(ist)(ein)(Lebewesen)] oder Q=[(Jeder)]S=[(Mensch)]P=[(ist)(sterblich)]
60. Typ 2: Subjekt = Alle, Negativ (Bsp.: Q=[(Kein)]S=[(Mensch)]P=[(ist)(sterblich)](?)
61. dann ist die Charakterisierung von Typ 1 nachvollziehbar, von Typ 2 aber nicht. Von der Idee her soll in Typ 2 gezeigt werden, wie die Negation von Typ 1 beschaffen ist. In Typ 1 wird (affirmativ) behauptet, dass jeder Mensch ein Lebewesen ist bzw. sterblich ist. Im Typ 2 soll auch etwas (affirmativ) behauptet werden, nämlich dass ’nicht alle‘ Menschen Lebewesen sind bzw. sterblich sind. D.h. die Aussagen vom Typ 2 sind grundsätzlich weiterhin ‚affirmativ‘, es wird aber in ihrem Ausdruck ein zusätzliches verneinendes Ausdruckselement – hier ’nicht‘ – eingeführt, so dass der Sachverhalt, der affirmativ behauptet werden soll, ein zusätzliches verneinendes Element enthält. Daraus würde sich ergeben:
62. Typ 2b Q=[(Nicht alle)]S=[(Menschen)]P=[(sind)(sterblich)], was man umformen könnte zu Q=[(Einige)]S=[(Menschen)]P=[(sind)(nicht)(sterblich)].
63. Aus (nicht alle) folgt nicht (keine), wie bei Avicenna, sondern (einige).
64. Auch im Beispiel der Verneinung von ‚einige‘ kommt es bei Avicenna zu Unklarheiten:
65. Typ 3: Subjekt = Einige, Affirmativ Q=[(Einige)]S=[(Mensch)]P=[(sind)(Schriftsteller)]
66. Typ 4: Subjekt = Einige, Negativ Q=[(Nicht alle)]S=[(Mensch)]P=[(sind)(Schriftsteller)] (?)
67. Im Fall von Typ 4 geht es um die (affirmative) Behauptung, dass ’nicht einige‘ gemeint sind. Aus ’nicht einige‘ folgt aber nicht – wie bei Avicenna – ’nicht alle‘, sondern ‚(alle …. nicht…), d.h.
68. Typ 4b: Q=[(Nicht einige)]S=[(Mensch)]P=[(sind)(Schriftsteller)] kann umgeformt werden zu Q=[(Alle)]S=[(Mensch)]P=[(sind)(nicht)(Schriftsteller)]
69. Daraus folgt, dass eine Klassifikation nicht nach dem Muster (Q -affirmativ) und (Q – negativ) vorgenommen werden sollte, sondern nach dem Muster, alle Aussagen sind ‚affirmativ‘; innerhalb dieser Menge kann man verschiedene Quantoren unterscheiden (alle) bzw. (einige), und diese Quantoren sind entweder nicht verneint oder verneint. Das würde folgendes Schema ergeben:
70. Typ 1: Q=’alle‘
71. Typ 2b: Q='(nicht)(alle)‘ bzw. (\neg)(Q) ist äquivalent zu Q=(einige),S,(\neg),P).
72. Typ 3: Q=’einige‘
73. Typ 4b: Q='(nicht)(einige)‘ bzw. (\neg)(Q) ist äquivalent zu Q=(alle),S,(\neg),P).
74. Das von Avicenna formulierte ‚Metaprinzip‘: ‚Wenn eine Aussage über ‚Alle‘ spricht, dann ist es unsicher, ob wirklich alle gemeint sind; sicher ist es aber, dass wenigstens ‚einige‘ gemeint sind‘, muss auch hinterfragt werden. Würde sein Metaprinzip gelten, dann könnte man keine wirklichen ‚All-Aussagen‘ mehr machen, da grundsätzlich die intendierte Bedeutung von ‚alle‘ verneint würde. Dies macht keinen Sinn. Wenn jemand tatsächlich ‚alle‘ meint und dies ausdrücken will, dann muss der dazu vereinbarte Ausdruck ‚alle‘ auch entsprechend verwendet werden.
75. Die von Avicenna vorgenommene Fallunterscheidungen (von mir abgekürzt ‚+‘ für ‚affirmativ‘, ‚-‚ für negativ‘, ‚1‘ für ‚partikulär‘, ‚0‘ für ‚unbestimmt‘ und ‚a‘ für universell‘) der Art:
76. (+,1)
77. (-,1)
78. (0,+)
79. (0,-)
80. (a,+)
81. (a,-)
82. (1,+)
83. (1,-)
84. leidet an der gleichen Schwäche, wie schon zuvor bei der Diskussion seiner vier Quantorentypen, hier verstärkt um sein falsches Metaprinzip. Klammert man ‚affirmativ‘ als Einteilungskriterium aus, da dies auf alle Typen zutrifft, bleiben nur die beiden Quantoren und deren Verneinung:
85. Q=’alle‘,S,P
86. Q=(nicht)(alle),S,P \leftrightarrow Q=(einige),S,(nicht),P
87. Q=’einige‘,S,P
88. Q=(nicht)(einige),S,P \leftrightarrow Q=(alle),S,(nicht),P
89. Wollte man den umgangssprachlichen Quantor ‚keiner‘ benutzen, könnte man diesen über Typ 4b definieren: Q=’kein(er)‘,S,P \leftrightarrow Q=(alle),S,(\neg),P).

Fortsetzung folgt …

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.