MENSCHENBILD – VORGESCHICHTE BIS ZUM HOMO SAPIENS – Ergänzungen

PDF

Übersicht
Im Folgenden einige Ergänzungen zu dem vorausgehenden Blogeintrag ’Menschenbild …’.

I. WARUM ERGÄNZUNGEN ?

In dem vorausgehenden Blogeintrag (siehe: [DH17d])
wurde in einem ersten Durchgang versucht, die großen
Linien der ’Menschwerdung des Menschen’ nachzuzeichnen.
Angesichts des Umfangs und der Komplexität
des Themas konnten viele wichtige Punkte nur grob
beschrieben werden. Hier einige ergänzende Nachträge.

II. ZEITMESSUNG

Für die Rekonstruktion der Entwicklung der
verschiedenen Menschenformen benötigt man eine
Einordnung der ’Formen’ in bestimmte Schemata,
ihre ’geologische’ Fixierung mit jeweiligen Kontexten,
sowie die Einordnung auf einer ’Zeitachse’, die einen
direkten Bezug zu den konkreten Substraten (Knochen,
Werkzeuge, …) aufweist.

Eine Einführung in diese Thematik findet sich in
dem Artikel von Günther A.Wagner [Wag07], der am
Beispiel der Zeitbestimmung des Fundes zum homo
heidelbergensis die allgemeine Problematik einer
Zeitbestimmung abhandelt.

A. Stratigraphie

Es war der Geologe Nicolaus Steno, der 1669
erkannt, dass sich die Veränderungen der Erde in
Sedimentablagerungen manifestierten, wobei die
unteren Schichten die Älteren sind. Es entstand daraus
generell die Stratigraphie die die Fossile registriert
(Biostratigraphie), ferner die Lithostratigraphie mit dem
Fokus auf dem Gestein, die Magnetostratigraphie
mit Fokus auf der Gesteinsmagnetisierung, sowie
die Klimastratigraphie, die nach Indikatoren für das
Klima sucht. In der Summe entstehen auf diese Weise
räumliche und zeitliche Netze, die man zu einer primären
geologischen zeitlichen Einteilung nutzen kann. (Siehe
dazu z.B. die Tabellen bei Wagner [Wag07]:SS.204ff)

B.Tertiär, Quartär

Die Zeit seit -2 Ma Jahren [‚Ma‘ := Millonen Jahre] wurde aufgrund der
Stratigraphie in die Abfolge der Systeme Tertiär bis -1.8
Ma Jahren und Quartär bis zur Gegenwart eingeteilt.

C. Pliozän, Pleistozän

Diese grobe Einteilung wurde anhand stratigraphischer
Kriterien weiter verfeinert in die Abteilungen Pliozän
(-2.0 bis -1.8 Ma), Altpleistozän (-1.8 bis -0.78 Ma),
Mittelpleistozän (-078 bis -0.128 Ma), Jungpleistozän
(-0.128 Ma bis -11.7 Ka) und Holozän (-11.7 Ka bis zur
Gegenwart).[‚Ka‘ := 1000 Jahre].

D. Paläolithikum

Eine andere Einteilung orientierte sich an dem
Merkmal Steinwerkzeuge . Erste Steinwerkzeuge lassen
sich in Afrika ab -2,5 Ma nachweisen, in Europa erst ab
-0.9 Ma (siehe: [WD17a]). Diese Zeit wird Altsteinzeit
(Alt-Paläolithikum) genannt, Dauer bis ca.-300.000/-
200.000. Wichtige Formfelder: Acheulien . Es folgt die
Mittelsteinzeit (Mittel-Paläolithikum) , die etwa um -40 Ka
endet. Wichtige Formfelder sind hier:die Moustérien , ca.
-200.000 bis -40.000; es handelt sich hier um sehr fein
gearbeitete Werkstücke in zahlreichen, auf die Funktion
hin gestalteten Formen. Typisch sind fein ausgebildete
Faustkeile. Micoquien (oder ”Keilmesser-Gruppen”),
ca. -130.000 bis -70.000. Hier findet man Keilmesser
Blattspitzen-Gruppen, die flache und ovale Werkzeuge
(Blattspitzen) nutzten. Ch âtelperronien bis ca. -34.000.
(regional eingeschränkt, Frankreich und Nordspanien).
Es folgt die Jungsteinzeit (Jung-Paläolithikum) die bis
zum Ende der letzten Kaltzeit dauert, die mit dem
Beginn des Holozäns zusammenfällt, etwa 11.7 Ka vor
dem Jahr 2000 (siehe dazu: [WD17d]). Der Beginn der
Jungsteinzeit fällt auch zusammen mit dem Auftauchen
des homo sapiens in Europa. Bei den Steinwerkzeugen
unterscheidet man die Formenwelt Aurignacien, ca.
40.000 bis ca. -28.000; sie markiert den Beginn der jungpaläolithischen
Kleinkunst in Europa, u.a. erste Felsbilder; Gravettien von ca.
-28.000 bis ca. -21.000, Zeithorizont der Venusfigurinen.
Solutréen von ca. -22.000 bis ca. -18.000; Magdalénien
von ca. -18.000 bis ca. -12.000.

E. Holozän

Der Beginn des Holozäns (-9.7 Ka oder ’11.7 Ka
vor dem Jahr 2000’) ist gekennzeichnet durch einen
starken Klimaanstieg, der zu starken Veränderungen
in Fauna und Flora geführt hat (man nennt es auch
’drastische ökologische Restrukturierungen’ (siehe
dazu: [WD17d])). Die Zeit -9.7 Ka bis -6 Ka nennt
man auch Alt-Holozän. Riesige Eismassen schmelzen
und die Erdoberfläche hebt sich um viele Meter. Im
nachfolgenden Mittelholozän (ca. -6 Ka bis -2.5 Ka)
gab es einerseits ein Klimaoptimum, das positive
Lebensräume schuf. In einem Klimapessimus (von
ca. -4.1 Ka bis -2.5 Ka) wurde es deutlich kühler und
trockener; viele Wüsten kehrten wieder zurück. Die
Menschen zogen sich in die Flussgebiete zurück, was
zur Ausbildung komplexer Ansiedlungen führte. Es kam
zu Zusammenbrüchen ganzer Kulturen, zu erzwungenen
Wanderungen sowie Eroberungen. Das anschließende
Jung-Holozän (von ca. -2.5 Ka bis heute) ist u.a.
durch einen Wechsel weiterer Kalt- und Warmzeiten
gekennzeichnet.

Innerhalb des Holozäns werden anhand spezieller
Kriterienbündel weitere Unterteilungen vorgenommen.

Epipaläolithikum, Mesolithikum, Neolithikum

Am Beispiel der Begriffe Epipaläolithikum, Mesolithikum,
Neolithikum wird deutlich, wie sich Kriterien, die im
Rahmen der Stratigraphie zur Anwendung kommen
können, aufgrund von Zeitverschiebungen zwischen
verschiedenen Regionen sowie durch parallele
Kriterienbündel überlappen können.

Die Bezeichnung Mesolithikum (Mittelsteinzeit) trifft
eigentlich nur auf das nacheiszeitliche Europa zu (siehe:
[WD17f]), während der Begriff Epipaläolithikum in er
gleichen Zeit angewendet wird, aber eher auf Regionen
die kaum bis gar nicht von nacheiszeitlichen Eiswechsel
betroffen waren (siehe [WD17c]).

2. Neolithikum

Dagegen bezieht sich der Begriff Neolithikum (Jungsteinzeit)
auf ein Bündel von Faktoren, die zusammen
den Charakter dieser Phase beschreiben: die Domestizierung
von Tieren und Pflanzen, die Sesshaftigkeit der
Bauern (Nomadismus auf Viehhaltung basierender Kulturen),
die Verbreitung geschliffener Steingeräte (Steinbeile,
Dexel), sowie Ausweitung des Gebrauchs von
Gefäßen aus Keramik (siehe [WD17e]). Eine Zuordnung
des Beginns dieser Phase in absoluten Zahlen ist aufgrund
der regionalen Zeitverschiebungen im Auftreten
der Phänomene schwankend, frühestens beginnend mit
ca. -11.5 Ka.

F. Anthropozän

Aufgrund der immer stärker werdenden Einwirkung
des Menschen auf die Lebensbedingungen der Erde,
wird diskutiert, ob man die Zeit ab der Englischen
Industriellen Revolution als Anthropozän bezeichnen
sollte (siehe: [WD17b]). Es gibt sehr viele Indikatoren,
die solch eine neue Gliederung nahe legen, allerdings
konnte man sich noch nicht auf einen Anfangszeitpunkt
einigen; mehrere Szenarien stehen zur Auswahl.

G. Chronometrie

Wie aus den vorausgehenden Abschnitten deutlich
werden kann, lassen sich mittels der Stratigraphie
und gut gewählter Kriterien räumlich und zeitlich
abgrenzbare Phasen/ Perioden herausheben, diese
dann benennen, um auf diese Weise eine erste
geologisch motivierte Struktur zu bekommen, an die
sich weitere archäologische Kriterien anbinden lassen.
Will man nun diese relativen Zuordnungen mit
absoluten Zeitangaben verknüpfen (Chronometrie),
dann benötigt man dazu einen Zeitstrahl, der Uhren
voraussetzt, d.h. Prozesse, die hinreichend regelmäßig
in gleichen Abständen Ereignisse erzeugen, die man
abzählen kann.

Wagner beschreibt eine Reihe von solchen ’Uhren’,
auf die die Archäologie zurückgreifen kann; manche
sind recht neuen Datums (siehe: [Wag07]:SS.207ff).
Anhaltspunkte sind z.B. jahreszeitliche Wechsel,
Klimaänderungen, Baumringe (Dendrologie),
Sedimentablagerungen (Warvenchronologie), Eiskerne,
astronomische gesteuerte Ereignisse (wie jene, die
durch die Milanković-Zyklen hervorgerufen werden), Magnetismus, und Eigenschaften der Radioaktivität.

Da die Energiebilanz auf der Erdoberfläche zu
mehr als 99.9% von der Sonneneinstrahlung gespeist
wird, kommt den Parametern Neigung der Erdachse,
Rotationsgeschwindigkeit sowie Erdumlaufbahn
eine fundamentale Bedeutung zu. Schon geringe
Schwankungen hier können zu weitreichenden
Klimaänderungen führen (Stichwort: Milanković-
Zyklen)(siehe: [Wag07]:S.216 und [WD17g]). Da sich die
astronomischen Verhältnisse ziemlich genau berechnen
lassen, kann man die Annahmen des Milanković-
Zusammenhangs direkt experimentell an messbaren
Energiesignalen in den Ablagerungen überprüfen. Die
Autoren Zöller, Urban und Hambach zeigen auf, wie man
die Klimasignale in Meeressedimenten, Lössschichten
und Eisbohrkernen mit den berechneten astronomischen
Parametern korrelieren kann (siehe: [ZUH07], hier z.B.
die Tabelle auf S.87). Auf der Basis dieser ca. 50
globalen Warm- und Kaltzeiten in der Zeit ab ca. -2.5
Ma kann man dann ein Gerüst aufbauen, das mit
absoluten Zahlen versehen werden kann (siehe aber
auch hier [WD17g]).

Aus Stratigraphie und Chronometrie
kommt man damit zu einer Chronologie (Terminologie
von Wagner [Wag07]:S.207). Zu den Forschungen
zur Chronometrisierung von Eiszeiten siehe auch den
ausführlichen Artikel von Masson et al. [MDSP10].

III. PALÄONTOLOGIE UND PALÄOBIOLOGIE

Während im vorigen Blogbeitrag [DH17d] auf eine
Vielfalt von Disziplinen hingewiesen worden ist, die bei
der Analyse der biologischen Entwicklungsprozesse
involviert sind, soll hier das Augenmerk nur auf die
beiden Disziplinen Paläontologie und Paläobiologie
gelegt werden.

Wie Robert Foley herausarbeitet (siehe: [Fol98]),
brauchen beide Disziplinen einander. Die Paläobiologie
kann mittels molekularbiologischer und genetischer
Methoden die Abhängigkeitsbeziehungen zwischen
verschiedenen Lebensformen immer genauer
bestimmen, so genau, wie es die Paläontologie niemals
kann, aber die Paläobiologie kann dafür nicht die
Kontexte der Gene, die begleitenden geologischen,
sozialen, technologischen und sonstigen Elemente
erfassen; dies kann nur die Paläontologie.

Dieses Zusammenspiel demonstriert Foley am
Beispiel der Diskussion um die Abstammungslinien
der Gattung homo. Während die Vielfalt der
paläontologischen Funde viele mögliche Hypothesen
über Abstammungsverhältnisse ermöglichten, konnten
paläobiologische Untersuchungen aufzeigen, dass es
(i) aufgrund der ersten Auswanderungswelle aus Afrika
(ab ca. -1.6 Ma) viele Besiedlungsprozesse in Europa
und Asien gab, dass aber (ii) diese Lebensformen
keine genetischen Austauschverhältnisse mit dem
homo sapiens eingegangen sind, der in einer zweiten
Auswanderungswelle ab ca. -100 Ka von Afrika aus
über Arabien ca. -70 Ka nach Asien vordrang und erst
ab ca. -40 Ka nach Europa kam. (iii) Speziell zum
Neandertaler, der seit ca. -200 Ka vor allem in Europa
auftrat lässt sich sagen, dass es keine nennenswerten
Genaustausch gab. Außerdem zeigte sich (iv), dass der
Genpool aller neuen Lebensformen außerhalb von Afrika
verglichen mit dem Genpool afrikanischer Lebensformen
sehr eng ist. Daraus wird gefolgert, dass alle bekannten
Lebensformen von einer sehr kleinen homo sapiens
Population in Afrika abstammen müssen.(Vgl. zu allem
[Fol98]).

IV. ABSTAMMUNGSLINIEN

Die von Foley angesprochene Methodenproblematik
der Paläontologie wird von den Autoren Hardt und Henke
in ihrer Untersuchung zur ”Stammesgeschichtlichen
Stellung des Homo heidelbergensis” (siehe: [HH07]) sehr
ausführlich am Beispiel der Klassifizierungsgeschichte
des Fundes homo heidelbergensis in Mauer diskutiert.
Die Paläontologischen Deutungsversuche waren bis
in die Mitte des 20.Jahrhunderts gekennzeichnet von
einer gewissen (unwissenschaftlichen) Beliebigkeit,
die keine wirklichen Prinzipien erkennen ließ.

Das Klassifizierungssystem von Carl von Linné (1707 –
1778) mit Art (species), Gattung (genus), Ordnung
(ordo) und Klasse (classis) ist rein begrifflich-logisch
eine Sache, diese Konzepte aber konsistent mit
empirischen Merkmalen zu assoziieren, eine andere.
Bis in die 60er und 70er Jahre des 20.Jahrhunderts
hielt man z.B. an der Interpretation fest, dass es eine
Abfolge gibt von h.africanus zu h.habilis zu h.erectus
zu h.sapiens (siehe: [HH07]:S.188). Die Vermehrung
der Funde weltweit, die Zunahme von Varianten,
das Feststellen von Ähnlichkeiten und Unterschieden
dort, wo sie nach den bisherigen Interpretationen
nicht hätten vorkommen sollen, die zunehmende
Verbesserungen der Methoden, die Steigerung der
Präzision, die Einbeziehung der Paläobiologie, dies alles (und mehr)
führte zu mehrfachen Erschütterungen der bisherigen
Interpretationsansätze. Eines der Ergebnisse war,
dass homo erectus keine valide europäische Spezies
(Art) war. (siehe: [HH07]:S.192). Auch wurde klar,
dass alle bekannten Arten sich auf einen Ursprung
in Afrika zurückführen lassen, wenngleich in zwei
unterschiedlichen Auswanderungswellen: eine um -1.8
Ma und eine viel spätere um -100 Ka mit dem homo
sapiens. Die Nachfahren der ersten Out-of-Afrika Welle
haben sich mit den Nachfahren der zweiten Out-of-Afrika
Welle genetisch nicht vermischt (siehe: [HH07]:S.192f).

Wie nun die modernen Einordnungsversuche zum
homo heidelbergensis zeigen (siehe den Überblick bei
[HH07]:SS.200ff)), gibt es bislang vier große Szenarien,
zwischen denen eindeutig zu entscheiden, noch nicht
mit letzter Eindeutigkeit möglich ist.

Das Thema der wachsenden Vielfalt (Diversität)
der entdeckten Lebensformen und das Problem ihrer
Einordnung wird bei Foley intensiv diskutiert (siehe
[Fol10]). Angesichts der Zunahme der Funde zum
Stamm der hominini (Pan (Schimpansen) und homo
(Menschen)) thematisiert Foley gezielt das Problem
der Klassifizierung von Funden mit dem Modell der
’Art’ (Spezies), da die Vielfalt der möglichen Kriterien
einerseits und der bisweilen fließende Übergang von
Formen im Rahmen einer evolutiven Entwicklung klare
Grenzziehungen schwer bis unmöglich machen. Foley
plädiert daher dafür, den Art-Begriff nicht absolut
zu sehen sondern als ein analytisches Werkzeug
[Fol10]:S.71.

Eine Grundeinsicht in all der aktuellen Vielfalt ist allerdings
(sowohl im Licht der Paläontologie wie auch der
Paläobiologie), dass nicht nur der Stamm der hominini
auf einen rein afrikanischen Ursprung hindeutet, sondern
auch die überwältigende Mehrheit der Primatengattungen
[Fol10]:S.69.

V. GEHIRNVOLUMEN

Anwachsen der Gehirnvolumen mit Daten vonStorch et.al sowie Foley

Bild 1: Anwachsen der Gehirnvolumen (cm^3) mit Daten von Storch et.al (2013) sowie Foley (2010)

Ein interessantes Detail ist der Zuwachs des Gehirnvolumens
von ca. 320 – 380 cm^3 bis dann ca. 1000 –
1700 cm^3 im Zeitraum von ca. -7.2 Ma bis zu ersten
Funden des homo sapiens (siehe: [SWW13]:S.474). Man
beachte dabei, dass die Gehirnvolumina in der Auflistung
von [SWW13]:S.474 nicht relativ zum Körpergewicht
gewichtet sind. Für die Zeitachse wurden außerdem nicht alle
verfügbaren Daten aufgetragen, sondern anhand der
Liste von Foley [Fol10]:S.70f nur jeweils das zeitlich
erste Auftreten. Die Kurve im Bild 1 zeigt, wie das
Gehirnvolumen immer steiler ansteigt (bisher). Diese Volumenangaben
streuen jedoch sehr stark (bis zu 50% Abweichung vom Mittelwert).

VI. WISSENSCHAFTSPHILOSOPHISCHES

Wie sich in den vorausgehenden Diskussionen andeutet,
repräsentieren die Paradigmen von Paläontologie
und Paläobiologie zwei eigenständige Methodenbündel,
die ihre volle Leistung aber erst in einem gemeinsamen
Rahmen entfalten, in dem ihre individuellen
Daten in einen übergeordneten Zusammenhang – auf
einer Metaebene – zusammengebaut werden. Weder die
Paläontologie für sich noch die Paläobiologie für sich
bieten solch eine Metaebene explizit an. Im Interesse
der Sache wäre es aber gut, wenn das Zusammenspiel
beider Methodenbündel in einem gemeinsamen theoretischen
Rahmen explizit möglich wäre. Wie könnte dies
geschehen?

A. Ein Theorieschema für Paläontologie mit Paläobiologie

Im Rahmen eines Theorieprojektes, bei dem cagent
beteiligt ist (siehe: [DH17b]) wird gezeigt, wie man
im Rahmen der Vorgehensweise des allgemeinen
Systems Engineerings das Verhalten von Menschen in
Aufgabenkontexten theoretisch beschreiben kann. Die
Details finden sich in dem Abschnitt, der üblicherweise
als ’Mensch-Maschine Interaktion’ bezeichnet wird (EN:
’Human-Machine Interaction (HMI)) (siehe: [DH17a]).

Die beiden Grundkonzepte dort sind ’Userstory
(US)’ und ’Usermodel (UM)’. In der Userstory wird das
Verhalten von Akteuren beschrieben (Menschen oder
geeignete Maschinen (Roboter…), die eine Reihe von
Aufgaben in einer definierten Umgebung abarbeiten.
Diese Darstellung ist rein ’beobachtend’, sprich: wird
aus einer ’Dritten-Person-Perspektive’ (EN: ’3rd Person
View’) vorgenommen. Die inneren Zustände der
beteiligten Personen bleiben unbekannt (Akteure als
’black boxes’). Will man innere Zustände dieser Akteure
beschreiben, dann bedeutet dies, dass man Annahmen
(Hypothesen) über die inneren Zustände samt ihren
Wechselwirkungen treffen muss. Dies entspricht der
Konstruktion einer Verhaltensfunktion Φ#, die beschreibt,
wie die angenommenen ’Input-Ereignisse (I)’ des
Akteurs in die angenommenen ’Output-Ereignisse (O)’
des Akteurs abgebildet werden, also # Φ: I O.
Solch eine hypothetische Verhaltensfunktion ist Teil
einer umfassenden Struktur <I, O, Φ>. Diese Struktur
stellt einen minimalen Theoriekern dar, in den die
hypothetische Verhaltensfunktion Φ eingebettet ist. Wie
man diesen Theoriekern mit der Verhaltensfunktion im
einzelnen ausfüllt, ist im allgemeinen Fall beliebig. Die
einzige Anforderung, die erfüllt werden muss, besteht
darin, dass die Abfolge der Input-Output-Ereignisse
{(i1; o1), …} der Theorie mit der vorgegebenen Userstory
übereinstimmen muss. Darin drückt sich aus, dass die
Userstory aus Sicht des Usermodells den vorgegebene
Kontext darstellt, analog zur Erde als vorgegebenem
Kontext zu den biologischen Systemen.

Angewendet auf den Ausgangsfall Paläontologie und
Paläobiologie bedeutet dies, man kann die Paläontologie
aus Sicht einer Metatheorie verstehen als eine Userstory,
in der alle Rahmenbedingungen fixiert werden, die man
empirisch fassen kann; die verschiedenen biologischen
Systeme sind dann die identifizierten Akteure, für
die man jeweils Usermodelle konstruieren könnte,
die das Verhalten dieser Akteure in der definierten
Userstory beschreiben. Hier käme die Paläobiologie
ins Spiel, die durch Annahmen über das Genom
und Annahmen über ursächliche Zusammenhänge
zwischen Genom einerseits und Körperbau und
Verhalten andererseits, Beiträge für eine mögliche
Verhaltensfunktion leisten kann. Dazu kämen auch noch
die Vergleiche zwischen den verschiedenen Genomen
bzw. zwischen den verschiedenen Verhaltensfunktionen,
die auf Abhängigkeitsbeziehungen schließen lassen
würden.

Aufgrund der großen Komplexität sowohl bei der
Erstellung der Userstory wie auch der verschiedenen
Usermodelle werden alle dieser Modelle natürlich nur
Annäherungen sein können. Die heute angewendeten Modelle
sind allerdings auch nur Annäherungen, ihnen fehlen
allerdings nahezu alle formalen Eigenschaften, die sie
zu theoretischen Strukturen im Sinne einer empirischen
Theorie machen würden.

B. Simulationsmodelle für Paläontologie mit Paläobiologie

Sofern man sich auf das obige wissenschaftsphilosophisch
motivierte Theorieparadigma einlassen würde, würde sich
relativ schnell ein rein praktisches
Problem ergeben. Schon das Hinschreiben einfacher
Userstories und insbesondere Usermodelle führt sehr
schnell zu einem großen Schreibaufwand. Dieser
immer größere Schreib- und dann auch Lese- und
Ausführungsaufwand verlangt ziemlich direkt nach
computergestützten Verfahren der Simulation.
Dazu bräuchte man mindestens zwei Computerprogramme:
eines, durch das die Eigenschaften und die
Dynamik der Userstory simuliert würden, ein anderes
für die verschiedenen Usermodelle.
Ganz konkret bieten sich für diese Anforderungen
eine Unzahl möglicher Softwareumgebungen an. Für
den Neustart des ’Emerging Mind Projektes’ des INM
ab September 2017 (siehe: [DH17c]) wird zur Zeit mit
folgender Software und Hardware geplant:

  1. Für schnelle, kleine Modellierung wird sowohl das
    freie Mathematikpaket ’scilab’ benutzt (scilab.org)
    wie auch das freie Kreativprogramm ’processing’
    (processing.org).
  2. Für komplexe Anwendung mit Anspruch auf einen
    realistischen Einsatz auch in der realen Welt mit
    realen Robotern wird das Betriebssystem ’ubuntu’
    (ubuntu.com) benutzt und dazu die Middleware
    ’ROS (:= Robotic Operating System)(ros.org).
  3. Als Hardware kann dazu nahezu alles benutzt werden,
    was es gibt, auch eher ältere Geräte. Dies ist
    für Anwendungen im Bereich Schulen (und auch
    Hochschulen) sehr günstig, da es hier meist an
    Geld mangelt (trotz aller Schönwetterparolen der
    Deutschen Politiker).

REFERENCES

  • [DH17a] Gerd Doeben-Henisch. Approaching Hmi. Pages 1–nn, July 2017. Journal: UFFMM, URL: https://uffmm.org/2017/08/03/approaching-hmi/.
  • [DH17b] Gerd Doeben-Henisch. Bootstrapping main concepts, pages 1–nn, July 2017. Journal: UFFMM , URL: uffmm.org.
  • [DH17c] Gerd Doeben-Henisch. Emerging Mind Projekt, pages 1–nn, Sept 2017. Project: INM-EMP, URL: https://www.emerging-mind.org.
  • [DH17d] Gerd Doeben-Henisch. Menschenbild. Vorgeschichte bis zum homo sapiens. Überlegungen Philosophie Jetzt, ISSN 2365-5062, URL: cognitiveagent.org.
  • [Fol98] Robert Foley. The context of human genetic evolution, (8):339–347, 1998. Journal: Genom Research (GR).
  • [Fol10] Robert Foley. Species diversity in human evolution: challenges and opportunities, (60):62–72, 2010. Journal: Transactions of the Royal Society of South Africa, URL: http://dx.doi.org/10.1080/00359190509520479.
  • [HH07] Thorolf Hardt and Winfried Henke. Zur stammesgeschichtlichen Stellung des Homo heidelbergensis, In Günther A. Wagner, Hermann Rieder, Ludwig Zöller, Erich Mick (Hg.), Homo heidelbergensis. Schlüsselfund der Menschheitsgeschichte, SS. 184–202. Konrad Theiss Verlag, Stuttgart, 2007.
  • [MDSP10] V. Masson-Delmotte, B. Stenni, K. et.al., Pol. Epica dome c record of glacial and interglacial intensities, (29):113–128, 2010. Journal: Quaternary Science Reviews, URL: doi:10.1016/j.quascirev.2009.09.030.
  • [SWW13] Volker Storch, Ulrich Welsch, Michael Wink, (Hg.) Evolutionsbiologie, Springer-Verlag, Berlin – Heidelberg, 3.Aufl., 2013.
  • [Wag07] Günther A. Wagner. Altersbestimmung: Der lange Atem der Menschwerdung, In Günther A. Wagner, Hermann Rieder, Ludwig Zöller, Erich Mick (Hg.), Homo heidelbergensis. Schlüsselfund der Menschheitsgeschichte, SS. 203 -225. Konrad Theiss Verlag, Stuttgart, 2007.
  • [WD17a] Wikipedia-DE. Altpaläolithikum. 2017.
  • [WD17b] Wikipedia-DE. AnthropozÄn. 2017.
  • [WD17c] Wikipedia-DE. Epipaläolithikum. 2017.
  • [WD17d] Wikipedia-DE. HolozÄn. 2017.
  • [WD17e] Wikipedia-DE. Jungsteinzeit. 2017.
  • [WD17f] Wikipedia-DE. Mesolithikum. 2017.
  • [WD17g] Wikipedia-DE. Milanković-Zyklen. 2017.
  • [ZUH07] Ludwig Zöller, Brigitte Urban, Ulrich Hambach. Klima und Umweltveränderungen während des Eiszeitalters, In Günther A. Wagner, Hermann Rieder, Ludwig Zöller, Erich Mick (Hg.), Homo heidelbergensis. Schlüsselfund der Menschheitsgeschichte, SS. 84–112. Konrad Theiss Verlag, Stuttgart, 2007.

KONTEXT BLOG

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER.

EARTH 2117 – ERDE 2117 – Erste Gedanken – Simupedia für alle?

KONTEXT

  1. Wie man als Leser des Blogs bemerken kann, fokussiert sich der Blog zur Zeit hauptsächlich auf drei Themenfelder: (i) Die Frage nach der technischen Superintelligenz (TSI); (ii) die Frage nach dem, was der Mensch ist bzw. werden kann, mit der speziellen Teilfrage nach der mystischen Erfahrung (gibt es die? Was sagt dies über den Menschen und die Welt?); sowie (iii) die Frage nach dem möglichen Zustand der Erde im Jahr 2117. Die Zahl 2117 ergab sich u.a. aus den aktuellen Prognosen, zu welchem Zeitpunkt Experten das Auftreten einer technischen Superintelligenz für hoch wahrscheinlich halten. Zu diesen drei Themenfeldern kommen dann noch die möglichen Wechselwirkungen zwischen (i), (ii) und (iii). Andere Themen sind grundsätzlich nicht ausgeschlossen, sind aber bis auf weiteres Nebenthemen.

PROGNOSEN GENERELL

  1. Die Frage nach dem möglichen Zustand der Erde setzt voraus, dass wir den Zustand der Erde als veränderlich ansehen, dass es ein Jetzt gibt, und dass es im jeweiligen Jetzt die Möglichkeit gibt, dass sich Eigenschaften der Erde im Jetzt so verändern, dass es zu einem nachfolgenden Jetzt andere Eigenschaften gibt als beim vorausgehenden Jetzt.

DER MENSCH UND DIE ZEIT

  1. Auf Seiten des Menschen ist es die Erinnerungsfähigkeit, die den Menschen in die Lage versetzt, zwischen einem aktuellen Jetzt und einem vorausgehenden Jetzt zu unterscheiden. Auf Seiten des Menschen sind es weitere kognitive Fähigkeiten, die den Menschen in die Lage versetzen, am Wahrgenommenen und Erinnerten kognitive Eigenschaften zu erfassen (durch Abstrahieren, Klassifizieren, Vergleichen usw.) mit denen sich kognitiv Veränderungen identifizieren lassen. Mittels solcher identifizierten kognitiven Konzepten der Veränderung kann der Mensch von angenommenen (kognitiven) Zuständen auf mögliche (kognitive) Zustände mittels der angenommenen Veränderungskonzepte schließen. Der Mensch ist also grundsätzlich in der Lage, aufgrund von Erfahrungen aus der Vergangenheit im Vergleich zur Gegenwart mögliche Veränderungen zu erschließen, die dann wiederum genutzt werden können, mögliche Zukünfte zu denken.
  2. Natürlich hängt die Qualität solche Hochrechnungen entscheidend davon ab, wie wirklichkeitsnah die Erfahrungen aus der Vergangenheit sind, die Art der Erinnerungen, die möglichen Denkoperationen des Selektierens, Abstrahierens, Vergleichens usw. Wie gut mögliche Veränderungen erfasst wurden, einschließlich der möglichen Wechselwirkungen zwischen unterschiedlichen Faktoren.

TECHNISCHE HILFSMITTEL: COMPUTER

  1. Wie der Gang der Wissenschaften und der Technologie uns zeigen kann, können solche möglichen Hochrechnungen deutlich verbessert werden, wenn der Mensch für diese (kognitiven) Denkleistungen als Hilfsmittel formalisierte Sprachen benutzt und Computer, die mittels Algorithmen bestimmte Denkoperationen des Menschen modellhaft nachvollziehen können. Statt also per Hand auf dem Papier umfangreiche Rechnungen viele tausend Male selbst vorzunehmen (wozu in der Realität dann sehr schnell einfach die Zeit und Arbeitskraft fehlt), schreibt man einen Algorithmus (= Programm, Software), der diese Rechnungen für das Arbeiten eines Computers übersetzt und die Maschine dann die Rechnungen automatisch (= maschinell) machen lässt.

BEGRIFF DER ZEIT

  1. Ein nicht unwesentlicher Faktor in diesen Überlegungen zu möglichen Zukünften ist der Begriff der Zeit.
  2. Der Begriff der Zeit ist viel schillernd und je nach Kontext kann er etwas ganz Verschiedenes bedeuten.
  3. Im Kontext des menschlichen Denkens haben wir die grundsätzliche Unterscheidung zwischen dem aktuellen Jetzt und dem vorausgehenden Jetzt in Form von verfügbaren Erinnerungen. Dazu kommen dann mögliche Jetzte aufgrund der Möglichkeit, im (kognitiven) Denken mittels dem (kognitiven) Konzept von Veränderung, aus der Vergangenheit und der Gegenwart denkbare (= mögliche) neue Zustände zu berechnen (zu denken, vorzustellen, …). Im Denken sind diese möglichen Zustände rein gedacht (virtuell), aber, sofern sie genügend nahe an der empirischen Wirklichkeit sind, könnten diese möglichen Zustände real werden, d.h. Zu einem neuen aktuellen Jetzt.

UHREN-MASCHINEN

  1. Um das Reden über diese unterschiedliche Formen von Jetzten zu vereinfachen, wurde sehr früh das Hilfsmittel der Uhr eingeführt: die Uhr ist eine Maschine, die periodisch Uhren-Ereignisse erzeugt, denen man Zahlzeichen zuordnen kann, also z.B. 1, 2, 3, … Es hat sich dann eingebürgert, ein Zeitsystem zu vereinbaren, bei dem man Jahre unterscheidet, darin 12 Monate, darin Wochen, darin 7 Wochentage, darin 24 Stunden pro Tag, darin 60 Minuten pro Stunde, darin 60 Sekunden pro Minute, und noch feinere Unterteilungen.
  2. Nimmt man an, dass eine Uhren-Maschine periodisch Sekunden erzeugt, dann würde jede Sekunde ein Ereignis angezeigt, dem dann nach 60 Sekunden eine Minute entsprechend würde, 60 Minuten dann eine Stunde, usw.
  3. Sofern man dann noch das praktische Problem lösen kann, wie die Uhren-Maschinen überall auf der Erde die gleiche Zeit anzeigen, und man einen gemeinsamen Referenzpunkt für den Beginn der Zeitrechnung hat, dann könnten alle Menschen nach der gleichen Zeitgebung leben.
  4. Unter Voraussetzung solcher einer Technologie der Zeiterzeugung könnte man dann abstrakt immer von definierten Zeitpunkten in diesem vereinbarten Zeitsystem sprechen.

(TECHNISCHE) SIMULATION

  1. Verfügt man über Computer und Zeit-Maschinen, dann kann man den Computer dazu nutzen, im Raum von definierten Zeitpunkten Hochrechnungen vorzunehmen. Man definiert Ausgangssituationen zu bestimmten Zeitpunkten (die Startzeit), man definiert angenommene mögliche Veränderungen in der Zeit, die man dann in Form eines Algorithmus aufschreibt, und dann lässt man den Computer für einen gewünschten Zeitraum ausrechnen, welche Veränderungen sich ergeben.
  2. Will man z.B. errechnen, wie sich die Bevölkerungszahl in einer bestimmten Population im Laufe von 10 Jahren berechnen, und man weiß aufgrund der Vergangenheit, wie hoch die durchschnittlichen Geburten- und Sterberaten für ein Jahr waren, dann kann man die Veränderungen von Jahr 1 zu Jahr 2 berechnen, dann wieder von Jahr 2 zu Jahr 3, usw. bis man das Zieljahr erreicht hat.
  3. Diese Rechnungen sind natürlich nur solange genau, wie sich die Geburten- und Sterberaten in diesem angenommenen Zeitraum nicht verändern. Wie wir aus der Geschichte wissen können, gibt es zahllose Faktoren, die auftreten können (Hunger, Krankheit, Kriege, …), die eine Veränderung mit sich bringen würden.
  4. Ferner sind Populationen immer seltener isoliert. Der Austausch zwischen Populationen nimmt heute immer mehr zu. Eine ganz normale Gemeinde im Kreis Offenbach (Land Hessen, Deutschland) kann z.B. eine Migrationsrate von 15% pro Jahr haben (Menschen die wegziehen oder herziehen), bei einer Geburtenrate von 0,7% und einer Sterberate von 0,8%. Die Größe einer Population hängt dann weniger vom Geborenwerden und Sterben ab, sondern von Standortfaktoren wie Verfügbarkeit von Arbeit, Höhe der Mietpreise, Verkehrsanbindung, Qualität der Schulen, ärztliche Versorgung usw.

DIE ERDE

  1. Will man nun die Erde als ganze betrachten, und hat man sowohl ein vereinbartes Zeitsystem zur Verfügung basierend auf einer gemeinsamen globalen Uhren-Technologie, wie auch Computer, die geeignete Algorithmen ausführen können, dann braucht man ’nur noch‘ (i) hinreichend gute Beschreibungen des Zustands der Erde jetzt, (Daten IST) (ii) von möglichst vielen Zuständen in der Vergangenheit (DATEN VORHER), und (iii) von möglichst allen wichtigen wirkenden Veränderungen zwischen diesen Zuständen (VREGELN). Unter der Annahme, dass alle diese Daten und Veränderungsregeln hinreichend realistisch sind, kann man dann Hochrechnungen für angenommene Zeiträume machen. In unserem Fall von 2017 bis 2117.
  2. Da schon das kleine Beispiel einer winzigen Gemeinde in Deutschland leicht erkennen lässt, wie fragil viele erkannten Veränderungsregeln sind, kann man vermuten, dass dies auf ein so komplexes System wie die ganze Erde sicher auch zutreffen wird.
  3. Betrachten wir ein paar (stark vereinfachte, idealisierte) Beispiele.
  4. Ganz allgemein gehen wir aus von einer globalen Veränderungsregel V_erde für die Erde, die den Zustand der Erde im Jahr 2017 (ERDE_2017) hochrechnen soll auf den Zustand der Erde im Jahr 2117 (ERDE_2117), als Abbildung geschrieben: V_erde : ERDE_2017 —> ERDE_2117.
  5. Der Zustand der Erde im Jahr 2017 (ERDE_2017) setzt sich zusammen aus einer ganzen Menge von Eigenschaften, die den Zustand charakterisieren. Abstrakt könnten wir sagen, die Erde besteht zu jedem Zeitpunkt aus einer Menge charakteristischer Eigenschaften Ei (ERDE_Zeit = <E1, E2, …, En>), und je nachdem, welche Veränderungen zwischen zwei Zeitpunkten stattgefunden haben, verändern sich in dieser Zeitspanne bestimmte Eigenschaften Ei.
  6. Beispiele für solche charakteristischen Eigenschaften Ei könnten sein das Klima (E_Klima), das wiederum selbst in unterscheidbare Eigenschaften zerfällt wie z.B. die durchschnittliche Sonneneinstrahlung, Beschaffenheit der Atmosphäre, Niederschlagsmenge, Wassertemperatur der Ozeane, Verdunstungsgrad des Wassers, usw. Zusammenhängend damit kann von Bedeutung sein die Bodenbeschaffenheit, verfügbare Anbauflächen, Pflanzenwachstum, mögliche Ernten, usw. Dazu wichtig die Verteilung der biologischen Populationen, deren Nahrungsbedarf, die Wechselwirkung zwischen Populationen und Pflanzenwachstum, usw. Hier fällt einem sofort auch die Frage der Lagerung von Nahrungsmitteln auf, deren Verarbeitung und Transport, deren Verteilung und deren Marktpreise.
  7. Schon diese sehr kleine Liste von Eigenschaften und angedeuteten Wechselwirkungen lassen erahnen, wie unterschiedlich mögliche Verläufe der Veränderungen in der Zukunft sein können. Von Heute aus gesehen gibt es also nie nur eine Zukunft, sondern sehr, sehr viele mögliche Zukünfte. Welche der vielen möglichen Zukünfte tatsächlich eintreten wird, hängt von vielen Faktoren ab, nicht zuletzt auch vom Verhalten der Menschen selbst, also von uns, von jedem von uns. (An diesem Punkt lügt die deutsche Sprache! Sie spricht nur von einer Zukunft im Singular (in der Einzahl), in Wahrheit sind es sehr viele und wir können mit bewirken, welche der vielen Zukünfte eintreten wird).

WARUM ÜBER ZUKUNFT SPEKULIEREN?

  1. Angesichts so vieler Unwägbarkeiten hört man oft von Menschen (speziell auch von Politikern!), dass Versuche der Hochrechnungen (= Simulation) auf mögliche Zukünfte sinnlos seien; eine unnötige Verschwendung von Zeit und damit Ressourcen.
  2. Auf den ersten Blick mag dies tatsächlich so erscheinen. Aber nur auf den ersten Blick.
  3. Der Wert von solchen Modellrechnungen über mögliche Zukünfte liegt weniger im Detail der Endergebnisse, sondern im Erkenntniswert, der dadurch entsteht, dass man überhaupt versucht, wirkende Faktoren und deren Wechselwirkungen mit Blick auf mögliche Veränderungen zu erfassen.
  4. Wie oft hört man Klagen von Menschen und Politikern über mögliche gesellschaftliche Missstände (keine Maßnahmen gegen Autoabgase, falsche Finanzsysteme, falsche Verkehrspolitik, falsche Steuerpolitik, falsche Entwicklungspolitik, fragwürdige Arzneimittelmärkte, …). Vom Klagen alleine ändert sich aber nichts. Durch bloßes Klagen entsteht nicht automatisch ein besseres Verständnis der Zusammenhänge, der Wechselwirkungen. Durch bloßes Klagen gelangt man nicht zu verbesserten Modellvorstellungen, wie es denn überhaupt anders aussehen könnte.

SIMUPEDIA FÜR ALLE

  1. Was die Not zumindest ein wenig lindern könnte, das wären systematische (wissenschaftliche) Recherchen über alle Disziplinen hinweg, die in formalen Modellen aufbereitet werden und dann mittels Algorithmen getestet werden: Was wäre, wenn wir die Eigenschaften E1, …, En einfach mal ändern und hier und dort neue Wirkmechanismen (durch Bildung, durch Gesetze, …) ermöglichen würden? Das Ganze natürlich transparent, öffentlich nachvollziehbar, interaktiv für alle. Nicht nur ein ‚Wikipedia‘ der Texte, sondern zusätzlich  eine Art ‚Simupedia‘ der Simulationen für alle.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

DENKEN UND WERTE – DER TREIBSATZ FÜR ZUKÜNFTIGE WELTEN (Teil 1)

  1. In dem Beitrag Digitalisierung und die Religionen vom 9.März 2016 gibt es neben vielen anderen Motiven zwei Motive, die besonders hervortreten: einmal das Momentum (i) kombinatorischer Räume, die gefüllt werden können, und zum anderen (ii) das Momentum der Auswahl, welche Teilräume wie gefüllt werden sollen.

KOMBINATORISCHER RAUM BIOLOGISCHE ZELLE

  1. Im Rahmen der biologischen Evolution auf Zellebene z.B. eröffnet sich der kombinatorische Raum an verschiedenen Stellen. Eine ist jene, wo das Übersetzungsmolekül (das Ribosom) von den gespeicherten potentiellen Informationen (DNA mit ihren Abwandlungen) eine Transformation in andere Moleküle (Proteine) überleitet , mit denen sich neue Zellstrukturen aufbauen lassen. Die Verfügbarkeit dieser Proteine, ihre chemischen Eigenschaften und die Umgebungseigenschaften definieren einen potentiellen kombinatorischen Raum, von dem im konkreten Übersetzungsprozess dann ein bestimmter Teilraum ausgewählt wird.
  2. Aber auch schon der potentielle Informationsspeicher (realisiert mittels DNA-Molekülen) selbst, wie auch seine verschiedenen Transformationsprozesse bis zum Übersetzungsprozess in Proteine repräsentieren ebenfalls kombinatorische Räume, deren Realisierung viel Spielraum zulässt.
  3. Man könnte diese molekülbasierte Informationsspeicherung, diese Transformationen der Moleküle, als eine Urform des Denkens ansehen: Moleküle fungieren als Repräsentanten möglicher Konstruktionsprozesse, und diese Repräsentanten können verändert, rekombiniert werden zu neuen Strukturen, die dann zu neuen Konstruktionsprozessen führen. Man hat also – vereinfacht – ein Funktion der Art repr: M_inf x M_tr x MMprot —> Z, d.h. die Reproduktionsfunktion repr die mittels Molekülen, die als Informationsträger fungieren (M_inf), mittels Molekülen (M_tr), die als Übersetzer fungieren und Molekülen (MM_prot), die als Proteine fungieren können, daraus neue Zellstrukturen entstehen lassen kann.

GELIEHENE PRÄFERENZEN

  1. So wundersam diese Urform des Denkens immer neue kombinatorische Räume strukturell aufspannen und dann im Reproduktionsprozess als reales Strukturen konkretisieren kann, so hilflos und arm ist dieser Mechanismus bei der Beurteilung, Bewertung, welche der möglichen Teilräume denn bevorzugt vor anderen realisiert werden sollten. Soll das Fell weiß oder schwarz sein? Benötigt man überhaupt Zähne? Wozu so komplizierte Hand- und Fingergelenke? Warum tausende Kilometer reisen, um zu brüten? … Die Urform des Denkens ist unfähig, ihre potentielle innere Vielfalt selbständig zu bewerten. Man kann auch sagen, die Urform des Denkens kann zwar kombinieren, ist aber blind wenn es darum geht, gezielt Teilräume auszuwählen, die sich als interessante Kandidaten für das Leben anbieten.
  2. Dabei ist schon die Wortwahl ‚interessante Kandidaten für das Leben‘ problematisch, da der Begriff Leben eine Schöpfung von Lebewesen ist, die viele Milliarden Jahre später erst auftreten und die versuchen im Nachhinein, von außen, durchtränkt von neuen Bedingungen, die zunächst bedeutungsleere Wortmarke Leben mit Bedeutung zu füllen. Die Urform des Denkens verfügt über keinen externen Begriff von Leben und es gibt keine Ingenieure, die der Urform des Denkens zuflüstern können, was sie tun sollen.

MOLEKÜLE ALS INFORMATIONSSPEICHER IMPLIZITE PRÄFERENZEN

  1. Allerdings beinhaltet schon die Urform des Denkens über ein Moment, das außerordentlich ist: jene Moleküle (DNA), die als Speicher potentieller Informationen dienen. Zu einem bestimmten Zeitpunkt repräsentieren diese Informations-Moleküle einen eng umgrenzten Teilraum eines kombinatorischen Raumes und wirken für den Übersetzungsprozess wie eine Art Anweisung in Form eines Bauplans. Gemessen an dem theoretisch möglichen kombinatorischen Raum stellt der Plan des Informationsmoleküls eine Auswahl dar, eine Selektion und damit zeigt sich hier eine indirekte Präferenz für die Informationen auf dem Molekül vor allen anderen möglichen Informationen. Die Urform des Denkens kann zwar im Prinzip einen riesigen potentiellen kombinatorischen Raum repräsentieren und transformieren, die konkrete Zelle aber repräsentiert in diesem riesigen Raum einen winzigen Teilbereich, mit einem aktuellen Ausgangspunkt – gegeben durch die aktuellen Informationen auf dem Informationsmolekül M_inf – und potentiellen Veränderungsrichtungen – gegeben durch die Transformationsprozesse einschließlich der verfügbaren Materialien und Pannen im Prozess. Anders formuliert, die Informationsmoleküle repräsentieren eine komplexe Koordinate (KK) im kombinatorischen Raum und die Transformationsprozesse (einschließlich Pannen und Materialien) repräsentieren eine Menge von möglichen Veränderungsrichtungen (DD), an deren Endpunkten dann jeweils neue komplexe Koordinaten KK_neu_1, …, KK_neu_n liegen.
  2. Wichtig: eine Zelle enthält über die Informationsmoleküle zwar implizite Präferenzen/ Werte, die die Urform des Denkens steuern, diese Präferenzen werden aber nicht von der Zelle selbst generiert, sondern entstehen aus einem Wechselspiel/ aus einer Interaktion mit der Umgebung! Biologische Strukturen (bis heute nur bekannt auf dem Planeten Erde in unserem Sonnensystem in einem geschützten Bereich der Galaxie Milchstraße des uns bekannten Universums) kommen nie isoliert vor, sondern als Teil einer Umgebung, die über sogenannte freie Energie verfügt.

OHNE ENERGIE GEHT NICHTS

  1. Biologische Zellen sind Gebilde, die für ihre Konstruktion und für ihr Funktionieren solche freie Energie brauchen. Der Umfang ihrer Strukturen wie auch die Dauer ihres Funktionierens hängt direkt und ausschließlich von der Verfügbarkeit solcher freien Energie ab. Bezogen auf den kombinatorischen Raum, der durch die Kombination (Informationsmoleküle, Transformationsmolekül, Bausteine) potentiell gegeben ist, ist unter Berücksichtigung der notwendigen Fähigkeit zum Finden und Verarbeiten von freier Energie nicht neutral! Definieren wir den potentiellen kombinatorischen Raum PKK für biologische Zellen als Raum für mögliche komplexe Koordination KK (also KK in PKK), dann sind im potentiellen kombinatorischen Raum nur jene Teilräume von Interesse, in denen die biologische Zelle über hinreichende Fähigkeiten verfügt, freie Energie zu finden und zu nutzen. Nennen wir die Gesamtheit dieser interessanten Teilräume PKK+, mit PKK+ subset PKK.

GEBORGTE PRÄFERENZEN

  1. Da die individuelle biologische Zelle selbst über keinerlei explizite Informationen verfügt, wo überall im potentiell kombinatorischen Raum PKK die interessanten Teilräume PKK+ liegen, stellt sie – trotz ihrer eigenen Reproduktionstätigkeit – eher ein passives Element dar, das sich mit geborgten Präferenzen im potentiellen kombinatorischen Raum PKK bewegt, ohne explizit wissen zu können, ob es auf seinem Weg durch den potentiellen kombinatorischen Raum PKK auch tatsächlich auf solche komplexen Koordinaten KK+ stößt, die ihr eine minimale Lebensfähigkeit erlauben.
  2. Da wir vom Jahr 2016 rückwärts blickend wissen, dass diese passiven Elemente es in ca. 4 Mrd Jahren geschafft haben, komplexe Strukturen unvorstellbaren Ausmaßes zu generieren (ein Exemplar des homo sapiens soll z.B. ca. 37 Billionen Körperzellen haben (davon ca. 100 Mrd als Gehirnzellen), dazu ca. 200 Billionen Bakterien in seinem Körper plus ca. 220 Milliarden auf seiner Haut (siehe dazu Kegel-Review Doeben-Henisch), muss man konstatieren, dass die permanente Interaktion zwischen biologischer Zelle und ihrer Umgebung offensichtlich in der Lage war, all diese wichtigen Informationen PKK+ im potentiellen kombinatorischen Raum PKK zu finden und zu nutzen!
  3. Für die Frage der potentiellen Präferenzen/ Werte gilt für diesen gesamten Zeitraum, dass sich die implizit gespeicherten Präferenzen nur dadurch bilden konnten, dass bestimmte generierte Strukturen (M_inf, M_tr, MM_prot) sich immer von einer positiven komplexen Koordinate zur nächsten positiven Koordinate bewegen konnten. Dadurch konnten die gespeicherten Informationen kumulieren. Aus der Evolutionsgeschichte wissen wir, dass ein Exemplar des homo sapiens im Jahr 2016 eine Erfolgsspur von fast 4 Mrd Jahren repräsentiert, während in diesem Zeitraum eine unfassbar große Zahl von zig Mrd anderen generierte Strukturen (M_inf, M_tr, MM_prot) irgendwann auf eine negative komplexe Koordinate KK- geraten sind. Das war ihr Ende.

ERHÖHUNG DER ERFOLGSWAHRSCHEINLICHKEIT

  1. Für den Zeitraum bis zum Auftreten des homo sapiens müssen wir konstatieren, dass es Präferenzen/ Werte für ein biologisches System nur implizit geben konnte, als Erinnerung an einen erreichten Erfolg im Kampf um freie Energie. Unter Voraussetzung, dass die umgebende Erde einigermaßen konstant war, war die Wahrscheinlichkeit, von einer positiven Koordinate KK+ u einer weiteren komplexen Koordinate KK+ zu kommen um ein Vielfaches höher als wenn das biologische System nur rein zufällig hätte suchen müssen. Die gespeicherten Informationen in den Informationsmolekülen M_inf stellen somit sowohl erste Abstraktionen von potentiellen Eigenschaften wie auch von Prozessen dar. Damit war es Anfangshaft möglich, die impliziten Gesetzmäßigkeiten der umgebenden Welt zu erkennen und zu nutzen.

URSPRUNG VON WERTEN

  1. Es fragt sich, ob man damit einen ersten Ort, einen ersten Ursprung potentieller Werte identifizieren kann.
  2. Vom Ergebnis her, von den überlebensfähigen biologischen Strukturen her, repräsentieren diese einen partiellen Erfolg von Energienutzung entgegen der Entropie, ein Erfolg, der sich in der Existenz von Populationen von solchen erfolgreichen Strukturen als eine Erfolgsspur darstellt. Aber sie alleine bilden nur die halbe Geschichte. Ohne die umgebende Erde (im Sonnensystem, in der Galaxie…), wäre dieser Erfolg nicht möglich. Andererseits, die umgebende Erde ohne die biologischen Strukturen lässt aus sich heraus nicht erkennen, dass solche biologische Strukturen möglich noch wahrscheinlich sind. Bis heute ist die Physik mehr oder weniger sprachlos, wirkt sie wie paralysiert, da sie mit ihren bisherigen (trotz aller mathematischen Komplexität weitgehend naiven) Modellen nicht einmal ansatzweise in der Lage ist, die Entstehung dieser biologischen Strukturen zu erklären. Von daher müssen wir fordern, dass die umgebende Erde die andere Hälfte des Erfolgs darstellt; nur beide zusammen geben das ganze Phänomen. In diesem Fall würde ein reduktiver Ansatz nicht vereinfachen, sondern das Phänomen selbst zerstören!

ONTOLOGISCHE GELTUNG VON BEZIEHUNGEN

  1. Dies führt zu einem bis heute ungeklärten philosophischen Problem der ontologischen Geltung von Funktionen. In der Mathematik sind Funktionen die Grundbausteine von allem, und alle Naturwissenschaften wären ohne den Funktionsbegriff aufgeschmissen. Eine Funktion beschreibt eine Beziehung zwischen unterschiedlichen Elementen. In der Mathematik gehören diese Elemente in der Regel irgendwelchen Mengen an, die einfach unterstellt werden. Wendet man das mathematische Konzept Funktion auf die empirische Wirklichkeit an, dann kann man damit wunderbar Beziehungen beschreiben, hat aber ein Problem, die in der Mathematik unterstellten Mengen in der Realität direkt erkennen zu können; man muss sie hypothetisch unterstellen. Was man direkt beobachten und messen kann sind nicht die funktionalen Beziehungen selbst, sondern nur isolierte Ereignisse in der Zeit, die der Beobachter in seinem Kopf (Gehirn, Gehirnzellen…) verknüpft zu potentiellen Beziehungen, die dann, wenn sie sich hinreichend oft wiederholen, als gegebener empirischer Zusammenhang angenommen werden. Was ist jetzt empirisch real: nur die auslösenden konkreten individuellen Ereignisse oder das in der Zeit geordnete Nacheinander dieser Ereignisse? Da wir ja die einzelnen Ereignisse protokollieren können, können wir sagen, dass auch das Auftrete in der Zeit selbst empirisch ist. Nicht empirische ist die Zuordnung dieser protokollierten Ereignisse zu einem bestimmten gedachten Muster/ Schema/ Modell, das wir zur gedanklichen Interpretation benutzen. Die gleichen Ereignisse lassen in der Regel eine Vielzahl von unterschiedlichen Mustern zu. Einigen wir uns kurzfristig mal auf ein bestimmtes Muster, auf den Zusammenhang R(X, …, Z), d.h. zwischen den Ereignissen X, …, Z gibt es eine Beziehung R.
  2. Biologische Systeme ohne Gehirn konnten solche Relationen in ihrem Informations-Moleküle zwar speichern, aber nicht gedanklich variieren. Wenn die Beziehung R stimmte, dann führte sie zur nächsten positiven komplexen Koordinate KK+, was R im Nachhinein bestätigen würde; wenn R aber zu einer negativen komplexen Koordinate KK- führen würde, dann war dies im Nachhinein eine Widerlegung, die nicht mehr korrigierbar ist, weil das System selbst verschwunden (ausgestorben) ist.
  3. Im Gehirn des homo sapiens können wir ein Beziehungsmuster R(X, …, Z) denken und können es praktisch ausprobieren. In vielen Fällen kann solch ein Interpretationsversuch scheitern, weil das Muster sich nicht reproduzieren lässt, und in den meisten solchen Fällen stirbt der Beobachter nicht, sondern hat die Chance, andere Muster R‘ auszuprobieren. Über Versuch und Irrtum kann er so – möglicherweise irgendwann – jene Beziehung R+ finden, die sich hinreichend bestätigt.
  4. Wenn wir solch ein positiv bestätigtes Beziehungsmuster R+ haben, was ist dann? Können wir dann sagen, dass nicht nur die beteiligten empirischen Ereignisse empirisch real sind, sondern auch das Beziehungsmuster R+ selbst? Tatsächlich ist es ja so, dass es nicht die einzelnen empirischen Ereignisse als solche sind, die wir interessant finden, sondern nur und ausschließlich die Beziehungsmuster R+, innerhalb deren sie uns erscheinen.
  5. In der Wechselwirkung zwischen umgebender Erde und den Molekülen ergab sich ein Beziehungsmuster R+_zelle, das wir biologische Zelle nennen. Die einzelnen Elemente des Musters sind nicht uninteressant, aber das wirklich frappierende ist das Beziehungsmuster selbst, die Art und Weise, wie die Elemente kooperieren. Will man dieses Beziehungsmuster nicht wegreden, dann manifestiert sich in diesem Beziehungsmuster R+_zelle ein Stück möglicher und realer empirisches Wirklichkeit, das sich nicht auf seine Bestandteile reduzieren lässt. Es ist genau umgekehrt, man versteht die Bestandteile (die vielen Milliarden Moleküle) eigentlich nur dadurch, dass man sieht, in welchen Beziehungsmustern sie auftreten können.
  6. Vor diesem Hintergrund plädiere ich hier dafür, die empirisch validierten Beziehungsmuster als eigenständige empirische Objekte zu betrachten, sozusagen Objekte einer höheren Ordnung, denen damit eine ontologische Geltung zukommt und die damit etwas über die Struktur der Welt aussagen.
  7. Zurück zur Frage der Präferenzen/ Werte bedeutet dies, dass man weder an der Welt als solcher ohne die biologischen Systeme noch an den biologischen Strukturen als solche ohne die Welt irgendwelche Präferenzen erkennen kann. In der Wechselwirkung zwischen Erde und biologischen Strukturen unter Einbeziehung einer Irreversibilität (Zeit) werden aber indirekt Präferenzen sichtbar als jener Pfad im potentiellen Möglichkeitsraum der komplexen Koordinaten KK, der die Existenz biologischer Systeme bislang gesichert hat.
  8. Dieser Sachverhalt ist für einen potentiellen Beobachter unaufdringlich. Wenn der Beobachter nicht hinschauen will, wenn er wegschaut, kann er diesen Zusammenhang nicht erkennen. Wenn der Beobachter aber hinschaut und anfängt, die einzelnen Ereignisse zu sortieren und versucht, aktiv Beziehungsmuster am Beispiel der beobachteten Ereignispunkte auszuprobieren (was z.B. die Evolutionsbiologie tut), dann kann man diese Strukturen und Prozesse erkennen, und dann kann man als Beobachter Anfangshaft begreifen, dass hier ein Beziehungsmuster R+_zelle vorliegt, das etwas ganz Außerordentliches, ja Einzigartiges im ganzen bekannten Universum darstellt.

Fortsetzung folgt

Einen Überblick von allen Beiträgen des Autors cagent in diese blog nach Titeln findet sich HIER.

PHILOSOPHIESOMMER 2016 IN DER DENKBAR FRANKFURT

Alltag, Visionen der Wissenschaft, und die antike Philosophie: müssen hier Köpfe rollen oder gibt es neue gedankliche Fusion?

Sind Sie neugierig, oder meinen Sie, etwas beitragen zu können?

Kommen Sie dazu.

Geben Sie ihrer Eitelkeit drei Stunden Urlaub und lassen Sie zu, dass Sie in der Andersartigkeit vielleicht etwas Neues entdecken.

ORT:

DENKBAR Frankfurt
Spohrstrasse 46a

(Achtung: Parken schwierig! Man muss wirklich im Umfeld suchen)

PROGRAMMFORMAT

Moderation: Gerd Doeben-Henisch

16:00 Begrüßung

16:05 Kleine Performance aus dem PHILOSOPHY-IN-CONCERT Experiment

16:15 Eingangsüberlegungen

16:30 Erste offene Gesprächsrunde (simultan Erstellung eines Begriffsnetzwerkes)

17:30 Blubberpause (Jeder kann mit jedem reden; Essen und Trinken)

18:00 Zweite offene Gesprächsrunde (simultan Erstellung eines Begriffsnetzwerkes)

18:45 Schlussstatements

19:00 Ende

Langsames Wegdiffundieren der Teilnehmer ….

ERINNERUNGEN…

In der Regel erscheint im Anschluss an eine Sitzung ein Bericht im Blog cognitiveagent.org, der auch Gelegenheit bietet, sich durch Kommentare oder eigene Beiträge an der Diskussion zu beteiligen.

INHALTLICHE LINIE

Da der Gesprächsprozess – abhängig von den Teilnehmern! – seine eigene Dynamik gewinnt, lässt sich keine genaue Prognose für alle kommenden Themen geben.

Das Rezept für den Start orientiert sich einmal an unseren alltäglichen Erfahrung einer Menschheit im Fiebertaumel zwischen Gewalt, Krieg, Katastrophen auf der einen Seite, eingespannt in ein umfassendes Räderwerk von Wirtschaft, Verwaltungen, Medienströmen, Politikbetrieb, Anwachsen von ‚tiefem Staat‘ mit mittlerweile grenzenloser Überwachung andererseits; dazu eine scheinbar entfesselte Wissenschaft, die – abgeschottet von der Öffentlichkeit – immer neue Details der Materie enthüllt, den Menschen als biochemische Masse sieht, deren Tage gezählt sind, und in automatisierten Produktionsprozessen denkt, die mit bekannten Wertesystemen kaum noch etwas zu tun haben. Und dann, man wagt es kaum zu sagen, gab es einen alten, sehr alten Philosophen, der mindestens 1800 Jahre lang das Denken In ganz Europa (Westen wie Osten; christliche Theologie genauso wie die islamische Theologie!) geprägt hat, Aristoteles, der heute auf allen Gebieten als abgeschrieben gelten kann. Und doch, schaut man sich die großen Lücken an, die die moderne Wissenschaft mit sich herumschleppt, kann man ins Grübeln kommen. Die Zukunft ist niemals einfach nur die Wiederholung des Gestern. Aber sie ist auch niemals das total ganz andere. Die biologische Evolution praktiziert das Modell der Zähmung des Zufalls durch Erinnerung; das Ergebnis nach ca. 4 Mrd Jahren sind u.a. wir, der homo sapiens. Es ist schwer zu verstehen, bis heute. Manche wollen es auch gar nicht verstehen…

ARCHIV

Wer sich für die bisherigen philosophischen Gespräche unter der Überschrift ‚Philosophiewerkstatt‘ interessiert, ist eingeladen, die Erinnerungsseite zu besuchen. Hier gibt es Berichte von den zurückliegenden Diskursen.

K.G.DENBIGH: AN INVENTIVE UNIVERSE – Relektüre – Teil 1b – Homo sapiens als Zeitmaschine

K.G.Denbigh (1975), „An Inventive Universe“, London: Hutchinson & Co.

RÜCKBLICK

1. Dies ist eine direkte Fortsetzung von Teil 1 der Relektüre von Kenneth George Denbighs Buch „An Inventive Universe“.

2. Wie jeder sofort feststellen kann, der das erste Kapitel von diesem Buch direkt liest, habe ich bislang eigentlich weniger die Position von Denbigh selbst dargestellt als vielmehr meine eigenen Gedanken, die die Lektüre in mir angestoßen hatten. Daher soll hier, der Vollständigkeit halbe, eine Skizze der Position von Denbigh nachgeholt werden.

MULTIDISZIPLINÄR

3. Das Faszinierende an diesem ersten Kapitel mit dem Titel ‚Konstruktion der Zeit‘ ist, dass Denbigh als Theoretiker der Thermodynamik hier auch Erfahrungsbereiche zu Wort kommen lässt, die abseits der Physik liegen: Alltagserfahrung, Entwicklungspsychologie und Philosophie. Diese setzt er dann mit den Erkenntnissen der Physik in Beziehung.

ALLTAGSERFAHRUNG

4. Im Komplex Alltagserfahrung, der sich mit den philosophischen Erkenntnissen überlappt, geht es um Phänomene wie ‚Konstanz‘, ‚durchhaltende Identität‘ (’sameness‘), ’sukzessiver Charakter‘ der Ereignisse, ’nicht umkehrbar‘, ‚Vorher – Nachher‘, ‚Erinnerbarkeit‘ sowie ‚Gegenwart (= Jetzt), Vergangenheit, Zukunft‘.

5. Vor diesem Hintergrund erscheint die Wirklichkeit veränderlich, mit einer Richtung, die nicht umkehrbar ist. Was immer einmal passiert ist, gegenwärtig ist, jetzt präsent ist, es wird im Gedächtnis aufbewahrt als ’schon mal passiert‘ und damit als ‚vergangen‘. Das ‚Vergangene‘ ist das ‚Erinnerbare‘, ‚Vorstellbare‘, das gedachte Virtuelle, und das ‚Jetzt‘ ist das qualitativ andere, besondere, gegenwärtig Reale. Obwohl der Augenblick als solcher ‚ewig‘ und ‚unendlich‘ erscheint, ist er mit Bezug auf das Erinnerbare punktuell, begrenzt, endlich.

6. Schwierig ist zu sagen, was das ‚Zukünftige‘ ist: sofern es noch nicht passiert ist, ist es nicht erinnerbar, aber auch nicht gegenwärtig.

ENTWICKLUNGSPSYCHOLOGIE

7. Aus Sicht der Entwicklungspsychologie (er erwähntJean Piaget (1896 – 1980)) sind die Zeitbegriffe nicht von Anfang an für einen Menschen verfügbar. Er muss sie lernen. Dazu gehört die Erfahrung der ‚Ko-Existenz‘ von Objekten, ihre ‚Fortdauer‘, die Asymmetrie und Transitivität von Vorher- und Nachher-Beziehungen oder der interpretative Charakter von Beziehungen zwischen A und B: verursacht A das B oder umgekehrt?

PHILOSOPHIE

8. In der Philosophie identifiziert er zwei Meinungsgruppen: die A-Theoretiker (erwähnt werden C.D.Broad, A.N.Prior) benutzen als Basis die Begriffe ‚Vergangenheit, Gegenwart und Zukunft‘ mit der Zusatzannahme, dass sich diese Begriffe dynamisch verschieben, da sich die Gegenwart verschiebt. Was gerade noch Gegenwart war, das ist jetzt Vergangenheit.

9. Die B-Thoretiker (erwähnt werden H.Weyl, B.Russel, A.Grünbaum, J.J.C.Smart) benutzen die Beziehung ‚Vorher-Nachher‘ und gehen davon aus, dass alle Ereignisse ‚gleich real‘ sind; unabhängig vom Bewusstsein gibt es keine Vergangenheit, Gegenwart oder Zukunft. Diese Position erscheint damit bezüglich der Zeit als ’statisch‘.

PHYSIK

10. Diese philosophischen Positionen spiegeln auch ein wenig die Positionen in der Physik wieder: einerseits gibt es Theorien (Newtonsche Mechanik, Quantenmechanik, Elektromagnetismus), die invariant sind bezüglich der Zeit (Prozesse sind umkehrbar; die Zeit-variable kann ohne Einschränkung als ‚+t‘ oder als ‚-t‘ benutzt werden); dann gibt es aber auch Theorien (Thermodynamik, statistische Thermodynamik, Wellentheorie), die sich auf Prozesse beziehen, die nicht invariant sind bezüglich der Zeit, da sie (nach bisherigen empirischen Feststellungen) unumkehrbar sind.

11. Was ist jetzt wahr? Gibt es unterschiedliche physikalische Wahrheiten?

GERICHTETHEIT DER ZEIT

12. Denbigh bietet folgende Gedanken an: Da es ja tatsächlich empirische Prozesse gibt (im kleinen wie auch im kosmischen Maßstab), die nicht zeitinvariant sind, können die zeitinvarianten Theorien nicht allgemeingültig sein. Tatsächlich ist es auch so, dass bei Anwendung von zeitinvarianten Modellen jeweilige Startbedingungen (Anwendungsbedingungen, ‚boundary conditions‘) berücksichtigt werden müssen. Damit eine Folge von Zuständen (S0, …, Si, …, Sn) in beide Richtungen gerechnet werden kann, müssen bestimmte Annahmen gemacht werden. Und er vermutet, dass es diese Annahmen sind, die die Invarianz soweit modifizieren, dass sie letztlich aufgehoben ist. Er sieht hier einen ‚Mangel an Symmetrie‘ (‚lack of symmetry‘), was dann auf ein Argument für die ‚Gerichtetheit der Zeit‘ hinausläuft.

13. Vor diesem Hintergrund sieht es Denbigh auch als ein indirektes Argument für die Gerichtetheit der Naturprozesse an, dass die komplexe menschliche Zeitwahrnehmung (Zusammenspiel von aktueller Wahrnehmung und Gedächtnis für Vergangenes) ja nicht aus dem Nichts kommt, sondern ein Produkt der biologischen Evolution ist, die speziell jene Eigenschaften in einem biologischen Organismus fördert, die den Eigenschaften des Naturprozesses möglichst nahe kommen. In der menschlichen Wahrnehmung gibt es eine quasi eingebaute Richtung in den Ereignissen. Dazu kommt, dass biologische Prozesse auf allen Ebenen (phylogenetisch, ontogenetisch und als Erhaltung des Gleichgewichts) gerichtete Prozesse sind.

14. Für Denbigh ist das Phänomen des Bewusstseins in diesem Kontext eindeutig ein natürliches Phänomen, ein Teil der Natur. (vgl. S.43,44)

DISKUSSION

15. Am Ende des ersten Kapitels zur ‚Konstruktion der Zeit‘ überwiegen die Argumente (subjektiv wie objektiv), dass die zeitliche Dimension als ‚gerichtet‘ erscheint, als ’nicht umkehrbar‘.

Physikalisch gibt es keine Zeit

16. Ferner ist auch deutlich, dass es wenig Sinn macht, unabhängig vom Menschen über Zeit zu sprechen, da Zeit nicht als direktes physikalisches Objekt vorkommt. Physikalisch gesehen ‚existiert‘ die Zeit nicht, sie kommt nicht vor, sie ist letztlich nicht messbar. Was wir messen sind unsere eigenen ‚Uhren‘, die wir gebaut haben, um Ereignissen Uhrenereignisse zuzuordnen, mit deren Hilfe wir indirekt Naturvorgänge ‚messen‘. Weder die Uhrenereignisse als solche noch das, was wir da messen, ist ein originärer physikalischer Gegenstand.

17. Mindestens der homo sapiens als biologisches Wesen wurde im Laufe von vielen Milliarden Jahren Entwicklungszeit so ‚ausgelegt‘, dass er die aktuelle Wahrnehmung (Jetzt, Gegenwart) mit Hilfe eines verbundenen Gedächtnisses ‚übersteigen’/ ‚überwinden’/ ‚transzendieren‘ kann, indem er aktuelle Ereignisse ’speichern‘ und dann wieder ‚aufrufen’/ ‚erinnern‘ kann. Damit wird die aktuelle Gegenwart sichtbar als das ‚Element‘ einer ‚Folge‘ von Ereignissen‘, die sich idealisiert als eine ‚Vorher-Nachher‘ Folge konstruieren lässt. Alles, was nicht Gegenwart ist, ist Vergangenheit. Mit dem Vorher-Nachher ist die Folge gerichtet. Das biologische System homo-sapiens ist also so gebaut, dass es alle Ereignisse als ‚gerichtet‘ wahrnimmt.

Homo sapiens als Zeitmaschine

18. Man kann also sagen, dass mindestens das biologische System Homo sapiens insofern eine ‚Zeitmaschine‘ ist: der Homo sapiens transformiert die Naturereignisse ‚automatisch’/ ‚unbewusst‘, ‚vor-bewusst‘ in eine gerichtete Ordnung, die er dann als ‚Zeit‘ ‚empfindet’/ ‚wahrnimmt‘. So gesehen gibt es Zeit nicht in der Natur als solcher sondern erst in der ‚Zeitmaschine‘ Homo sapiens, die wie ein spezieller komplexer Sensor für ‚Gerichtetheit der Ereignisse‘ wirkt. Ohne den Homo sapiens gibt es keine Zeit; es gibt nur Prozesse, die man physikalisch als ‚physikalisch gerichtet‘ charakterisieren könnte. Die Ereignisse selbst haben aber keine ‚Zeitwahrnehmung‘ und unabhängig von diesen Prozessen gibt es keine Instanz, die sich explizit mit dieser ‚Gerichtetheit‘ beschäftigt. Die Gerichtetheit liegt ‚im Prozess‘, nicht mehr.

19. Tatsächlich kommt beim Homo sapiens als Zeitmaschine noch ein weiteres Moment hinzu, das wichtig ist. Mit der aktuellen Wahrnehmung und dem Gedächtnis für vergangenes Aktuelles ist zwar das ‚Fundament‘ für eine Wahrnehmung von ‚Zeit‘ gegeben, aber erst mit der zusätzlichen ’symbolischen Repräsentation‘ von aktuellen wie erinnerten Ereignissen gewinnt diese grundlegende Fähigkeit ihre volle Bedeutung. Aufgrund des sehr beschränkten Arbeitsgedächtnisses des Homo sapiens kann er komplexere Sachverhalte nur dann sichtbar machen, erkennen und denken, wenn er es schafft, diese mit Hilfe einer Sprache (Zeichen, Gesten, Symbole, …) für sich selbst und für andere zu repräsentieren. Allein schon die Einführung von Zahlzeichen für größere Mengen von Gegenständen war eine deutliche Erweiterung seiner Erkenntnis- und Kommunikationsfähigkeit.

Zur Fortsetzung klicke HIER.

QUELLEN

1. Kenneth George Denbigh (1965 – 2004), Mitglied der Royal Society London seit 1965 (siehe: https://en.wikipedia.org/wiki/List_of_Fellows_of_the_Royal_Society_D,E,F). Er war Professor an verschiedenen Universitäten (Cambridge, Edinburgh, London); sein Hauptgebet war die Thermodynamik. Neben vielen Fachartikeln u.a. Bücher mit den Themen ‚Principles of Chemical Equilibrium, ‚Thermodynamics of th Steady State‘ sowie ‚An Inventive Universe‘.

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

K.G.DENBIGH: AN INVENTIVE UNIVERSE — Relektüre — Teil 1

K.G.Denbigh (1975), „An Inventive Universe“, London: Hutchinson & Co.

WARUM DIES BUCH?

1. In meiner Lektüre zum Thema Thermodynamik bin ich mehrfach über den Namen Denbigh gestolpert. Ich habe dann versucht, ein Buch von ihm zu bekommen und wurde angezogen von dem Titel ‚An Inventive Universe‘, veröffentlicht genau 40 Jahre vor heute. Schon das Lesen der ersten Seiten erzeugte Hochspannung und so versuche ich hier, die Ideen von ihm, und was sie in mir angesprochen und ausgelöst haben, wieder zu geben und zu diskutieren. Das Besondere an diesem Buch scheint mir darin zu liegen, dass es zwar eine große fachliche Tiefe im Bereich der Thermodynamik ausstrahlt, zugleich aber eine Form von methodischer Bewusstheit und wissenschaftsphilosophischer Reflexion erkennen lässt, die eher selten ist. Solch Bücher sind geradezu kostbar. Außerdem schreibt er in einem gut lesbaren Stil.

ZUR ERKENNTNISTHEORIE DER ZEIT

Implizite Voraussetzungen der Zeitwahrnehmung bei Denbigh - Kap.1

Implizite Voraussetzungen der Zeitwahrnehmung bei Denbigh – Kap.1

2. Das vorausgehende Schaubild versucht, die wichtigsten impliziten Voraussetzung der Zeitwahrnehmung und des darauf aufbauenden Redens über die Zeit sichtbar zu machen, wie sie Denbigh in seinem ersten Kapitel aufdeckt. Wichtig: dies ist meine Interpretation von Denbighs Text; andere mögen in diesem Text anderes Aussagen herauslesen.

DAS JETZT

3. Das Reden über die Zeit enthält in jeder Sprache eine sehr reiche Ausprägung an sprachlichen Mitteln. Hier sei nur die zentrale Klassifizierung in ‚Jetzt‘ (’now‘), ‚Vorher‘ und ‚Nachher‘ aufgegriffen, die mit den Begriffen ‚Vergangenheit‘, ‚Gegenwart‘ und ‚Zukunft‘ korrelieren.

4. Von all diesen Aspekten kommt dem ‚Jetzt‘ eine besondere Rolle zu, da es den Ankerpunkt für alle anderen zeitlichen Einordnungen bildet. Ohne ein ‚Jetzt‘ gibt es kein ‚früher‘ und kein ’später‘.

5. Das ‚Jetzt‘, die ‚Gegenwart‘, ist Teil der subjektiven Wahrnehmung, die wiederum Teil des individuellen Bewusstseins ist. Im Schaubild sind die Anteile der bewussten Wahrnehmung dunkler dargestellt; alle andere ist im Prinzip empirisch beobachtbar (aber nicht vollständig, z.B. die auch nicht Gedächtnisinhalte).

6. Im ‚Jetzt‘ finden wir uns vor mit ‚Objekten‘, die ‚räumlich angeordnet‘ sind.

7. Wir wissen heute, dass unser Sinnesapparat die Repräsentation körperexterner Ereignisse in Zeitscheiben unterschiedlicher Länge zerlegt. Deren Inhalte können begrenzt weiter verarbeitet und ‚gespeichert‘ werden. Dies ist eine Form der Diskretisierung der Wirklichkeit, die es erlaubt, dass Zeitscheiben miteinander verglichen werden können.

8. Wir wissen ferner, dass die ‚Inhalte‘ der sensorischen Zeitscheiben im Rahmen ihrer möglichen neuronalen Verarbeitung letztlich unterschiedlich ‚abstrahiert‘ und miteinander ‚verrechnet‘ werden können. Grundsätzlich lassen sich verarbeitete Gedächtnisinhalte bezüglich ihres ‚Nacheinanders‘ in der Verarbeitung im begrenzten Umfang auch als ‚Vorher – Nachher‘ klassifizieren.

9. Aufgrund unserer Gedächtnisstruktur können wir individuell-subjektiv ‚Veränderungen‘ von einer Zeitscheibe zur nächsten in begrenztem Umfang feststellen. Subjektiv ist die aktuelle Wahrnehmung immer das Jetzt, wobei das Jetzt sich durch die Dynamik der Wahrnehmung kontinuierlich ‚verschiebt‘. Das, was ‚gerade jetzt‘ war ist im nächsten Moment ‚Vorher‘. Das ‚Jetzt‘ baut sich im Millisekundenbereich kontinuierlich immer wieder neu auf. So gesehen ist das Jetzt ein ‚dynamisches Jetzt‘, was kontinuierlich erzeugt wird (Bildhaft: wir haben eine Linie, auf der sich ein Punkt bewegt, und dieser Punkt ist unser Jetzt. Für und ist das Jetzt immer das ‚gleiche Jetzt‘, aber von außen betrachtet rennt das Jetzt durch einen Ereignisstrom, der als solcher veränderlich ist).

10. Durch den dynamischen Charakter des Jetzt wird alles, was ‚Gegenwart‘ war, in Millisekundengeschwindigkeit zur ‚Vergangenheit‘; schon Vergangenes wird ’noch mehr Vergangen‘; es ‚entfernt‘ sich vom Jetzt.

11. Während die gewöhnlichen ‚Objekte‘ im ‚Raum‘ uns unmittelbar gegeben scheinen, ist die ‚Veränderung‘ der Dinge etwas, was nicht direkt als Objekt, also nicht als ‚primäres Objekt‘, nicht als ‚körperexternes Objekt‘, vorkommt, sondern nur ‚indirekt‘, ‚abgeleitet‘ als Information, die aus dem Vorhandensein unterschiedlicher Zeitscheiben ‚herausgerechnet‘ wird. Das, was wir subjektiv als ‚Veränderung‘ phänomenal erleben, ist das Ergebnis neuronaler Aktivitäten ‚hinter dem Bewusstsein‘. Dieser Wahrnehmung von Veränderung ist konstitutiv für unsere bewusste Weltwahrnehmung der Welt (sie ist überlebensnotwendig, sie ist vorteilhaft), sie ist aber nicht direkt, explizit als primäres Objekt gegeben. Nur insoweit Menschen die gleiche Wahrnehmung von Veränderungen ‚in sich‘ ‚eingebaut‘ haben, können sie sich untereinander über Veränderungen in der Welt verständigen.

12. Wenn ein Mensch in einem bestimmten Augenblick auf einen Zettel schreibt: ‚Jetzt regnet es‘, und etwas ’später‘ hat es aufgehört, zu regnen, dann empfindet man den geschrieben Satz ‚Jetzt regnet es‘ als ‚falsch‘. Im aktuellen Jetzt regnet es nicht mehr (ein Beispiel aus Hegels Phänomenologie).

KÖRPEREXTERNE OBJEKTVE ZEIT

13. Will man solche Widersprüchlichkeiten verhindern, bräuchte man extern zur ’subjektiven Zeit‘ eine ‚körperexterne objektive Zeit‘, die es erlauben würde, Ereignisse ‚überindividuell‘ oder ‚invariant gegenüber dem individuellen Jetzt‘ markieren zu können. Um solche gemeinsame objektive individuell-invariante Zeitpunkte zur Verfügung zu haben, wurden schon sehr früh ‚periodische Prozesse‘ in der körperexternen Zwischenwelt identifiziert, die im Prinzip allen zugänglich sind, und die man daher für ‚Zeitangaben‘ nutzen konnte. Z.B. der Tag-Nacht-Rhythmus, die Jahreszeiten, der Mondzyklus, Ebbe und Flut, der Sonnenstand, usw. später entdeckte man mechanische Uhren oder chemische, physikalische Prozesse im Kleinen (atomare Prozesse, ‚Atomuhren‘), die man nutzen konnte. Körperexterne periodische Prozesse eignen sich somit als Produzenten periodischer Ereignisse, die man zählen kann, und mit denen man dann ‚Reihen von Zeitpunkten‘ repräsentieren kann, auf die sich jeder in gleicher Weise beziehen kann.

14. Solche Vorrichtungen zum Erzeugen und Zählen von periodischen Ereignissen nennt man eine ‚Uhr‘. Solange man ‚die gleiche Uhr‘ benutzt, benutzen alle die ‚gleichen Zeitangaben‘. Bei verschiedenen Uhren (heute auch bei verschiedenen Computern, die Informationen austauschen), muss man auf die angemessene Synchronisation achten. Dies kann zu einem erheblichen Problem werden, wenn die Signale, die man für die Synchronisierung benutzt, für ihre ‚Reise‘ selber ‚Zeit‘ brauchen. Dazu kommt die ‚Genauigkeit‘ einer Uhr: im Laufe der Zeit kann es Schwankungen geben in den Perioden, Abschwächungen; diese ‚verzerren‘ dann die Zeitangaben. Ferner wird es schwierig bei ‚großen Mengen‘ von ‚Zeitereignissen‘ (Wochen, Monate, Jahre, …). Wann fängt man an zu zählen? Wann ist das Jahr ‚0‘. Bevor es moderne Uhren gab, gab es schon zahlreiche unterschiedlich Kalender in unterschiedlichen Regionen dieser Welt. Diese wiederum wurde immer wieder durch ’neue Kalender‘ ersetzt. Jahresangaben sind daher immer relativ zum gültigen Kalender. Wie sich die Kalender untereinander verhalten, ist eine Wissenschaft für sich. Dazu kommt, dass große Perioden (Monate, Jahre) immer noch nach astronomischen Ereignissen gemessen werden. Diese astronomische Zeit muss mit der Zeit der technischen Uhren ‚abgeglichen‘ werden.

15. Wie man sieht, ist die Welt der ‚objektiven‘ Zeit ein komplexes Gebilde aus natürlichen und technischen periodischen Ereignissen mit unterschiedlichen Koordinierungen und Konventionen. Sofern es sie gibt, kann man sie dazu nutzen, die individuell-subjektive Zeit auf diese ‚objektive‘ Zeit abzubilden. Statt einfach zu schreiben ‚jetzt regnet es nicht‘ kann man dann schreiben ‚Am 24.September 2015 um 08:15h regnete es in Schöneck-Kilianstädten in der Strasse XYZ nicht‘ und wenige Minuten später könnte man schreiben ‚Am 24.September 2015 um 08:25h regnete es in Schöneck-Kilianstädten in der Strasse XYZ‘. Beide Sätze wären ‚wahr‘ mit Bezug auf den Ort und die Zeit und würden sich nicht widersprechen.

ZEIT UND GEDÄCHTNIS

16. Wie wir wissen, können wir (wenn unser Gedächtnis so funktioniert, ‚wie es üblich ist‘), vieles von dem, was wir aus einem individuell-subjektiven Jetzt in unser Gedächtnis ‚verschoben haben‘ (keine 1-zu-1 Abbildung!), wieder ‚erinnern‘. Wie zahlreiche psychologische Experimente zeigen, kann diese Erinnerung (sofern man sie mit unabhängigen historischen Zeugnissen vergleichen kann), von der ‚dokumentierten Realität‘ ziemlich weit abweichen (Die Bezugnahme auf sogenannte Zeitzeugen, speziell nach vielen Jahrzehnten vom tatsächlichen Ereignis entfernt, ist von daher ziemlich problematisch). Es ist daher sehr ratsam, dass alle diejenigen Ereignisse, die irgendwie für längere Zeit wichtig sind (Geburtsurkunden, rechtliche Vereinbarungen,…), ‚objektiv dokumentiert‘ werden, so dass man sie ’nachlesen‘ kann (jeder wird sicher schon die Erfahrung gemacht haben, das er/ sie, wenn man unverhofft auf alte Briefe, Fotos, Tagebuchaufzeichnungen oder dergleichen stößt, sich oft wundert, dass man dies geschrieben/ gedacht/ erlebt hat, etwas, das man eigentlich ‚vergessen‘ hatte und das einem im Nachhinein so ‚fremd‘ erscheint).

RELATIVITÄTSTHEORIE

17. In diesem Zusammenhang sei auch Einsteins Relativitätstheorie genannt (vgl. (Denbigh 1975:49)). Bezogen auf die Situation, dass ein Beobachter A von einem entfernten Ereignis X ‚informiert‘ werden möchte bzw. er dieses Ereignis beeinflussen will, gilt die – heute weitgehend akzeptierte – Annahme, dass alle Informationen nicht schneller als mit Lichtgeschwindigkeit (299 792 458 m/s) ‚reisen
können. Abhängig vom Abstand D zwischen Beobachter A und Ereignis X benötigt die Information also einen bestimmte Zeit T(X,A)=txa. Hat der Beobachter eine endliche Lebenszeit von LT(A)=ta und ist ta < txa, dann wird der Beobachter niemals etwas von dem Ereignis X erfahren, da er nicht lange genug lebt. Andererseits, lebt der Beobachter A mit seiner kurzen Lebenszeit geraded dann, wenn die Informationen nach langer Reise bei ihm eintreffen, dann wird er ‚aktuell‘ über etwas informiert, was schon ’seit langer Zeit‘ nicht mehr existiert. Die aktuelle Wahrnehmung gaukelt also ein Ereignis X vor, das schon lange vergangen ist. Ferner, wenn wir einen Beobachter B haben, der viel näher am Ereignis X ist (Abstand D2, D2 < D1), dann hat dieser möglicherweise eine aktuelle Wahrnehmung von X, während A ’noch nichts von X weiß‘. Wenn B nun voller Begeisterung über seine Beobachtung von X eine Botschaft an A sendet, kann es sein, dass A , wenn die Information von B eintrifft, entweder noch gar nicht lebt oder schon gelebt hat. Falls B nah genug an A lebt, erreicht die Information A ‚zu Lebzeiten‘. Bei hinreichendem Abstand ist der ‚Ereignishorizont‘ von A und B jedenfalls verschieden. Das, was für B ‚aktuell‘ ist, existiert für A möglicherweise noch gar nicht oder nicht mehr, und umgekehrt. Sollten sich A oder B oder beide zusätzlich noch ‚im Raum bewegen‘, dazu mit unterschiedlicher Geschwindigkeit, wird alles zwar etwas komplizierter, aber ändert nichts an den Grundtatsachen, dass Ereignisräume von Beobachtern an ihre relative Position, an ihre individuelle ‚Lebenszeit‘ sowie an die maximale Nachrichtengeschwindigkeit gekoppelt sind. Wenn ein Philosoph und Naturwissenschaftler wie Aristoteles irgendwann zwischen -384 und -322 etwas beobachtet, gedacht und aufgeschrieben hat, und jemand liest ca. 1500 Jahre nach ihm davon, dann ist dies auch eine Information, die zu einem Zeitpunkt ‚abgesandt‘ wurde, deren Ereignisse 1500 Jahre später ‚vergangen‘ sind; Gegenstände, Ortschaften, Menschen, Ereignisse seiner Beschreibung existieren nicht mehr; 2300 Jahre später erst recht nicht. Für uns sind die Texte von Aristoteles wie Nachrichten aus einer vergangenen, versunkenen Welt. Ohne die Texte wüssten wir nichts mehr von ihm und dem, was er beobachtet und gedacht hat.

Zur Fortsezung klicke HIER

QUELLEN

1. Kenneth George Denbigh (1965 – 2004), Mitglied der Royal Society London seit 1965 (siehe: https://en.wikipedia.org/wiki/List_of_Fellows_of_the_Royal_Society_D,E,F). Er war Professor an verschiedenen Universitäten (Cambridge, Edinburgh, London); sein Hauptgebiet war die Thermodynamik. Neben vielen Fachartikeln u.a. Bücher mit den Themen ‚Principles of Chemical Equilibrium‘, ‚Thermodynamics of th Steady State‘ sowie ‚An Inventive Universe‘.

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 5

VORGESCHICHTE

1. In einem ersten Beitrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 1 hatte ich geschildert, wie ich zur Lektüre des Textes von Avicenna gekommen bin und wie der Text grob einzuordnen ist.
2. In einem zweiten Beitrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 2 ging es um die Frage, warum überhaupt Logik? Avicenna führt erste Unterscheidungen zu verschiedenen Wissensformen ein, lässt aber alle Detailfragen noch weitgehend im Dunkeln.
3. Im Teil AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 3 ging es um einfache und zusammengesetzte Begriffe, und bei den einfachen Begriffen um ‚individuelle‘ und ‚universelle‘. Schon hier zeigt sich der fundamentale Unterschied zwischen der antiken und der modernen-formalen Logik. In der antiken Logik wird die Ausdrucksebene E – und einer sich daran manifestierenden Folgerungslogik – immer in Verbindung mit einer zugehörigen Bedeutungsstruktur gesehen, die sich an einer Objektstruktur O festmacht. Die moderne formale Logik kennt zwar auch ‚Semantiken‘ und ‚Ontologien‘, diese sind aber ’sekundär‘, d.h. es werden nur solche ‚formalen Semantiken‘ betrachtet, die zum vorausgesetzten syntaktischen Folgerungsbegriff ‚passen‘. Dies sollte dann später an konkreten Beispielen diskutiert werden. Hier liegt der Fokus auf der antiken Logik im Sinne Avicennas.
4. Im nächsten Abschnitt VICENNAS ABHANDLUNG ZUR LOGIK – Teil 4 knüpft Avicenna an den zuvor eingeführten Begriff des ‚universellen‘ Begriffs an und betrachtet jetzt solche als ‚universell‘ bezeichneten Ausdrücke in einem Ausdruckskontext von aufeinanderfolgenden Ausdrücken . Alle diese Ausdrücke könnte man im Sinne der antiken Logik auch als ‚Urteile‘ bezeichnen, durch die einem bestimmten Ausdruck durch andere Ausdrücke bestimmte Bedeutungen (Eigenschaften) zu- oder abgesprochen werden. Hier unterscheidet er die Fälle eines ‚wesentlichen‘ Zusammenhanges zwischen zwei Begriffen und eines ’nicht wesentlichen‘ – sprich ‚akzidentellen‘ – Zusammenhangs.

BEGRIFFSINFLATION

5. Im nächsten Abschnitt führt er mindestens fünf neue technische Begriffe ein, deren Erklärung partiell unvollständig bleibt. Dies ist sehr schade. Aber, versuchen wir zu verstehen, was noch verstehbar ist.
6. Es sind die Begriffe ‚Genus‘ (Gattung?), ‚Spezies‘ (Art?), Differenz, allgemeine und spezielle Akzidens, und den Begriff ‚Kategorie(n)‘.
7. Er beginnt die Diskussion mit der ‚universellen Bedeutung‘, von der er behauptet, man könne hier 5 Typen unterscheiden (ohne sie direkt anzugeben). Drei Typen von universellen Bedeutungen seien ‚wesentlich‘ und zwei ’nicht-wesentlich‘, also ‚akzidentell‘.
8. Seine Erklärungen zu den ‚wesentlich universellen‘ Bedeutungen wiederholt in gewisser Weise das bislang Gesagte, indem er das Klassifizierungsmerkmal als Frage formuliert: ‚Zu welcher Art Y von Dingen gehört eine Entität X‘? Die Antwort wäre allgemein: ‚X ist ein Y‘, eventuell noch ergänzt um charakteristische Eigenschaften wie ‚Y ist/ hat/kann … Z‘. Letztlich ist dies, wie Avicenna feststellt, eine Definition, bei der etwas Neues (das X) durch Bezugnahme auf etwas schon Bekanntes (Y) erklärt wird. Y ist eine notwendige Voraussetzung für X.
9. Als Beispiel führt er u.a. an, Frage: ‚Was ist ein X=Mensch?‘, Antwort: ‚X=Mensch ist ein Y=Lebewesen‘ (‚animal‘).
10. Allerdings benutzt er auch Beispiele, die von dem ‚üblichen‘ Konzept eines Dings (einer ‚Entität‘ (engl.: ‚entity‘)) abweichen. Statt von ‚Mensch‘, ‚Kuh‘ und ‚Pferd‘ spricht er auch von ‚Schwarzheit‘, ‚Rotheit‘ und ‚Weisheit‘ bzw. auch von ‚Drei‘, ‚Fünf‘ und ‚Zehn‘.
11. Bedeutungen X = {‚Schwarzheit‘, ‚Rotheit‘, ‚Weisheit‘} beantwortet er mit Y=Qualitäten. Bedeutungen X = {‚Drei‘, ‚Fünf‘, ‚Zehn‘} beantwortet er mit Y=Zahlen.
12. Etwas später benutzt der die Bedeutungen ‚Substanz‘, ‚Qualität‘ und ‚Quantität‘ als universelle Begriffe für die ersten Beispiele, so dass man lesen kann/ muss Wenn X= {‚Mensch‘, ‚Kuh‘ und ‚Pferd‘}, dann Y= ‚Substanz‘, wenn X = {‚Schwarzheit‘, ‚Rotheit‘, ‚Weisheit‘} dann Y=Qualität, wenn X = {‚Drei‘, ‚Fünf‘, ‚Zehn‘} dann Y=Quantität.
13. Von den ‚wesentlichen universellen‘ Begriffen ‚Substanz‘, ‚Qualität‘ und ‚Quantität‘ sagt Avicenna, dass sie sich nicht weiter verallgemeinern lassen, d.h. wenn X=Substanz, dann gibt es kein allgemeineres Y, auf das sich dieser universelle Begriff zurückführen lässt (und entsprechend für X=Qualität‘ und X=Quantität). Deshalb nennt Avicenna diese universellen Begriffe, die wesentlich keinen anderen universellen Begriff mehr ‚über sich‘ haben, ‚Kategorien‘, ohne dass er diesen Zusammenhang explizit benennt; er tut es einfach.
14. Als Beispiele für ‚akzidentelle universelle‘ Begriffe führt er an, dass ‚fest‘ (engl.: ’solid‘) allgemeiner sei als ‚Lebewesen‘, aber spezieller als ‚Substanz‘; entsprechend sei ‚Zahl‘ allgemeiner als ‚gleich‘ (engl.: ‚even‘), aber spezieller als ‚Quantität‘. ‚Gleichheit (engl.: ‚eveness‘) sei allgemeiner als ‚vier‘, doch spezieller als ‚Quantität‘.
15. Dann führt er die Begriffe ‚Genus‘ und ‚Spezies‘ ein mit der Formulierung, dass dasjenige, das allgemeiner ist, die speziellere Spezies sei, und umgekehrt, dass dasjenige, was das speziellere Universelle ist, ist die allgemeinere Spezies. Diese Formulierungen sind nicht eindeutig.
16. Später sagt er noch, dass es Dinge gibt, die sowohl Genus und Spezies sein können oder Dinge, die nur Genus sind, und nicht unter irgendeiner Spezies sind.
17. Dann folgt die Feststellung, dass die Begriffe ‚Substanz‘, ‚Qualität‘ und ‚Quantität‘ kein Genus einer Spezies seien; unter ihnen befinden sich nur Instanzen wie ‚Mensch‘, ‚Schwarzheit‘ und ‚vier‘.
18. Aus diesen Beispielen folge die Natur einer Spezies, die kein Genus sein kann, sondern nur Spezies von allen Spezies, die ‚unter‘ ihr kommen.
19. Instanzen eines wesentlichen universellen Begriffs können sich durch akzidentelle Eigenschaften unterscheiden (z.B. angenommen {X1, X2} sind beide Y und X1 ist ’schwarz‘ und X2 ‚weiß‘ und ’schwarz‘. Dann ist die Eigenschaft ’schwarz‘ allgemeiner als X1 und X2, ’schwarz‘ kommt X1 und X2 nicht wesentlich, sondern akzidentell zu, kann aber differenzierend wirken.
20. Abschließend führt Avicenna noch folgende Beispiele an: Jeder universelle Begriff ist entweder Genus, so wie ‚Lebewesen‘, oder Spezies, so wie ‚Mensch‘, oder Differenz, so wie ‚die Fähigkeit zu Sprechen‘, oder ‚allgemein akzidentell‘ so wie ‚Bewegung‘, ‚Schwarzheit‘, ‚Weisheit‘.

INTERPRETATION- ANMERKUNGEN

21. War die Re-Lektüre und einsetzende Interpretation von Avicennas Text bis zu dieser Stelle relativ einfach, so zeigen sich jetzt erste Problemstellungen, die man nicht mehr so einfach ‚verworten‘ kann.
22. Einmal gibt es das Phänomen, dass er Begriffe einführt und benutzt, die nicht – zumindest auf einen ersten Blick – direkt erklärbar sind. Dann werden Zusammenhänge thematisiert, wo man sich die Frage stellen kann, ob er dies wirklich ‚gemeint‘ haben kann oder, falls ja, wie man damit umgehen will.
23. Dies gibt Gelegenheit, kurz ein paar Worte zum ‚Interpretieren‘ zu sagen. Ich werde dabei nicht auf die sehr umfangreiche Literatur zu diesem Thema eingehen (im Bereich Philosophie, Literatur und wissenschaftliche Bibelauslegung gibt es dazu nicht hunderte, sondern sicher tausende von Artikeln und Büchern. Einiges davon musste ich zu früheren Zeiten durcharbeiten). Ich beschränke mich hier auf jene Grundprinzipien, die ich hier anwenden möchte.
24. Die philologischen Fragen, ob die englische Übersetzung hier den arabischen Text korrekt wiedergibt, oder ob gar der arabische Text Überlieferungsfehler aufweist, kann ich hier nicht behandeln. Ich muss den Text nehmen, wie ich ihn vorfinde, und wenn sich für mich Unklarheiten ergeben, kann ich sie nur benennen und versuchen sie zu interpretieren.
25. Was die ‚Interpretation‘ (Auslegung, Deutung, …) des Textes angeht, so gibt es ja mindestens zwei verschiedene Ansprüche: (i) man will die ‚Bedeutung‘ rekonstruieren, die der Autor selbst mit dem verknüpft hatte (also eine Art ‚konservierende‘ Interpretation), oder (ii) man will die Bedeutung des Autors (des Textes) in einem anderen/ neuen Bedeutungsrahmen ‚rekonstruieren‘, ihn quasi von Bedeutungsraum R_Autor in den Bedeutungsraum R_Leser ‚übersetzen‘.
26. Beide Vorgehensweisen haben ihr Recht. Die ‚konservierende‘ Rekonstruktion ist idealerweise eigentlich der erste Schritt und die Voraussetzung für die ‚Neuinterpretation‘. Es ist aber eine offene Frage, ob ein Leser immer und überall über genau die Voraussetzungen in seinem Denken verfügt, dass er den ursprünglichen Bedeutungsraum R_Autor überhaupt eins-zu-eins rekonstruieren kann. Nach ca. 1000 Jahren, die uns von Avicenna trennen, ist es sogar ziemlich unwahrscheinlich, dass wir dies überhaupt noch können.
27. Hier, in dieser Rekonstruktion, werde ich erst gar nicht versuchen, den ursprünglichen Bedeutungsraum R_Autor zu rekonstruieren, da ich niemals wüsste, ob ich mit meinen Überlegungen ‚richtig‘ liege oder nicht. Dies Referenzproblem haben alle wissenschaftlichen Rekonstruktionen alter Texte (dies gilt natürlich auch für das hebräische Alte Testament, das griechische Neue Testament und den arabischen Koran).
28. Im weiteren Verlauf werde ich also die bisherigen Rekonstruktionsannahmen weiter verfolgen. Letztlich ist es eine Art ‚Test‘, ob und wie sich der Text von Avicenna in einem modernen erkenntnistheoretischen Modell ’neu lesen‘ lässt.

DISKUSSION

29. Bisher haben wir folgende allgemeine Annahmen bei der Rekonstruktion des Textes von Avicenna getroffen:
30. Die Ausdruckselemente E einer Sprache L sind nur ‚Zeiger‘, die auf irgendwelche kognitiven Objekte O hindeuten, die im Rahmen der generierten Zeigebeziehung M für die Ausdruckselemente E zu dem werden, was wir ihre Bedeutung nennen.
31. Die kognitiven Objekte O entstehen in einem Erzeugungsprozess, der Eigenschaften X der umgebenden Welt W über sinnliche Wahrnehmungsprozesse perc() und interne Abstraktionsprozesse \alpha als irgendwelche Objekte O klassifiziert. Man könnte von daher auch sagen \kappa = perc \otimes \alpha, oder \kappa(X, O) = O.
32. Wir hatten ferner noch unterschieden zwischen ‚echten‘ Objekten, d.h. solchen Bündelungen von Objekten, die als solche in der umgebenden Welt W ‚vorkommen‘ und und solchen ‚unechten‘ Objekten, die zwar gebildet werden können, die aber immer nur ‚als Teil anderer Objekte‘ auftreten können. Die Definition von ‚wesentlich universellen Objekten‘ von Avicenna deckt sich mit dem Konzept ‚echter Objekte‘ und Avcennas Definition von ‚akzidentellen universellen‘ Objekten deckt sich mit den unechten Objekten, die anderen Objekten zukommen können, aber nicht müssen.

DISKUSSION – KATEGORIEN

33. Avicenna führt dann indirekt das Konzept von ‚(wesentlichen universellen) Kategorien‘ ein, die ich indirekt rekonstruiert habe als solche ‚wesentlich universellen Objekte‘, ‚über die‘ es keine weiteren Verallgemeinerungen mehr gibt. Da er es nur bei einzelnen Beispielen belässt ohne wirkliche Argumentationen bleibt hier einiges offen.
34. Die genannten drei Kategorien erscheinen wie eine Art ‚Meta-Klassifikation‘ über allen möglichen Objekten, so eine Art ‚Typisierung‘ der verschiedenen möglichen Objektbildungen. Versucht man im Bereich der Objektklassifikationen kriterien zu finden, welches Objekt zu welcher Kategorie gehört, wird es aber schnell schwierig.
35. Kategorie ‚Substanz‘: Wann ist ein Objekt eine ‚Substanz‘ und wann ‚Qualität‘ oder ‚Quantität‘? Ein erster Ansatzpunkt wäre zu sagen, dass alle ‚echten‘ Objekte ‚Substanzen‘ sind und alle ‚unechten‘ Objekte ‚Qualitäten‘. Was aber wäre dann mit den ‚Quantitäten‘? Die ‚Anzahl‘ von Objekten (echten wie unechten) ist ja keine ‚Eigenschaft an sich‘, sondern ist eher eine ‚Metaeigenschaft‘, die man vorhandenen (real oder gedachten) Objekten zuordnen kann. Im Vergleich zu Farben, Formen, Tönen usw., die auf Sinneseigenschaften aufsetzen, ist ‚Quantität‘ als Metaeigenschaft eine abgeleitete, sekundäre, abstrakte Eigenschaft, so wie z.B. auch ‚größer/ kleiner‘, ‚vorher/ nachher‘, ‚vorne/ hinten, ‚oben/ unten‘, usw. In allen genannten Fällen gibt es schon irgendwelche Objekte, zwischen denen räumliche, zeitliche – oder sonstige – allgemeine Beziehungen erkennbar sind. Diese indirekten, sekundären, abgeleiteten Beziehungen bilden dann eine eigene Klasse von ‚abstrakten‘ Eigenschaften, von denen die ‚Quantitäten‘ nur eine Teilmenge wären. Wenn also Avicenna schon die Kategorie ‚Quantität‘ bemüht, warum nicht auch ‚Raum‘ und ‚Zeit‘?
36. Alle diese Überlegungen zu ‚Kategorien‘ als zusätzliche Meta-Klassifikationen der generierbaren Objekte setzen allerdings voraus, dass es möglich ist, im Bereich der Objekthierarchie für alle Objekte O solche ‚Kontexte‘ annehmen zu können, durch die sie bzgl. ‚Substanz‘, ‚Qualität‘, ‚Quantität‘, ‚Raum‘ und ‚Zeit‘ charakterisierbar werden. Im bisher verfolgten Modell würde dies bedeuten, dass Objekte nicht nur über ihre ‚direkten‘ sensorischen Eigenschaften K_{s} generiert werden, sondern sie werden von vornherein auch mit minimalen ‚Raumanteilen‘ bzw. in bestimmten ‚Abfolgen‘ ‚gespeichert‘ bzw. sind sensitiv bzgl. Abfolgen ‚erinnerbar‘.

DENKEN ALS KOGNITIVE EVOLUTION

37. Oder, wenn schon, dann noch allgemeiner: der gesamte Objekterzeugungsprozess \kappa mus so beschaffen sein, dass er die fundamentalen Eigenschaften X der umgebenden Welt so in die Objekthierarchie übersetzt, dass (i) echte und unechte Objekteigenschaften hinreichend erhalten bleiben können, dass (ii) räumliche und zeitliche Verhältnisse hinreichend repräsentiert werden können, dass (iii) quantitative Verhältnisse erzeugt werden können (z.B. Aufzählungen und Äquivalenzklassen), dass (iv) neben den Eigenschaften, die ‚gegeben‘ sind (IST, real), auch ’neue‘ Kombinationen erzeugt werden können (Möglichkeit, Potenz, kombinatorischer Raum), und dass (v) neue Kombinationen (Möglichkeiten) mit dem ‚realen Raum‘ verglichen werden können.
38. Sofern dies möglich ist (und alles, was wir über das menschliche Denken heute wissen, bestätigt dies), kann man dann diese Art von Denken als Fortsetzung der biologischen Evolution im Bereich des Denkens (quasi als kognitive Evolution) betrachten, d.h. die biologische Evolution hat – mit ihrem kombinatorischen genetischen Mechanismus – Strukturen geschaffen (Körper mit Gehirn), die in der Lage sind, die an die materiellen Strukturen gebundene Kombinatorik neuer Lebensformen über die Neuronennetze zu dynamisieren, zu beschleunigen, zu flexibilisieren. Mit der Kombinatorik des neuronalen Denkens konnte die biologische Evolution der Entwicklung neuer, leistungsfähigerer Lebensformen einen gewaltigen Schub im einzelnen Organismus verleihen; durch die Möglichkeit symbolischer Kombination können sich die neurologisch erzeugbaren neuen Denkräume zusätzlich direkt miteinander verschränken und die Entwicklung neuer Lebensformen in bis dahin ungeahnte Dimensionen katapultieren.
39. Doch zurück zur vorliegenden Interpretationsaufgabe.

GENUS – SPEZIES

40. Bislang haben wir ansatzweise eine Rekonstruktion des Konzeptes von ‚Kategorien‘ als Meta-Klassifikationen im Bereich der dynamischen Objekthierarchie.
41. Unklar, da widersprüchlich, bleibt bei Avicenna die Verwendung der Begriffe ‚Genus‘ und Spezies‘. Eine erste, einfache, und nachvollziehbare Interpretation wäre die, jedes Objekt als ein ‚Genus‘ zu bezeichnen, das ‚Instanzen‘ besitzt, denen ‚differenzierende‘ Eigenschaften zukommen (wie auch die verschiedenen Genus-Objekte sich voneinander durch Eigenschaften unterscheiden). ‚Spezies‘ wären dann jene voneinander abgrenzbaren Instanzen (vgl. auch Carl von Linné (1707 – 1778), sein Werk ‚Systema Naturae‘), die einem Genus ‚untergeordnet‘ wären. Allerdings kommen die Begriffe ‚Genus‘ und ‚Spezies‘ im Text mehrfach in Verwendungen vor (z.B. auch als ‚Spezies der Spezies‘), die sich – aus meiner Sicht – einer schlüssigen Interpretation entziehen.

ALLGEMEINE UND SPEZIELLE AKZIDENZ

42. Mit den Begriffen ‚allgemeine‘ und ’speziellen‘ Akzidenzien verhält es sich ähnlich: es gäbe eine einfache, nachvollziehbare Interpretation, aber diese deckt nicht alle Verwendungsweisen dieser Begriffe ab.
43. Ausgangspunkt sind ja nicht-zusammengesetzte Ausdrücke mit einer universellen Bedeutung, bei der zwischen ‚wesentlichen‘ und ‚akzidentellen‘ unterschieden wurde. Die ‚akzidentellen universellen Begriffe wurden zuvor schon als ‚unechte Objekte‘ rekonstruiert, die niemals isoliert auftreten können, sondern immer nur als Teile von echten (wesentlichen universellen) Objekten. Insofern sind sie ‚akzidentell‘ und eine informelle abkürzende Redeweise könnte sie als ‚Akzidentien‘ bezeichnen, verstanden als Eigenschaften, die bei einem Objekt auftreten können, aber nicht müssen.
44. Wäre zu klären, was ‚allgemeine‘ von ’speziellen‘ Akzidenzien unterscheidet. Hier nochmals die Beispiele aus dem Text, wonach ‚fest‘ (engl.: ’solid‘) allgemeiner sei als ‚Lebewesen‘, aber spezieller als ‚Substanz‘; entsprechend dass ‚Zahl‘ allgemeiner sei als ‚gleich‘ (engl.: ‚even‘), aber spezieller als ‚Quantität‘, und schließlich dass ‚Gleichheit (engl.: ‚eveness‘) allgemeiner sei als ‚vier‘, doch spezieller als ‚Quantität‘.
45. Die Eigenschaft ‚fest‘ ist nach bisheriger Rekonstruktion klar ein unechtes Objekt, d.h. eine akzidentelle Eigenschaft, die als Teil von echten Objekten auftreten kann. Zu sagen, dass diese akzidentelle Eigenschaft allgemeiner sei als ‚Lebewesen‘, aber spezieller als ‚Substanz‘, macht nicht unbedingt Sinn, genauso wenig wie es Sinn machen würde, Hühner mit Grashalmen zu vergleichen. Es sei denn, es gäbe einen ‚übergreifenden Aspekt‘, auf den sich beide, die Hühner und die Grashalme, beziehen lassen würden.
46. Ich kann in diesem Zusammenhang keinen solchen übergreifenden Gesichtspunkt erkennen. Bestimmte akzidentelle Eigenschaften können bei Objekten auf verschiedenen Stufen der Objekthierarchie auftreten. Hier ein Beziehungsgeflecht zwischen den Eigenschaften konstruieren zu wollen überzeugt mich nicht.

ALLGEMEINE EINSCHÄTZUNG

47. Schon an dieser Stelle der Relektüre von Avicennas Logik deutet es sich an, dass Avicenna viele seiner technischen Begriffe nur unzulänglich erklärt und voneinander abgrenzt. Ein Grund dafür kann sein, dass er die das Konzept der Objekterstehung und der Objekthierarchie als Gegenpol zu den Ausdrücken offenbar nicht als eigenständiges System systematisch entwickelt. In anderen Interpretationsprojekten (z.B. bei Nicolai Hartmann) musste ich die Rekonstruktion irgendwann einfach abbrechen, da der Text in sich irgendwann so widersprüchlich war, dass ein sinnvolles Weiterlesen nicht mehr möglich erschien.

Fortsetzung folgt …

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.