K.G.DENBIGH: AN INVENTIVE UNIVERSE — Relektüre — Teil 3

K.G.Denbigh (1975), „An Inventive Universe“, London: Hutchinson & Co.

BISHER

Im Teil 1 der Relektüre von Kenneth George Denbighs Buch „An Inventive Universe“ hatte ich, sehr stark angeregt durch die Lektüre, zunächst eher mein eigenes Verständnis von dem Konzept ‚Zeit‘ zu Papier gebracht und eigentlich kaum die Position Denbighs referiert. Darin habe ich sehr stark darauf abgehoben, dass die Struktur der menschlichen Wahrnehmung und des Gedächtnisses es uns erlaubt, subjektiv Gegenwart als Jetzt zu erleben im Vergleich zum Erinnerbaren als Vergangen. Allerdings kann unsere Erinnerung stark von der auslösenden Realität abweichen. Im Lichte der Relativitätstheorie ist es zudem unmöglich, den Augenblick/ das Jetzt/ die Gegenwart objektiv zu definieren. Das individuelle Jetzt ist unentrinnbar subjektiv. Die Einbeziehung von ‚Uhren-Zeit’/ technischer Zeit kann zwar helfen, verschiedene Menschen relativ zu den Uhren zu koordinieren, das grundsätzliche Problem des nicht-objektiven Jetzt wird damit nicht aufgelöst.

In der Fortsetzung 1b von Teil 1 habe ich dann versucht, die Darlegung der Position von Kenneth George Denbighs Buch „An Inventive Universe“ nachzuholen. Der interessante Punkt hier ist der Widerspruch innerhalb der Physik selbst: einerseits gibt es physikalische Theorien, die zeitinvariant sind, andere wiederum nicht. Denbigh erklärt diese Situation so, dass er die zeitinvarianten Theorien als idealisierende Theorien darstellt, die von realen Randbedingungen – wie sie tatsächlich überall im Universum herrschen – absehen. Dies kann man daran erkennen, dass es für die Anwendung der einschlägigen Differentialgleichungen notwendig sei, hinreichende Randbedingungen zu definieren, damit die Gleichungen gerechnet werden können. Mit diesen Randbedingungen werden Start- und Zielzustand aber asymmetrisch.

Auch würde ich hier einen Nachtrag zu Teil 1 der Relektüre einfügen: in diesem Beitrag wurde schon auf die zentrale Rolle des Gedächtnisses für die Zeitwahrnehmung hingewiesen. Allerdings könnte man noch präzisieren, dass das Gedächtnis die einzelnen Gedächtnisinhalte nicht als streng aufeinanderfolgend speichert, sondern eben als schon geschehen. Es ist dann eine eigene gedankliche Leistungen, anhand von Eigenschaften der Gedächtnisinhalte eine Ordnung zu konstruieren. Uhren, Kalender, Aufzeichnungen können dabei helfen. Hier sind Irrtümer möglich. Für die generelle Frage, ob die Vorgänge in der Natur gerichtet sind oder nicht hilft das Gedächtnis von daher nur sehr bedingt. Ob A das B verursacht hat oder nicht, bleibt eine Interpretationsfrage, die von zusätzlichem Wissen abhängt.

Im Teil 2 ging es um den Anfang von Kap.2 (Dissipative Prozesse) und den Rest von Kap.3 (Formative Prozesse). Im Kontext der dissipativen (irreversiblen) Prozesse macht Denbigh darauf aufmerksam, dass sich von der Antike her in der modernen Physik eine Denkhaltung gehalten hat, die versucht, die reale Welt zu verdinglichen, sie statisch zu sehen (Zeit ist reversibel). Viele empirische Fakten sprechen aber gegen die Konservierung und Verdinglichung (Zeit ist irreversibel). Um den biologischen Phänomenen gerecht zu werden, führt Denbigh dann das Konzept der ‚Organisation‘ und dem ‚Grad der Organisiertheit‘ ein. Mit Hilfe dieses Konzeptes kann man Komplexitätsstufen unterscheiden, denen man unterschiedliche Makroeigenschaften zuschreiben kann. Tut man dies, dann nimmt mit wachsender Komplexität die ‚Individualität‘ zu, d.h. die allgemeinen physikalischen Gesetze gelten immer weniger. Auch gewinnt der Begriff der Entropie im Kontext von Denbighs Überlegungen eine neue Bedeutung. Im Diskussionsteil halte ich fest: Im Kern gilt, dass maximale Entropie vorliegt, wenn keine Energie-Materie-Mengen verfügbar sind, und minimale Entropie entsprechend, wenn maximal viele Energie-Materie-Mengen verfügbar sind. Vor diesem Hintergrund ergibt sich das Bild, dass Veränderungsprozesse im Universum abseits biologischer Systeme von minimaler zu maximaler Entropie zu führen scheinen (dissipative Prozesse, irreversible Prozesse, …), während die biologischen Systeme als Entropie-Konverter wirken! Sie kehren die Prozessrichtung einfach um. Hier stellen sich eine Fülle von Fragen. Berücksichtigt man die Idee des Organiationskonzepts von Denbigh, dann kann man faktisch beobachten, dass entlang einer Zeitachse eine letztlich kontinuierliche Zunahme der Komplexität biologischer Systeme stattfindet, sowohl als individuelle Systeme wie aber auch und gerade im Zusammenspiel einer Population mit einer organisatorisch aufbereiteten Umgebung (Landwirtschaft, Städtebau, Technik allgemein, Kultur, …). Für alle diese – mittlerweile mehr als 3.8 Milliarden andauernde – Prozesse haben wir bislang keine befriedigenden theoretischen Modelle

KAPITEL 4: DETERMINISMUS UND EMERGENZ (117 – 148)

Begriffsnetz zu Denbigh Kap.4: Determinismus und Emergenz

Begriffsnetz zu Denbigh Kap.4: Determinismus und Emergenz

  1. Dieses Kapitel widmet sich dem Thema Determinismus und Emergenz. Ideengeschichtlich gibt es den Hang wieder, sich wiederholende und darin voraussagbare Ereignisse mit einem Deutungsschema zu versehen, das diesen Wiederholungen feste Ursachen zuordnet und darin eine Notwendigkeit, dass dies alles passiert. Newtons Mechanik wird in diesem Kontext als neuzeitliche Inkarnation dieser Überzeugungen verstanden: mit klaren Gesetzen sind alle Bewegungen berechenbar.
  2. Dieses klare Bild korrespondiert gut mit der christlichen theologischen Tradition, nach der ein Schöpfer alles in Bewegung gesetzt hat und nun die Welt nach einem vorgegebenen Muster abläuft, was letztlich nur der Schöpfer selbst (Stichwort Wunder) abändern kann.
  3. Die neuzeitliche Wissenschaft hat aber neben dem Konzept des Gesetzes (‚law‘) auch das Konzept Theorie entwickelt. Gesetze führen innerhalb einer Theorie kein Eigenleben mehr sondern sind Elemente im Rahmen der Theorie. Theorien sind subjektive Konstruktionen von mentalen Modellen, die versuchen, die empirischen Phänomene zu beschreiben. Dies ist ein Näherungsprozess, der – zumindest historisch – keinen eindeutigen Endpunkt kennt, sondern empirisch bislang als eher unendlich erscheint.
  4. Eine moderne Formulierung des deterministischen Standpunktes wird von Denbigh wie folgt vorgeschlagen: Wenn ein Zustand A eines hinreichend isolierten Systems gefolgt wird von einem Zustand B, dann wird der gleiche Zustand A immer von dem Zustand B gefolgt werden, und zwar bis in die letzten Details.(S.122)
  5. Diese Formulierung wird begleitend von den Annahmen, dass dies universell gilt, immer, für alles, mit perfekter Präzision.
  6. Dabei muss man unterscheiden, ob die Erklärung nur auf vergangene Ereignisse angewendet wird (‚ex post facto‘) oder zur Voraussage benutzt wird. Letzteres gilt als die eigentliche Herausforderung.
  7. Wählt man die deterministische Position als Bezugspunkt, dann lassen sich zahlreiche Punkte aufführen, nach denen klar ist, dass das Determinismus-Prinzip unhaltbar ist. Im Folgenden eine kurze Aufzählung.
  8. Die Interaktion aller Teile im Universum ist nirgendwo (nach bisherigem Wissen) einfach Null. Zudem ist die Komplexität der Wechselwirkung grundsätzlich so groß, dass eine absolute Isolierung eines Teilsystems samt exakter Reproduktion als nicht möglich erscheint.
  9. Generell gibt es das Problem der Messfehler, der Messungenauigkeiten und der begrenzten Präzision. Mit der Quantenmechanik wurde klar, dass wir nicht beliebig genau messen können, dass Messen den Gegenstand verändert. Ferner wurde klar, dass Messen einen Energieaufwand bedeutet, der umso größer wird, je genauer man messen will. Ein erschöpfendes – alles umfassende – Messen ist daher niemals möglich.
  10. Im Bereich der Quanten gelten maximal Wahrscheinlichkeiten, keine Notwendigkeiten. Dies schließt nicht notwendigerweise ‚Ursachen/ Kausalitäten‘ aus.
  11. Die logischen Konzepte der mentalen Modelle als solche sind nicht die Wirklichkeit selbst. Die ‚innere Natur der Dinge‘ als solche ist nicht bekannt; wir kennen nur unsere Annäherungen über Messereignisse. Das, was ‚logisch notwendig‘ ist, muss aus sich heraus nicht ontologisch gültig sein.
  12. Neben den Teilchen sind aber auch biologische Systeme nicht voraussagbar. Ihre inneren Freiheitsgrade im Verbund mit ihren Dynamiken lassen keine Voraussage zu.
  13. Aus der Literatur übernimmt Denbigh die Komplexitätshierarchie (i) Fundamentale Teilchen, (ii) Atome, (iii) Moleküle, (iv) Zellen, (v) Multizelluläre Systeme, (vi) Soziale Gruppen.(vgl. S.143)
  14. Traditioneller Weise haben sich relativ zu jeder Komplexitätsstufe spezifische wissenschaftliche Disziplinen herausgebildet, die die Frage nach der Einheit der Wissenschaften aufwerfen: die einen sehen in den Eigenschaften höherer Komplexitätsstufen emergente Eigenschaften, die sich nicht auf die einfacheren Subsysteme zurückführen lassen; die Reduktionisten sehen die Wissenschaft vollendet, wenn sich alle komplexeren Eigenschaften auf Eigenschaften der Ebenen mit weniger Komplexität zurückführen lassen. Während diese beiden Positionen widersprüchlich erscheinen, nimmt das Evolutionskonzept eine mittlere Stellung ein: anhand des Modells eines generierenden Mechanismus wird erläutert, wie sich komplexere Eigenschaften aus einfacheren entwickeln können.

DISKUSSION

  1. Fasst man alle Argument zusammen, ergibt sich das Bild von uns Menschen als kognitive Theorientwickler, die mit ihren kognitiven Bildern versuchen, die Strukturen und Dynamiken einer externen Welt (einschließlich sich selbst) nach zu zeichnen, die per se unzugänglich und unerkennbar ist. Eingeschränkte Wahrnehmungen und eingeschränkte Messungen mit prinzipiellen Messgrenzen bilden die eine Begrenzung, die daraus resultierende prinzipielle Unvollständigkeit aller Informationen eine andere, und schließlich die innere Logik der realen Welt verhindert ein einfaches, umfassendes, eindeutiges Zugreifen.
  2. Die mangelnde Selbstreflexion der beteiligten Wissenschaftler erlaubt streckenweise die Ausbildung von Thesen und Hypothesen, die aufgrund der möglichen Methoden eigentlich ausgeschlossen sind.
  3. Die noch immer geltende weitverbreitete Anschauung, dass in der Wissenschaft der Anteil des Subjektes auszuklammern sei, wird durch die vertiefenden Einsichten in die kognitiven Voraussetzungen aller Theorien heute neu in Frage gestellt. Es geht nicht um eine Infragestellung des Empirischen in der Wissenschaft, sondern um ein verstärktes Bewusstheit von den biologischen (beinhaltet auch das Kognitive) Voraussetzungen von empirischen Theorien.
  4. In dem Maße, wie die biologische Bedingtheit von Theoriebildungen in den Blick tritt kann auch die Besonderheit der biologischen Komplexität wieder neu reflektiert werden. Das Biologische als Entropie-Konverter (siehe vorausgehenden Beitrag) und Individualität-Ermöglicher jenseits der bekannten Naturgesetze lässt Eigenschaften der Natur aufblitzen, die das bekannte stark vereinfachte Bild kritisieren, sprengen, revolutionieren.
  5. Die Idee eines evolutionären Mechanismus zwischen plattem Reduktionismus und metaphysischem Emergenz-Denken müsste allerdings erheblich weiter entwickelt werden. Bislang bewegt es sich im Bereich der Komplexitätsebenen (iii) Moleküle und (iv) Zellen.

Fortsetzung mit TEIL 4

QUELLEN

  1. Kenneth George Denbigh (1965 – 2004), Mitglied der Royal Society London seit 1965 (siehe: https://en.wikipedia.org/wiki/List_of_Fellows_of_the_Royal_Society_D,E,F). Er war Professor an verschiedenen Universitäten (Cambridge, Edinbugh, London); sein Hauptgebet war die Thermodynamik. Neben vielen Fachartikeln u.a. Bücher mit den Themen ‚Principles of Chemical Equilibrium, ‚Thermodynamics of th Steady State‘ sowie ‚An Inventive Universe‘.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

DONALD A.NORMAN, THINGS THAT MAKE US SMART – Teil 6

Diesem Beitrag ging voraus Teil 5.

BISHER
(ohne kritische Anmerkungen)

In den vorausgehenden Teilen wurden bislang zwei Aspekte sichtbar: einmal die ‚Menschenvergessenheit‘ in der Entwicklung und Nutzung von Technologie sowie die Einbeziehung von ‚wissensunterstützenden Dingen‘ sowohl außerhalb des Körpers (physisch) wie auch im Denken selber (kognitiv). Ferner hatte Norman die Vielfalt des Denkens auf zwei ‚Arbeitsweisen‘ reduziert: die ‚erfahrungsorientierte‘ Vorgehensweise, ohne explizite Reflexion (die aber über ‚Training‘ implizit in die Erfahrung eingegangen sein kann), und die ‚reflektierende‘ Vorgehensweise. Er unterschied ferner grob zwischen dem Sammeln (‚accretion‘) von Fakten, einer ‚Abstimmung‘ (‚tuning‘) der verschiedenen Parameter für ein reibungsloses Laufen, Schreiben, Sprechen, usw., und einer Restrukturierung (‚restructuring‘) vorhandener begrifflicher Konzepte. Ferner sieht er in der ‚Motivation‘ einen wichtigen Faktor. Diese Faktoren können ergänzt werden um Artefakte, die Denkprozesse unterstützen. In diesem Zusammenhang führt Norman die Begriffe ‚Repräsentation‘ und ‚Abstraktion‘ ein, ergänzt um ‚Symbol‘ (nicht sauber unterschieden von ‚Zeichen‘) und ‚Interpreter‘. Mit Hilfe von Abstraktionen und Symbolen können Repräsentationen von Objekten realisiert werden, die eine deutliche Verstärkung der kognitiven Fähigkeiten darstellen. Allerdings, und dies ist ein oft übersehener Umstand, durch die Benutzung eines Artefaktes werden nicht die kognitiven Eigenschaften des Benutzers als solchen geändert, sondern – bestenfalls – sein Zugang zum Problem. Wenn in einem solchen Fall zwischen den wahrnehmbaren Eigenschaften eines Artefakts und den korrelierenden ‚Zuständen‘ des Problems ein Zusammenhang nur schwer bis gar nicht erkennbar werden kann, dann führt dies zu Unklarheiten, Belastungen und Fehlern. Norman wiederholt dann die Feststellung, dass die Art wie das menschliche Gehirn ‚denkt‘ und wie Computer oder die mathematische Logik Probleme behandeln, grundlegend verschieden ist. Im Prinzip sind es drei Bereiche, in denen sich das Besondere des Menschen zeigt: (i) der hochkomplexe Körper, (ii) das hochkomplexe Gehirn im Körper, (iii) die Interaktions- und Kooperationsmöglichkeiten, die soziale Strukturen, Kultur und Technologie ermöglichen. Die Komplexität des Gehirns ist so groß, dass im gesamten bekannten Universum nichts Vergleichbares existiert. Mit Bezugnahme auf Mervin Donald (1991) macht Norman darauf aufmerksam dass die auffälligen Eigenschaften des Menschen auch einen entsprechenden evolutionären Entwicklungsprozess voraussetzen, innerhalb dessen sich die heutigen Eigenschaften schrittweise herausgebildet haben. Nach kurzen Bemerkungen zur Leistungsfähigkeit des Menschen schon mit wenig partiellen Informationen aufgrund seines Gedächtnisses Zusammenhänge erkennen zu können, was zugleich ein großes Fehlerrisiko birgt, Norman dann den Fokus auf die erstaunliche Fähigkeit des Menschen, mit großer Leichtigkeit komplexe Geschichten (’stories‘) erzeugen, erinnern, und verstehen zu können. Er erwähnt auch typische Fehler, die Menschen aufgrund ihrer kognitiven Struktur machen: Flüchtigkeitsfehler (’slips‘) und richtige Fehler (‚mistakes‘). Fehler erhöhen sich, wenn man nicht berücksichtigt, dass Menschen sich eher keine Details merken, sondern ‚wesentliche Sachverhalte‘ (’substance and meaning‘); wir können uns in der Regel nur auf eine einzige Sache konzentrieren, und hier nicht so sehr ‚kontinuierlich‘ sondern punktuell mit Blick auf stattfindende ‚Änderungen‘. Dementsprechend merken wir uns eher ‚Neuheiten‘ und weniger Wiederholungen von Bekanntem.(vgl. S.131) Ein anderes typisches Fehlerverhalten ist die Fixierung auf eine bestimmte Hypothese.

VERTEILTES WISSEN IN GETEILTEN SITUATIONEN

1) Am Beispiel von Flugzeugcockpits (Boeing vs. Airbus) und Leitständen großer technischer Anlagen illustriert Norman, wie eine durch die gemeinsam geteilte Situation gestützte Kommunikation alle Mitglieder eines Teams auf indirekte Verweise miteinander verbindet, sie kommunizieren und verstehen lässt. Ohne dass ausdrücklich etwas erklärt werden muss erlebt jeder durch die gemeinsame Situation Vorgänge, Vorgehensweisen, Zustände, kann so indirekt lernen und man kann sich indirekt wechselseitig kontrollieren. Im Allgemeinen sind diese indirekten Formen verteilten Wissens wenig erforscht. (vgl. SS.139-146)
2) Eine solche verteilte Intelligenz in einer realen Situation unter Benutzung realer Objekte hat einen wesentlichen Vorteil gegenüber einer rein simulierten Welt: die Benutzung realer Objekte ist eindeutig, auch wenn die begleitende Kommunikation vieldeutig sein mag.(vgl. S.146 -148)
3) In einer simulierten Situation muss man die impliziten Gesetze der realen Welt explizit programmieren. Das ist nicht nur sehr aufwendig, sondern entsprechend fehleranfällig. Eine Kommunikation wird vieldeutiger und damit schwieriger. (vgl. SS.148-151)

ZU VIEL DETAILS

4) Norman greift dann nochmals das Thema des unangemessenen, falschen Wissens auf mit Blick auf die Art und Weise, wie das menschliche Gedächtnis funktioniert. Am Beispiel der mündlichen Überlieferung die strukturell, typologisch vorging verweist er auf die heutige ‚Überlieferung‘ in Form von immer detaillierteren Texten, immer mehr technisch bedingten Details, die eigentlich unserer menschlichen Art des Erinnerns widersprechen. (vgl. SS.151-153)

ORGANISATION VON WISSEN

5) Auf den SS.155-184 diskutiert Norman anhand von Beispielen das Problem, wie man Wissen so anordnen sollte, dass man dann, wenn man etwas Bestimmtes braucht, dieses auch findet. Es ist ein Wechselspiel zwischen den Anforderungen einer Aufgabe, der Struktur des menschlichen Gedächtnisses sowie der Struktur der Ablage von Wissen.

DIE ZUKUNFT VORAUSSAGEN

6) Das folgende Kapitel (SS.185-219) steht unter der Hauptüberschrift, die Zukunft voraus zu sagen; tatsächlich enthält es auch eine ganze Reihe von anderen Themen, die sich nur sehr lose dem Thema zuordnen lassen.
7) Nach Norman ist es generell schwer bis unmöglich, die Zukunft vorauszusagen; zu viele Optionen stehen zur Verfügung. Andererseits brauchen wir Abschätzungen wahrscheinlicher Szenarien. (vgl. S.185f)
8) Als Begründung für seine skeptische These wählt er vier Beispiele aus der Vergangenheit (Privater Hubschrauber, Atomenergie, Computer, Telephon), anhand deren er das Versagen einer treffenden Prognose illustriert.(vgl.186-192) Der größte Schwachpunkt in allen Voraussagen betrifft den Bereich der sozialen Konsequenzen. Hier liegt überwiegend ein Totalversagen vor. Und er bemerkt, dass man den Ingenieuren zwar nicht vorwerfen kann, dass sie sich mit sozialen Folgen nicht auskennen, aber dass sie ihr Nichtwissen in diesem Bereich nicht ernst nehmen.(vgl. S.186).
9) Der andere Aspekt ist die Umsetzungsdauer von einer Idee bis zu einer verbreiteten alltäglichen Nutzung. Anhand von Beispielen (Fernsehen, Flugzeug, Fax) zeigt er auf, dass es zwischen 40 – 140 Jahren dauern konnte. denn neben der Idee selbst und einem arbeitsfähigen Prototypen muss ja der bestehende Alltag unterschiedlich weit ‚umgebaut‘ werden, evtl. müssen alte bestehende Strukturen (verbunden mit starken Interessen) durch neue ersetzt werden.(vgl. S.192-195)
10) [Anmerkung: Wir erleben z.B. seit den 60iger Jahren des 20.Jahrhunderts die Diskussion zur Frage erneuerbarer Energien, der eine bestehende Struktur von ölbasierten Technologien, Atomkraft, Kohle und Gas entgegen stehen, jeweils verbunden mit sehr starken ökonomischen und politischen Interessen.]
11) Er macht dann selber einige Voraussagen (Verfügbarkeit von digitaler Information, von hohen Bandbreiten, von noch mächtigeren immer kleineren Computern, von 3D-Ansichten unter Einbeziehung der eigenen Position, von elektronischen Publikationen, von mehr computergestütztem Lernen, noch raffiniertere Unterhaltung, von Videogesprächen im privaten Bereich, von mehr kollaborativen Arbeitsplätzen).(vgl. SS.195-201)
12) [Anmerkung: 20 Jahre später kann man sagen, dass alle diese Voraussagen entweder voll umgesetzt wurden oder wir dabei sind, sie umzusetzen.]
13) Norman spielt dann die möglichen sozialen Folgen von diesen neuen Technologien anhand von sehr vielen konkreten Beispielen durch. Ein Trend ist der zunehmende Ersatz des Menschen im Handeln durch künstliche Charaktere, was schließlich dazu führen kann, dass in der Öffentlichkeit dann nur noch die Software handelt, während die ‚realen‘ Menschen mehr und mehr aus der Öffentlichkeit verschwinden. (vgl. SS. 201-210)
14) [Anmerkung: Diese Art von Auswüchsen, wie sie Norman plastisch schildert, werden in immer mehr Science-Fiction Filmen thematisiert. Ein Beispiel war die 10-teilige Folge ‚Real Humans – Echte Menschen‘, eine schwedische Produktion, die von arte im Frühjahr 2013 gezeigt wurde. Darin wurde die Existenz von menschenähnlichen Robotern im alltäglichen Leben sehr konkret durchgespielt. Ein sehr ähnliches Thema hatte auch der Film Surrogates (2009), wenn auch mit einer anderen Rahmengeschichte. Es gibt hierzu zahllose weitere Beispiele.]

NEUROINTERFACE

15) Norman greift auch das Thema ‚Neurointerface‘ auf, eine direkte Verbindung des menschlichen Nervensystems mit einem Computer. (vgl. SS.210-214)

KOLLABORATIVE SOFTWARE

16) Natürlich wird die neue Technologie auch Auswirkungen für die Arbeit von sozialen Gruppen haben. Hier sieht er aber besonders viele Schwierigkeiten, da das Arbeiten in einer Gruppe besonders komplex ist und sensitiv für viele Faktoren. (vgl. SS. 214-217)

TRÄUMEN MACHT MEHR SPASS ALS REALE NUTZUNG

17) Abschließend bemerkt Norman noch, das der Hype um neue Technologien sich häufig an den visionären Szenarien entzündet; wenn es zur tatsächlichen Nutzung kommt, flaut dieser Hype sehr schnell wieder ab. (vgl. SS.217-219)
18) [Anmerkung: Die Themen zersplittern zunehmend. Dennoch stellen Sie allesamt wertvolle Erfahrungen und Einsichten dar. s wird Aufgabe der Schlussreflexion sein, die Vielfalt dieser Aspekte auszuwerten und für eine Gesamttheorie nutzbar zu machen.]

Fortsetzung folgt im Teil Teil 7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.

REDUKTIONISMUS, EMERGENZ, KREATIVITÄT, GOTT – S.A.Kauffman – Teil 4

Vorausgehender Teil 3

NICHTVORAUSSAGBARKEIT DER WIRTSCHAFT

1. Im Kapitel ‚The Evolution of the Economy‘ (‚Die Evolution der Wirtschaft‘) (SS.150-176) beschreibt Kauffman, wie sich die bislang aufgefundenen Eigenschaften der Nichtergodizität und der Präadaptation auch im Bereich der Wirtschaft – bei ihm in Anlehnung an die ‚biosphere‘ ‚ecosphere‘ genannt – wiederfinden, mit allerlei Konsequenzen. Z.B. folgt aus der Annahme der Gültigkeit seiner Modellvorstellungen, dass eine Wirtschaft – in der Theorie – am besten gedeihen kann, wenn es eine möglichst große Vielfalt gibt. Denn dann ist die Chance zur Bildung neuer, innovativer – koevolutionärer – Lösungen am höchsten. Das System stimuliert sich dann quasi ’selbst‘, immer mehr. Zugleich folgt aus seinem Modell die prinzipielle Nichtvoraussagbarkeit der diversen Entwicklungen. (vgl.S.150f)
2. Als ein Beispiel für die Schwierigkeit der Voraussagbarkeit des wirtschaftlichen Geschehens und der Nichtreduzierbarkeit dieser Vorgänge auf die Physik führt Kauffman das berühmte Arrow-Debreu Modell des kompetitiven Gleichgewichts an (heute ein Kern der General equilibrium theory). Das Arrow-Debreu Modell wird bisweilen auch Arrow-Debreu-McKenzie Modell genannt, da neben Kenneth Arrow und Gérard Debreu später Lionel W.McKenzie einige Verbesserungen in das Modell eingebracht hatte.
3. Die Nichtreduzierbarkeit auf die Physik sieht Kauffman dadurch gegeben, dass die teilnehmenden Markt-Akteure u.a. auch mit ‚Werten‘ operieren, die sie den verschiedenen handelbaren Gütern zuordnen. Da nach Kauffman physikalische Modelle nur über reale Ereignisse in der realen Welt operieren können, folgt für ihn aus dieser Annahme die Nichtanwendbarkeit der Physik. (vgl. S.155) [Anmerkung: Wie schon früher angemerkt, hängt diese Schlussfolgerung an einer bestimmten Definition von Physik. Wenn man davon ausgeht, dass die Physik sich prinzipiell mit der ‚ganzen‘ Natur beschäftigt, dann würde sich die Physik – mit wachsenden Einsichten in die Besonderheiten der Welt – konzeptuell beständig weiter ausdehnen! Vom Selbstverständnis einer Physik her wären dann auch Akteure mit Werturteilen nicht notwendigerweise aus einer physikalischen Theoriebildung ausgeschlossen. Dann aber wären alle heute bekannten wissenschaftlichen Disziplinen nur ‚Spielarten‘ der einen Disziplin Physik. Das wirkt auch nicht sehr überzeugend. Hier stellt sich die wissenschaftstheoretische Frage nach der Abgrenzbarkeit der verschiedenen Disziplinen voneinander bzw. nach ihrer möglichen inhaltlichen Beziehung. Ich habe nicht den Eindruck, dass diese Frage bislang irgendwo nennenswert diskutiert wird. Aus ökonomischen und politischen Überlebensinteressen heraus erscheint eine erfolgreiche Abgrenzung meist erfolgversprechender als eine diffuse Vereinigung.]
4. Die Nichtanwendbarkeit der ökonomischen Modelle – und damit die Unmöglichkeit einer seriösen Voraussagbarkeit – sieht Kauffman sowohl in der Nichtvoraussagbarkeit der zu einem bestimmten Zeitpunkt tatsächlich vorhandenen Güter gegeben wie auch in der Nichtvoraussagbarkeit der zu einem bestimmten Zeitpunkt neu erfundenen Güter.(vgl. S.155) Der tiefere Grund scheint in der Unmöglichkeit zu liegen, den ökonomischen Entwicklungsprozess selbst zu modellieren.(vgl. S.156).
5. Kauffman erwähnt auch die Theorien game theory (‚Spieltheorie‘) und rational expectations (‚Rationale Erwartungen‘). In beiden Fällen sieht er eine Nichtanwendbarkeit in der Realität, da diese Theorien – wie schon im Falle der zuvor erwähnten Gleichgewichtstheorie – die zugrunde liegenden nicht voraussagbaren Entwicklungsprozesse weder beschreiben noch in Rechnung stellen können. (vgl. SS.156-158)
6. [Anmk: In der grundsätzlichen Kritik würde ich Kauffman zwar folgen, aber die Frage ist, ob man damit diesen verschiedenen Theoriebildungen gerecht wird. Insofern die genannten Theorien einen ‚totalen‘ Erklärungsanspruch erheben, muss man sie sicher kritisieren, da sonst falsche Erwartungen geweckt werden. Aber der Wert dieser Theorien liegt in der Praxis meist darin, dass die beteiligten Wissenschaftler mit Hilfe solcher Theorien (= Modellen) versuchen, ihr Verständnis der wirtschaftlichen Vorgänge zu klären und zu schärfen. Ohne solche Modelle gäbe es nur ein Grau-in-Grau von Datenfluten ohne erkennbare Strukturen. Mit solchen Modellen zeigen sich mögliche interessante Strukturen, die Anlass geben können, weiter zu denken. Und in allen drei Fällen kann man beobachten, wie diese Modellbildungen eine anhaltende Diskussion erzeugt haben und erzeugen, die zu immer weiteren Klärungen voranschreitet, einschließlich massiver Kritik, warum das Modell als Ganzes oder Teile davon nicht anwendbar sind. ]

WIRTSCHAFT UND AUTOKATALYSE

7. Nachdem Kauffman drei sehr prominente Modelle ökonomischen Geschehens in dem Punkt kritisiert hat, dass sie den allem Geschehen zugrunde liegende Prozess der Entwicklung nicht beschreiben, stellt er selbst ein Modell für solch einen Entwicklungsprozess vor. Dazu benutzt er wieder sein schon mehrfach zitiertes ‚autokatalytisches Modell‘. Die Kernidee ist ja, dass es zu einem bestimmten Zeitpunkt eine bestimmte Menge von Gütern und Akteuren gibt. Zu einem Gut gibt es entweder ein ‚komplimentäres‘ Gut (ein Auto benötigt Reifen, eine Innenausstattung, usw.) oder ein ’substituierendes‘ Gut (z.B. statt Dampfantrieb ein Elektroantrieb). Diese komplimentären und ersetzenden Möglichkeiten stehen ferner in Wechselwirkungen mit einem an Akteure gebundenen Bedarf, der seiner Natur nach in keiner Weise umfassend und erschöpfend beschrieben noch vorweg genommen werden. Man kann leicht sehen, wie diese wechselseitigen ‚Stimulationen‘ umso vielfältiger und intensiver sein können, als die aktuelle Menge an verfügbaren Gütern und erwartenden Akteuren größer und vielfältiger ist. Kauffman spricht hier von Ko-Konstruktionen bzw. Ko-Evolution. Und, so wenig dieser gesamte Prozess des sich wechselseitigen Stimulierens und Hervorbringens in irgend einer Weise voraussagbar ist, so wenig ist auch das erfinderische Verhalten der beteiligten Akteure, der Menschen, als solches voraussagbar. (SS.158-163)
8. Auf den Seiten 163-172 stellt Kauffman dann konkrete Simulationen vor, die mit Computerversionen des Modells gerechnet worden sind. Die Details spielen hier keine Rolle. Allerdings zeigt sich in diesen Simulationen, dass verschiedene Phänomene in diesem Modell einem ‚Potenzgesetz‘ (‚power law‘) folgen. Damit stellt er eine Verbindung her zum Modell der ’selbstorganisierenden Kritikalität‘ Self-organized criticality (SOC), das in der Physik entdeckt worden war zur Beschreibung komplexer Phänomene in der Natur. Er selbst konnte in Experimenten nachweisen, wie sich die Verteilung der Lebenszeit von Individuen oder die Verteilung von Aussterbensereignisse mit solch einem Modell beschreiben lassen.(vgl. S.172f) Das Modell der selbsorganisierenden Kritikalität lies sich auch anhand der Daten der Lebenszeit von Firmen nachweisen. (vgl.S.174)

GRENZEN VON COMPUTERMODELLEN ZUR VORAUSSAGE WIRTSCHAFTLICHER PROZESSE

9. Abschliessend zweifelt er daran, dass man mittels Computersimulationen wirtschaftliche Prozesse so simulieren könne, dass man daraus belastbare Vorhersagen für die Zukunft gewinnen könnte.(vgl.S.174) Nochmals zitiert er Gödel mit seinem Unvollständigkeitsbeweis und stellt mit Blick auf die ökonomischen Modelle fest, dass die Ergebnisse von Gödel im Falle der Ökonomie auf jeden Fall auch zutreffen.
10. [Anmk: Eine detaillierte Diskussion der verschiedenen von Kauffman zitierten Modelle und Theorien ist in dem hier gesetzten Rahmen einer ersten Besprechung nicht geeignet. In anderen Kontexten werde ich verschiedene dieser Modelle noch genauer untersuchen und dann bei Gelegenheit im Blog darüber berichten. Die grundsätzliche Stossrichtung der Argumentation erscheint mir aber plausibel und wichtig. In der Tat ist es die innere Logik des Prozesses selbst, die interessant ist und die daraus sich ergebende Nichtvoraussagbarkeit der nächsten Prozesschritte. Dennoch geschieht das Ganze nicht vollständig ‚planlos‘, was sich aus verschiedenen Voraussetzungen ergibt. Hier zeigt sich eine interessante Paradoxie, die weiter zu ergründen ist.]

Zur Fortsetzung siehe Teil 5

Eine Übersicht über alle bisherigen Einträge in den Blog nach Titeln findet sich HIER.