WISSENSCHAFTSPHILOSOPHIE IM ALLTAG. Wahrheit im Dauerversuch

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 26.Nov. 2017
URL: cognitiveagent.org
info@cognitiveagent.org

Autor: cagent
Email: cagent@cognitiveagent.org

INHALT

I Wissenschaftsphilosophie und Wahrheit …1
II Interdisziplinär und Unterschiede …2
III Interdisziplinäres Projekt…2
III-A Einzelvorschläge zum Begriff ’Simulation’ . . . . . . . .3
III-B Vernetzung der Einzelvorschläge . ….3
III-C Formalisierungsversuch . . . . . . . . 4
Weiter zur Wahrheit …7
IV Literaturverweise …8

WORUM ES GEHT

‚Wissenschaftsphilosophie‘ klingt für die meisten sehr abstrakt. Wendet man sich aber dem Alltag zu und betrachtet ein – fast beliebiges – Beispiel, dann kann man
schnell entdecken, dass eine wissenschaftsphilosophische
Sehweise sehr konkret – und auch sehr praktisch – werden
kann. Dies wird in diesem Beitrag illustriert.

PDF

I. WISSENSCHAFTSPHILOSOPHIE UND WAHRHEIT

In einem vorausgehenden Beitrag in diesem Blog mit
der Überschrift ”WAHRHEIT ALS UNABDINGBARER
ROHSTOFF EINER KULTUR DER ZUKUNFT”  wurde
besprochen, welche Mechanismen uns Menschen
zur Verfügung stehen, um wahre Aussagen über
die Welt und uns selbst machen zu können. Die
Blickweise, die hinter diesen Überlegungen stand,
war die der Wissenschaftsphilosophie. Aber was ist
’Wissenschaftsphilosophie’? Warum ist diese Blickweise
so wichtig?

’Wissenschaftsphilosophie’ ist, wie der Name schon
andeutet, ein Teil der philosophischen Blickweise auf die
Welt.

Während sich die Einzelwissenschaften aufgrund ihrer
spezifischen Interessen auf ’Teilgebiete der erfahrbaren
Wirklichkeit’ festlegen und diese im Rahmen des Paradigmas der experimentellen Wissenschaften im Detail erforschen, versteht sich eine philosophische
Blickweise als jene, die nicht von vornherein
Ausgrenzungen vornimmt, sondern alle Phänomene
zulässt, die sich dem menschlichen Bewusstsein zur
Erfahrung geben. Ein philosophisches Denken legt sich
auch nicht auf einige wenige Methoden fest, sondern
erlaubt zunächst einmal alles, was geht.
Eine so verstandene philosophische Blickweise hat
Vor- und Nachteile. Die Nachteile liegen auf der Hand:
der Verzicht auf eine wie auch immer geartete Vorweg-
Zensur von Erfahrung konfrontiert einen Philosophen
von vornherein mit einer solchen Fülle von Phänomen
und Methoden, dass es im Allgemeinen schwer ist,
hier auf einfache und schnelle Weise zu strukturierten
Erkenntnissen zu kommen.

Andererseits, schaut man sich die fortschreitende
Zersplitterung der Einzelwissenschaften an, dann
trifft man auch hier auf eine methodisch bedingte
Vielfalt, die bislang nicht systematisch integriert ist.
Zum aktuellen Zeitpunkt ist es nicht einmal abzusehen,
wann und wie diese immensen, sich gegenseitig
ausschließenden Datengebirge und Teildeutungen, sich
irgendwann zu einem einzigen großen integrierten
Ganzen zusammenfügen lassen lassen.

Die philosophische Blickweise als solche trägt im
Prinzip den Keim der Integration in sich, da sie ja
nicht auf Teilaspekte der Wirklichkeit abonniert ist,
sondern im Prinzip für alles offen ist. So kann sie sich
die Ergebnisse der Einzelwissenschaften vornehmen
und versuchsweise, spielerisch die verschiedenen
Erkenntnisse z.B. zum subjektiven Bewusstsein, zum
objektiven Verhalten oder zum objektiven Körper
aufgreifen, miteinander in Beziehung setzen, und
versuchen, die darin verborgenen Zusammenhänge
sichtbar zu machen.

Philosophen können dies irgendwie machen, oder
sie können sich im Jahr 2017 die denkerischen
Vorarbeiten der Wissenschaftsphilosophen aus den
letzten ca. 150 Jahren zu Nutze machen. Diese haben nämlich spezielle Teilaspekte der Wirklichkeit, des Denkens, der Wissenschaften systematisch untersucht.
Dazu gehören Themen wie Messen, Modellbildung,
logische Argumentation, Überprüfung eines Modells,
Simulation, und vieles mehr. Im Endeffekt haben die
Wissenschaftsphilosophen untersucht, wie das Konzept
einer experimentellen Wissenschaften überhaupt
funktioniert, unter welchen Umständen experimentelle
Theorien wahr sind, und unter welchen Bedingungen
man verschiedene Theorien integrieren kann.

Da das Thema Wissenschaftsphilosophie für sich
sehr umfassend ist und in vielen Bereichen nicht gerade
einfach zu erklären ist, sei an dieser Stelle auf eine solche
umfassende Darstellung verzichtet (Vergleiche dazu z.B.: [Sup79], [Sne79],
[Bal82], [BMS87]). Stattdessen sei hier ein einfaches (reales) Beispiel aus dem (realen) Alltag
vorgestellt, wie es jeder erleben kann oder schon erlebt
hat.

II. INTERDISZIPLINÄR UND UNTERSCHIEDE

Das Wort Interdisziplinär ist heute ja ein
richtiges Modewort, um das Zusammenarbeiten
von unterschiedlichen Disziplinen, Experten mit
unterschiedlichem Knowhow, unterschiedlichen
Erfahrungen zu etikettieren.

Während wir in den verschiedenen Gesellschaften
in Europa und weltweit zunehmend eher wieder
Phänomene der Abgrenzung beobachten, der
Ausgrenzung, der Abschottung, der identitätserhaltenden
Gruppenbildung, haben wir immer mehr international
operierende Firmen, in denen die Zusammenarbeit
von Menschen aus vielen Nationen (bis über 100)
Alltag ist und funktioniert. Es spielt nicht wirklich eine
Rolle, aus welchem Land jemand kommt, welche
Religion er hat, wie sie sich kleidet, was jemand isst,
solange alle im Rahmen der gestellten Aufgabe friedlich
zusammenwirken können. Auch in den Wissenschaften
ist dies eigentlich Alltag. Mathematik ist für alle gleich und
die Welt, die es zu erforschen gilt, ist auch für alle gleich.
Ähnlich ist es in den großen internationalen Metropolen
dieser Welt. Dort leben ganz viele verschiedene Kulturen
so lange friedlich zusammen, so lange niemand anfängt,
bewusst Hass und Zwietracht zu streuen.

Andererseits scheint das Phänomen der Abgrenzung
ein tief sitzender Reflex im menschlichen Verhalten
zu sein. Denn überall, wo Menschen leben und
es in der jeweiligen Gemeinschaft unterschiedliche
Gruppen – alleine schon wegen der notwendigen und
fortschreitenden Spezialisierungen – gibt, tendiert jede
Gruppe dazu, sich von den anderen abzugrenzen.
Es ist letztlich eine kognitive Entlastungsstrategie: es
ist immer einfacher, sich nur dem den Eigenschaften
und Regeln der eigenen Gruppe zu beschäftigen, als
zusätzlich auch noch mit den Eigenheiten und Regeln
einer anderen Gruppe. Dies strengt an und belastet.
Zu diesem Zweck gibt es allgemeine Verhaltensregeln,
die einem im Alltag Entscheidungen abnehmen, und
es gibt Klischees, Stereotype, mit denen man andere
Gruppen – und damit auch die einzelnen Mitglieder
der anderen Gruppen – mit einem einzigen Wort
in eine große Kiste von Klischees einsortiert. Dies
fängt schon im Bereich der Familie an, und erstreckt
sich dann über Schulklassen, Schulen, Abteilungen
in Behörden und Betrieben zu ganzen Einrichtungen,
Stadtteilen, Volksgruppen. Im ’Normalbetrieb’ verläuft
dies friedlich, ohne direkte Auseinandersetzungen, ist
fester Bestandteil von Witzen, Volksbelustigungen und
vielen Fernsehsendungen und Filmen.

Im Konfliktfall sind diese Vorurteile aber wie trockenes
Holz, das sich blitzschnell entzünden kann, und mit
einem Mal sind die Nachbarn, die Arbeitskolleginnen,
und die Leute aus dem anderen Stadtteil nicht einfach
nur anders, sondern gefährlich anders, moralisch anders,
überhaupt anders. Aus unverfänglichen Unterschieden
werden plötzlich metaphysische Ungeheuer. Die
gedankliche Bequemlichkeit, die sich im Alltag im
Gebrauch von Klischees ausruht, wird zur gedanklichen
Hilflosigkeit, die im Stress einfach wild um sich schlägt,
und dann natürlich auf das haut, was sie in ihrer
vereinfachten Weltsicht kennt: auf die stereotypen
Unterschiede, die plötzlich die ganze Welt bedeuten.

III. INTERDISZIPLINÄRES PROJEKT

Während interdisziplinäres Zusammenarbeiten in
großen Firmen und Behörden von Metropolen Alltag ist,
tun sich die Bildungseinrichtungen, speziell Hochschulen
in Deutschland, damit noch schwer. Selbst an einer
Hochschule in einer internationalen Metropole, an der
junge Menschen aus mehr als 100 Nationen studieren,
gibt es nur einen verschwindend geringen Anteil von
wirklich interdisziplinären Studienprogrammen. Die
Lehrenden mögen solche Veranstaltungen nicht, da
der normal Lehrende ein Spezialist ist; auch die
Fachbereichsstrukturen an Hochschulen stehen einer
wirklichen Interdisziplinarität massiv im Wege, und die
Hochschulleitungen sind heute von der Realität der
Lehre in ihren eigenen Hochschulen meist so weit
entfernt, dass sie in der Regel gar nicht wirklich wissen,
wie der Alltag der Lehre aussieht.

Das folgende Beispiel stammt aus einer realen
Lehrveranstaltung von einer realen Hochschule mit
Studierenden aus mehr als 100 Nationen, an der es
offiziell genau zwei interdisziplinäre Studienprogramme
gibt. Im Rahmen des einen Programms gibt es ein Modul,
in dem sich Studierende aus verschiedenen Disziplinen
mit dem Begriff der Simulation auseinander setzen sollen.

So gibt es in diesem Modul z.B. Studierende
aus den Disziplinen soziale Arbeit, Pflege, Case
Management, Architektur, Maschinenbau, Elektrotechnik
und Informatik.

A. Einzelvorschläge zum Begriff ’Simulation’

Das Modul ist so angelegt, dass alle Beteiligten
im Rahmen von Kommunikationsprozessen, eigenen
Recherchen und eigenen Experimenten schrittweise
ihr bisheriges Verständnis des Begriffs ’Simulation’
verfeinern und mit den Vorstellungen der jeweils
anderen Disziplinen integrieren, falls möglich. Im
Folgenden Beispiele von Formulierungen, wie der Begriff
Simulation’ zu Beginn von den Teilnehmern umschrieben
wurde.

  • Team A: Unter Simulation versteht man ein realitätsnahes Nachbilden von Situationen.
    • Ein virtueller Raum wird mit Hilfe von Visualisierungsprogrammen realistisch dargestellt .
    • Nach einer Abbildung mit verschiedenen Programmen kann das Modell mit Hilfe von Grundrissen geschaffen werden.
    • Verschiedene Gebäudetypen, zum Beispiel:
      öffentliche, kulturelle oder soziale Einrichtungen,
      können simuliert werden.
    • Der Außenraum bzw. die Umgebung wird beim
      Entwurf mitberücksichtigt und 3D visualisiert.
    • Durch Materialität, Textur, Lichtverhältnissen
      und Schattierungen wird versucht, den Entwurf
      realitätsnah wie möglich darzustellen.
    • Konstruktionen können in Simulationsprogrammen ebenfalls detailliert ausgeführt werden.
  • Team B: Simulation ist eine Methode Situationen abzubilden, z.B. räumliche Wirkungen, Umwelteinflüsse, Szenarien, um effektiv Probleme und
    Lösungen zu analysieren.
  • Team C: Die Analyse von möglichen Problemen
    im Alltag. Die Nachbildung von Anwendungsfällen
    wie zum Beispiel Flugsimulation und Wettersimulation. Die Optimierung von Systemen und Prozessen.
    Komplexe Sachverhalten zu vereinfachen und (visuell) darzustellen. Es ist eine kostengünstigere Variante als die tatsächliche Umsetzung. Es werden in
    einer Simulation Prognosen und Voraussagen erstellt.
  • Team D:
    1. Analyse von Systemen vor der praktischen An-
      wendung
    2. Die Simulation ist ein Bestandteil eines Produktlebenszyklus. Dabei lassen sich die Entwicklungsschritte wie folgt definieren:
      1. Konzeptentwicklung
      2. Simulation
      3. Konstruktiond) Produktherstellung
      4. Integration im System
    3. Optimierung von einem bestehendem Prozess
      mit Ziel die Effizienz und die Fehlerbehebung
      zu verbessern −→ Prozessoptimierung
  • Team E: Unter dem Begriff ”Simulation” ist das
    theoretische bzw. praktische Durchspielen unterschiedlicher Szenarien zu verstehen. Das Durchspielen oder auch Verifizieren der Situation lässt
    die Übertragung von komplexen Aussagen über das
    mögliche Verhalten des gewählten Klientels zu. Das
    Ergebnis kann auf die Realität projiziert werden,
    ohne damit laufende Prozesse negativ zu beeinflussen.
  • Team F : Eine Simulation ist eine modellhafte
    Darstellung einer möglichen oder reellen Situation.
    Die Situation kann sowohl prospektiv als auch retrospektiv sein. Sie dient der Analyse, Übung und Optimierung verschiedener Prozesse beziehungsweise
    einzelner Prozessabläufe.
  • Team G: Simulationen in der sozialen Arbeit bieten die Möglichkeit insbesondere ethisch schwierig
    vertretbare oder praktisch schwierig umsetzbare Situationen experimentell darzustellen und dadurch
    präventiv Kompetenzen zu erwerben, Lerninhalte
    zu erarbeiten, Lösungsansätze zu entwickeln und
    Problem- bzw. Konfliktsituationen zu vermeiden.
  • Team H: Simulation im Beratungskontext meint das
    Herstellen realitätsnaher Szenarien, um das Verhalten von Personen in speziellen Situationen erproben,
    beobachten und evaluieren zu können.
B. Vernetzung der Einzelvorschläge

Diese Textfragmente wirken unterschiedlich und tragen
deutlich Spuren der unterschiedlichen Fachkulturen. So
ist das Team A unschwer als Team aus dem Bereich
Architektur zu erkennen, oder Team C: das klingt sehr
nach einem technischen Hintergrund. Team E klingt
nach sozialer Arbeit oder Case Management. usw.

Was macht man nun damit?

Es gab ein Live-Gespräch, bei dem die einzelnen
Formulierungen nacheinander diskutiert wurden
und einzelne Begriffe, die hervor stachen, wurden
versuchsweise auf ein Whiteboard geschrieben (siehe
Schaubild Nr. 1).

Bild Nr.1: Tafelbild aus einer Live-Diskussion

Bild Nr.1: Tafelbild aus einer Live-Diskussion

Für einen Unbeteiligten wirkt dieses Bild vermutlich
noch ein wenig ’wirr’, aber bei näherem Hinsehen kann
man die Umrisse einer ersten Struktur erkennen.
In einer im Anschluss erstellten Idealisierung des
ersten Tafelbild (siehe Schaubild Nr. 2) kann man die
in diesen Begriffen liegende verborgene Struktur schon
deutlicher erkennen.

Reinzeichnung des Tafelbildes

Reinzeichnung des Tafelbildes

Man erkennt abgrenzbare Bereiche, Komponenten
wie z.B. die reale Welt oder das Ersatzsystem, Modell,
oder auch so etwas wie die Idee von etwas Neuem.
Zwischen diesen Komponenten findet man Beziehungen
wie Nachbilden oder Erfinden oder Modell nutzen.

Offensichtlich passen diese Größen nicht in das
klassische Schema einer Definition, bei dem ein neuer
Begriff (das ’Definiendum’) durch schon bekannte
Begriffe (das ’Definiens’) ’erklärt’ wird (vgl. dazu [Mit95] und [San10]), sondern es ist
eher die Einführung eines neuen Bedeutungsfeldes im
Sinne einer axiomatischen Theorie: man benennt eine
Reihe von Komponenten, von denen man annimmt, dass
sie alle wichtig sind, beschreibt Beziehungen zwischen
diesen Komponenten, die man ebenfalls für wichtig
findet, und nennt dann das Ganze ’Simulation’. Eine
zunächst diffuse Wirklichkeit gewinnt dadurch Konturen,
gewinnt eine Struktur.

Ob diese sich so heraus schälende Struktur wirklich
brauchbar ist, irgendwelche Wahrheitsansprüche
einlösen lässt, das kann man zu diesem Zeitpunkt
noch nicht entscheiden. Dazu ist das Ganze noch
zu vage. Andererseits gibt es an dieser Stelle auch
keine festen Regeln, wie man solche Strukturen
herausarbeitet. Auf der einen Seite sammelt man
Phänomene ein, auf der anderen Seite sucht man
Begriffe, sprachliche Ausdrücke, die passen könnten.
Was einem auffällt, und wie man es dann anordnet,
hängt offensichtlich von aktuellen Interessen, verfügbarer
Erfahrung und verfügbarem Sprachwissen ab. Drei
verschiedene Personen kämen isoliert vermutlich zu drei
unterschiedlichen Ergebnissen.

Man kann jetzt bei dem Schaubild stehen
bleiben, oder man kann das Instrumentarium der
Wissenschaftsphilosophie weiter nutzen indem man
z.B. eine formale Strukturbildung versucht. Unter
Verwendung einer mengentheoretischen Sprache
kann man versuchen, die erkannten Komponenten
und Beziehungen in mathematische Strukturen
umzuschreiben. Falls es gelingt, führt dies zu noch
mehr struktureller Klarheit, ohne dass man irgendwelche
Feinheiten opfern müsste. Man kann im Verlauf eines
solchen Formalisierungsprozesses Details nach Bedarf
beliebig ergänzen.

C. Formalisierungsversuch

Das idealisierte Schaubild lässt erkennen, dass wir
es mit drei Wirklichkeitsbereichen zu tun haben: (i)
die Reale Welt (W) als Ausgangspunkt; (ii) die Welt
der kreativen Ideen (KID) als Quelle möglicher neuer
Gegenstände oder Verhaltensweisen; und verschiedene
Ersatzsysteme, Modelle (M), mittels deren man etwas tun kann.

Unter Voraussetzung dieser genannten Gegenstandsbereiche W, KID, M wurde folgende wichtige Beziehungen genannt, die zwischen diesen
Gegenstandsbereichen angenommen wurden:

  1. Nachbilden, Abbilden (Abb): Bestimmte Aspekte
    der realen Welt W werden in einem Ersatzsystem,
    in einem Modell M so nachgebildet, dass man
    damit etwas tun kann. Außerdem soll das Modell
    u.a. realitätsnah sein, Kosten sparen, und Risiken
    vermindern.
  2. Erfinden (Erf): Aufgrund von kreativen Ideen KID
    wird ein Modell M erstellt, um diese Ideen sichtbar
    zu machen.
  3. Simulieren (Sim): Hat man ein Modell M gebaut,
    dann können Menschen (ME) mit dem Modell
    unterschiedliche Simulationen für unterschiedliche
    Zwecke vornehmen. Aufgrund von Simulationen
    werden die Menschen Erfahrungen (X+) mit dem
    Modell sammeln, die zu einem verbesserten Verhalten (V+) auch in der realen Welt führen können, zugleich kann aufgrund dieser Erfahrungen das
    bisherige Modell oft auch optimiert werden; man
    kommt also zu einem optimierten Modell (M+).
  4. Transfer (Trans): Aufgrund von neuen Erfahrungen
    (X+) und einem möglicherweise optimierten Modell
    (M+) besteht die Möglichkeit, dass man im Ausgangspunkt, in der realen Welt (W), Sachverhalte und Abläufe ändert, um die Verbesserungen im
    Modell und im neuen Verhalten in die reale Welt,
    in den Alltag, einzubringen. Würde man dies tun,
    dann erhielte man eine verbesserte Welt (W+).

Diese Vorstrukturierung kann man nun weiter treiben und tatsächlich eine mathematische Struktur hinschreiben. Diese könnte folgendermaßen aussehen:

— Siehe hierzu das PDF-Dokument —

Der Ausdruck zu Nummer (1) besagt, dass etwas (x) genau nur dann (iff) eine Simulation (SIMU) genannt wird, wenn es die folgenden Komponenten enthält: W, W+ M, M+ , KID, X+ , ME. Zusätzlich werden folgenden Beziehungen zwischen diesen Komponenten angenommen: Abb, Erf, Sim, Trans. Welcher Art diese Beziehungen sind, wird in den folgenden Nummern (2) – (5) erläutert.

In der Abbildungsbeziehung Abb : ME × W−→ M werden Aspekte der realen Welt W von Menschen ME in ein idealisierendes Modell M abgebildet.

In der Erfindungsbeziehung Erf : ME × KID −→ M werden Aspekte aus der Welt der Ideen KID von Menschen ME in ein idealisierendes Modell M abgebildet.

In der Simulationsbeziehung Sim : ME × M −→ M+ × X+ benutzen Menschen ME Modelle M und machen dadurch neue Erfahrungen X+ und können u.a. das Modell verbessern, optimieren M+ .

In der Transferbeziehung  rans : ME × M+ × X+ −→ W+ können Menschen ME optimierte Modelle M+ und/ oder neue Erfahrungen X+ in ihren Alltag, in die reale Welt so einbringen, dass die bisherige Welt zu einer besseren Welt M+ verändert wird.

IV. WEITER ZUR WAHRHEIT

An diesem kleinen Beispiel wird deutlich, wie man
unterschiedliche alltagssprachliche Formulierungen
miteinander vernetzen kann, daraus Strukturen
herausarbeitet, und diese ansatzweise formalisiert.

Um einen möglichen Wahrheitsanspruch dieser
Formalisierung klären zu können, müsste nun weiter
herausgearbeitet werden, was mit den einzelnen
Größen dieser Struktur gemeint ist. Also, wenn man die
Beziehung Abbildung liest ( Abb : ME × W −→ M), müsste klar sein, welche Menschen gemeint sind, die dort eine Abbildungsbeziehung herstellen, und was
müsste man sich konkret darunter vorstellen, dass
Menschen Aspekte der Welt (W) in ein Modell (M)
abbilden?

Wenn ein Kind ein Stück Holz benutzt, als ob es
ein Spielzeugauto ist, mit dem es auf dem Boden
herumfährt und dazu ’BrumBrum’ macht, dann ist für
das Kind das Stück Holz offensichtlich ein Modell für ein
Autor aus der realen Welt, seine Bewegungen simulieren
das Herumfahren, und das ’BrumBrum’ simuliert das
Motorgeräusch (bald nicht mehr, vielleicht).

Wenn Architekten (früher) aus Gips ein Gebäude im
Maßstab angefertigt hatten, es in eine Modelllandschaft
stellten, und dies einer Lichtquelle aussetzten, die
analog der Sonne bewegt wurde, dann war offensichtlich
das Gipshaus in der Landschaft mit der Lichtquelle
ein Modell des Schattenwurfs eines Gebäudes bei
Sonnenlicht.

Wenn Pflegestudierende heute an einem Krankenbett
mit einer künstlichen Puppe üben, wie man verschiedene
Pflegetätigkeiten ausübt, dann ist diese Puppe im Bett
offensichtlich ein Modell des realen Patienten, an dem
man übt.

Wenn Case Managerinnen in Rollenspielen
Beratungsgespräche üben, dann sind diese Rollen,
die sie ausfüllenden Personen, und die stattfindenden
Interaktionen ein Modell der realen Situation.

Wenn Informatikstudierende am Computerbildschirm
Schaltungen zusammenbauen, dann sind diese Software
basierten Bauteile und Schaltungen offensichtlich
Modelle von richtigen Bauteilen und den daraus
konstruierten Schaltungen.

Die Liste der hier möglichen Beispiele ist potentiell
unendlich lang.

Die Abbildung von Aspekten der realen Welt in
Ersatzsysteme, die wie Modelle fungieren, anhand bzw.
mittels deren man üben kann, analysieren usw. ist
offensichtlich sehr grundlegend.

Ob solch ein modellierendes Ersatzsystem und
die damit möglichen Handlungen die abzubildende
Wirklichkeit hinreichend gut abbilden, oder ob sie diese
so verzerren, dass das Modell bezogen auf die reale
Welt falsch ist, dies zu beurteilen ist nicht immer ganz
einfach oder vielleicht sogar unmöglich. Schwierig und
unmöglich ist dies dann, wenn das erarbeitete Modell
etwas zeigt, was in der realen Welt selbst durch die
Verwobenheit mit anderen Faktoren gar nicht sichtbar
ist, wenn also dass Modell überhaupt erst etwas sichtbar
macht, was ansonsten verdeckt, verborgen ist. Damit
würde das Modell selbst zu einer Art Standard, an dem
man die reale Welt misst.

Was im ersten Moment absurd klingt, ist aber genau
die Praxis der Wissenschaften. Das Ur-Meter, das als
Standard für eine Längeneinheit vereinbart wurde, ist
ein Modell für eine bestimmte Länge, die überall in
der räumlichen Welt angetroffen werden kann, aber
ohne das Ur-Meter können wir nicht sagen, welche der
unendlich vielen Stellen nun einem Meter entspricht. Wir
benutzen also ein künstlich erschaffenes Modell einer
bestimmten Länge, um damit die ansonsten amorphe
reale Welt mit Plaketten zu überziehen. Wir projizieren
das Ur-Meter in die reale Welt und sehen dann überall
Längen, die die realer Welt als solche nicht zeigt. Zu
sagen, diese Strecke hier in der realen Welt ist 1 m lang,
ist eine Äußerung, von der wir normalerweise sagen
würden, sie ist wahr. Wahrheit ist hier eine Beziehung
zwischen einer vereinbarten Einheit und einem Aspekt
der realen Welt.

Im allgemeinen Fall haben wir irgendwelche
sprachlichen Ausdrücke (z.B. Abb : ME × W −→ M), wir ordnen diesen sprachlichen Ausdrücke davon unabhängige Bedeutungen zu, und stellen dann fest,
ob es in der realen Welt Sachverhalte gibt, die mit
dieser vereinbarten Bedeutung korrespondieren oder
nicht. Falls Korrespondenz feststellbar ist, sprechen
wir von Wahrheit, sonst nicht. Eine solche Wahrheit ist
aber keine absolute Wahrheit, sondern eine abgeleitete
Wahrheit, die nur festgestellt werden kann, weil zuvor
eine Bedeutung vereinbart wurde, deren Korrespondenz
man dann feststellt (oder nicht). Sprachlich gefasste
Wahrheiten können also immer nur etwas feststellen,
was zuvor vereinbart worden ist (wie beim Ur-Meter), und
man dann sagt, ja, das früher vereinbarte X liegt jetzt
hier auch vor. Und diese grundsätzliche Feststellung,
diese ist fundamental. Sie erlaubt, in den veränderlichen
vielfältigen Bildern der Welt, ansatzweise Ähnlichkeiten,
Wiederholungen und Unterschiede feststellen zu
können, ohne dass damit immer schon irgendwelche
letzten absoluten Sachverhalte dingfest gemacht werden.

Die moderne Wissenschaft hat uns demonstriert, wie
dieses einfachen Mittel in vielen kleinen Schritten über
Jahrzehnte hinweg dann doch zu sehr allgemeingültigen
Sachverhalten hinführen können.

LITERATURHINWEISE

[Bal82] W. Balzer, editor. Empirische Theorien: Modelle, Strukturen,
Beispiele. Friedr.Vieweg & Sohn, Wiesbaden, 1 edition, 1982.

[BMS87] W. Balzer, C. U. Moulines, and J. D. Sneed. An Architectonic
for Science. D.Reidel Publishing Company, Dordrecht (NL),
1 edition, 1987.

[Mit95] Jürgen Mittelstrass, editor. Enzyklopädie Philosophie und
Wissenschaftstheorie Teil: Bd. 1., A – G. Verlag J.B. Metzler,
Stuttgart – Weimar, 1 edition, 1995.

[San10] Hans Jörg Sandkühler, editor. Enzyklopädie Philosophie,
Bd.1-3. Meiner Verlag, Hamburg, 1 edition, 2010.

[Sne79] J. D. Sneed. The Logical Structure of Mathematical Physics.
D.Reidel Publishing Company, Dordrecht – Boston – London,
2 edition, 1979.

[Sup79] F. Suppe, editor. The Structure of Scientific Theories. Uni-
versity of Illinois Press, Urbana, 2 edition, 1979.

KONTEXT BLOG

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER

DIE ZUKUNFT WARTET NICHT – 2117 – PHILOSOPHISCHE WELTFORMEL – FAKE-NEWS ALS TODESENGEL

NACHTRAG: Mo, 13.März 2017

Wichtiger Nachtrag zum Komplexitätsbegriff, seinen Grenzen, und erweiterte  Diskussion zur ersten Periodisierung genannt ‚Emergent Life‘ (hauptsächlich ab Nr.25)

KONTEXT

  1. Der aktuelle Blogeintrag ist keine direkte Fortsetzung des letzten Eintrags, sondern schließt gedanklich eher an den vorletzten Beitrag an und ist von daher eher als eine Einleitung zu dem Blogeintrag über das Bewusstsein zu verstehen.
  2. Welche Themen jeweils in die Feder fließen hängt von vielerlei Faktoren ab. Generell natürlich schon von den übergreifenden Perspektiven des Blogs, dann aber auch von alltäglichen Ereignissen und Diskussionen. Dass es heute nun zu diesem sehr grundsätzlichen Beitrag gekommen ist, ist u.a. den intensiven Diskussionen mit Manfred Fassler geschuldet, der aufgrund seines Hintergrundes in Soziologie und Anthropologie die gesellschaftliche Dimension stark in die Überlegungen einbringt, während ich mich meist auf systemische Perspektiven fokussieren. Als ich versucht habe (während ich durch meine Grippe weitgehend ausgeschaltet war (und immer noch bin)), seine Aspekte mit meinen Überlegungen zusammen zu bringen, entstand schrittweise eine Struktur, ein Modell, das sich darstellt wie der Beginn einer philosophischen Weltformel, mit deren Hilfe man mit einem Male viele komplexe Einzelphänomene in die Logik eines übergeordneten Zusammenhangs einordnen kann (siehe Schaubild).

    Periodisierung der Evolution des Lebens mit dem Versuch eines systematischen Kriteriums

    Periodisierung der Evolution des Lebens mit dem Versuch eines systematischen Kriteriums

WELTFORMEL

  1. Den Begriff Weltformel kennen wir ja meist nur im Kontext der modernen Physik, die mit ihren Erklärungsmodellen zu immer umfassenderen Aussagen über das Universum kommen konnte, so umfassend, dass man tatsächlich geneigt ist, von einer Weltformel zu sprechen. Nun wissen wir aber, dass diese sogenannten Weltformeln der Physik bislang noch nicht wirklich alles erklären, geschweige denn nicht all jene Phänomene, die wir dem Bereich des biologischen Lebens zuordnen und den damit verbundenen immer komplexeren Phänomenen von Verhalten und menschlichen Gesellschaften. Es besteht auch wenig Aussicht, dass die physikalischen Weltformeln jemals zu einer völlig erschöpfenden Weltformeln werden könnte, weil schon rein mathematisch eine Theorie der Welt ohne jene, die die Theorie hervorbringen, seit Gödel 1931 entweder als grundsätzlich unvollständig oder unentscheidbar gilt.
  2. Ein anderes Hindernis besteht darin, dass die Physik als empirische Wissenschaft – wie alle anderen empirischen Disziplinen auch – schon vom Start weg nur einen kleinen Teil der möglichen Phänomene dieser Welt als Ausgangspunkt zulässt. Diese vorwissenschaftlich getroffene methodische Beschränkung auf die sogenannten intersubjektiven Phänomene, die sich mittels vereinbarter Messverfahren messen lassen, und zwar invariant mit Bezug auf den, der misst, hat sich zwar im großen und ganzen als sehr leistungsfähig erwiesen, aber anzunehmen, dass sich mit dieser methodisch eingeschränkten Phänomenmenge auf lange Sicht alles erklären lassen wird, auch das, was sich hinter den ausgeschlossenen Phänomenen verbirgt, dies ist eine vor-wissenschaftliche Annahme, für die es keinerlei Belege gibt. Die Zukunft wird zeigen, wie es sich mit diesem Ausschluss verhält.
  3. Ob es also die Physik sein wird, die uns die endgültige Weltformel liefern wird, oder doch eher die Philosophie, wird uns die Zukunft zeigen. Die Philosophie hat gegenüber der Physik (und auch gegenüber allen anderen empirischen Disziplinen), den methodisch großen Vorteil, dass die Philosophie alle anderen Disziplinen voraussetzen und einbeziehen kann. So kann ein Philosoph alle Fragmente und Entwürfe von Weltformeln der Physik nehmen und dann dazu ergänzend, erweiternd, begründend seine Weltformel formulieren. Alles, was in der Physik gilt, wird dann hier auch gelten, aber eventuell noch mehr.
  4. Die Überlegungen des Autors zu den Umrissen einer philosophischen Weltformel begannen nun aber gerade nicht so, dass er sich vor den Computer gesetzt hat und sich sagte, so, jetzt wird eine philosophische Weltformel geschrieben. Nein, so würde es auch nie funktionieren. Formeln, selbst die einfachsten, sind immer Ergebnisse von Denkprozessen, mehr oder weniger bewusst, mehr oder weniger schnell. Und eine Weltformel ist, wie man vermuten kann, wenn überhaupt, das Ergebnis von vielen Jahren Arbeit mit ganz vielen Inhalten. Und wie wir wissen, Zeit und Aufwand alleine garantieren auch keine Ergebnisse; sie können die Wahrscheinlichkeit erhöhen, etwas Interessantes zu finden, aber garantieren kann man es nicht.
  5. Das Ganze fing eher unscheinbar an. Unter dem Eindruck eines Telefonats mit Manfred Fassler begann der Autor zunächst für sich, eine Skizze jener Themen zu malen, die in diesem Blog seit 2007 aufgeschlagen sind (380 Beiträge von cagent und 52 Beiträge von cagent im Kontext der Werkstattgespräche). Er überlegte sich, ob man die Themen nach bestimmten inhaltlichen Kriterien und zeitlich ‚clustern‘ könnte. Was dabei herauskam das waren diese merkwürdigen Zylinderfiguren auf der linken Seite des Bildes.

ZEITLICHE EINTEILUNGEN

 

  1. Von oben – beginnend mit dem Big Bang – bis nach unten, zur Gegenwart, haben wir eine zeitliche Erstreckung von ca. 13.8 Mrd Jahren. Eine Einteilung hängt von vorausgehenden Kriterien ab, von einem Muster, Modell, von dem man annimmt, dass es die Menge der Ereignisse sinnvoll strukturiert.
  2. Wie man aus der Skizze ersehen kann, wurde solch eine Unterteilung vorgenommen.
  3. Im ersten Anlauf wurde versucht, mit einem Begriff der Komplexität zu arbeiten. Dahinter steht die Intuition, dass es sich bei den zu beschreibenden Ereignissen um Strukturen handelt, sich sich im Laufe der Zeit bildeten und die immer dichter wurden. Die aktuelle Unterteilung markiert solche Phasen, in denen hervorstechende Komplexitätssprünge zu verzeichnen sind.
  4. Bevor auf die Details dieser Betrachtung eingegangen wird, soll aber zunächst der benutzte Komplexitätsbegriff näher erläutert werden. Dabei sei schon hier angemerkt, dass sich im weiteren Verlauf herausgestellt hat, dass der gewählte Komplexitätsbegriff viel zu schwach ist, um jene Eigenschaften zu repräsentieren, von denen die heutige Biologie, Ethologie und Anthropologie (und möglicherweise viele weitere Disziplinen) sagen würden, dass sie als ‚wichtig‘ für das Phänomen angesehen werden.

KOMPLEXITÄT

 

  1. Vorab, es gibt in der Literatur keinen einheitlichen Komplexitätsbegriff. Im Laufe der Jahre habe ich einen eigenen Begriff von Komplexität entwickelt, den ich hier kurz vorstelle. Man kann ihn dann kritisieren oder übernehmen. Im Falle von Kritik wäre ich an Argumenten interessiert, um weiter lernen zu können, ihn vielleicht weiter zu entwickeln oder letztlich doch wieder zu verwerfen.
  2. Die Frage ist immer, mit welcher mentalen Brille man die Wirklichkeit sieht. Der berühmte Pessimist sieht überall die halbleeren Gläser, der Optimist die halbvollen. Der Tierschützer sieht überall, wie die Tiere leiden, der Chemiker sieht überall chemische Verbindungen am Werke, der Immobilienmakler potentielle Kaufobjekte, und so fort.
  3. Für die Frage der Komplexität besteht eine Möglichkeit darin, sich die mentale Brille der Systeme aufzusetzen. Mit der System-Brille besteht die Welt nur noch aus Systemen. Ein System ist Etwas, das sich von seiner Umgebung unterscheiden lässt. Diese Annahme impliziert, dass es rein abstrakt zwischen diesem unterscheidbaren Etwas und seiner Umgebung Wechselwirkungen geben kann. Sofern es um Einwirkungen auf das System geht sprechen wir einfach vom Input (I) des Systems und im umgekehrten Fall, wenn das System auf die Umgebung einwirkt, vom Output (O) des Systems. Rein abstrakt, auf der begrifflichen Ebene, hat ein System demgemäß immer einen Input und Output in Wechselwirkung mit seiner Umgebung; im konkreten, empirischen Fall, kann diese Wechselwirkung so schwach sein, dass sie sich nicht messen lässt. Dann ist die Wechselwirkung leer, oder 0 = I = O.
  4. Nimmt man ein bestimmtes System S als Bezugspunkt, dann kann man sagen, dass sich das System S auf Ebene/ Level 0 befindet. Alle Systeme, die sich mit Bezug auf das System S in seiner Umgebung befinden, wären dann auf der Ebene/ dem Level +1. Alle Systeme, die sich im System S befinden, finden sich auf Ebene/ Level -1. Sollte ein System S‘ sich auf Level -1 von System S befinden, also LEVEL(S‘,S,-1), und sollte das System S‘ selbst weiter Systeme S“ enthalten, dann lägen diese auf Level -2 von System S (und auf Level -1 zu System S‘).
  5. Beispiel: Vom menschlichen Körper wissen wir, dass er sich so betrachten lässt, dass er aus einer endlichen Anzahl von Körperorganen besteht (Level -1), die wiederum aus vielen Zellen bestehen (Level -2). Hier kann man entweder weitere Subeinheiten annehmen oder betrachtet diese Zellen als nächsten Bezugspunkt, von denen wir wissen, dass jeder Körperzelle wiederum aus einer Vielzahl von Systemen besteht (Level -3). Diese Betrachtung könnte man weiter fortsetzen bis zu den Molekülen, dann Atomen, dann subatomaren Teilchen, usw. Nimmt man die Umgebung menschlicher Körper, dann haben wir auf Level +1 andere menschliche Körper, Tiere, Pflanzen, Gebäude, Autos, Computer usw. Jedes dieser Systeme in der Umgebung ist selbst ein System mit inneren Systemen.
  6. Was bislang noch nicht gesagt wurde, ist, dass man anhand der Inputs und Outputs eines Systems sein Verhalten definiert. Die Abfolge von Inputs und Outputs konstituiert eine Folge von (I,O)-Paaren, die in ihrer Gesamtheit eine empirische Verhaltensfunktion f_io definieren, also f_io ={(i,o), …, (i,o)}, wobei man mit Hilfe einer Uhr (eine Maschine zur Erzeugung von gleichmäßigen Intervallen mit einem Zähler) jedem Input- und Outputereignis eine Zeitmarke zuordnen könnte.
  7. Während empirisch immer nur endlich viele konkrete Ereignisse beobachtet werden können, kann man abstrakt unendlich viele Ereignisse denken. Man kann also abstrakt eine theoretische Verhaltensfunktion f_th über alle möglichen denkbaren Input- und Outputereignisse definieren als f_th = I —> O. Eine empirische Verhaltensfunktion wäre dann nur eine Teilmenge der theoretischen Verhaltensfunktion: f_io c f_th. Dies hat Vorteile und Nachteile. Die Nachteile sind ganz klar: theoretisch spricht die Verhaltensfunktion über mehr Ereignisse, als man jemals beobachten kann, also auch über solche, die vielleicht nie stattfinden werden. Dies kann zu einer falschen Beschreibung der empirischen Welt führen. Demgegenüber hat man aber den Vorteil, dass man theoretisch über Ereignisse sprechen kann, die bislang noch nicht beobachtet wurden und die daher für Prognosezwecke genutzt werden können. Wenn die Theorie also sagen würde, dass es ein bestimmtes subatomares Teilchen mit der Beschaffenheit X geben müsste, was aber bislang noch nicht beobachtet werden konnte, dann könnte man aufgrund dieser Prognose gezielt suchen (was in der Vergangenheit auch schon zu vielen Entdeckungen geführt hat).
  8. Rein abstrakt kann man ein System SYS damit als eine mathematische Struktur betrachten, die über mindestens zwei Mengen Input (I) und Output (O) definiert ist zusammen mit einer Verhaltensfunktion f, geschrieben: SYS(x) genau dann wenn x = <I,O,f> mit f: I → O.
  9. Rein abstrakt gilt also, dass jedes System SYS auch weitere Systeme als interne Elemente besitzen kann, d.h. Jedes System kann Umgebung für weitere Systeme sein. Nennen wir die Gesamtheit solcher möglicher interner Systeme IS, dann müsste man die Strukturformel eines Systems erweitern zu SYS(x) gdw x = <I,O,IS,f> mit f: I x IS —> IS x O. Dies besagt, dass ein System mit weiteren internen Systemen IS in seinem Verhalten nicht nur abhängig ist vom jeweiligen Input I, sondern auch vom Output der jeweiligen internen Systeme. Aus beiden Inputs wir dann nicht nur der Systemoutput O ermittelt, sondern zugleich bekommen auch die internen Systeme einen Input (der diese internen Systeme u.U. So verändern kann, dass sie beim nächsten Mal ganz anders reagieren als vorher).
  10. In welchem Sinn könnte man nun sagen, dass ein System S komplexer ist als ein System S‘ (geschrieben S >~> S‘)?
  11. Es gibt jetzt verschiedene Möglichkeiten. Einmal (i) könnte die Anzahl der inneren Ebenen (-N) ein Ansatzpunkt sein. Ferner (ii) bietet sich die Anzahl der Systeme pro Ebene (|-n| mit n in N), ihre ‚Dichte‘, an. Schließlich (iii) macht es auch einen Unterschied, wie groß die Anzahl der möglichen verschiedenen Inputs-Outputs ist, die in ihrer Gesamtheit einen Raum möglicher Verhaltenszustände bilden (|I| x |O| = |f_io|). Rein mathematisch könnte man auch noch (iv) den Aspekt der Mächtigkeit der Menge aller Systeme einer Art SYS, also |SYS|, definieren und diese Menge – die in der Biologie Population genannt wird – als eine Art ‚Hüllensystem‘ S_pop definieren. Ein Hüllensystem wäre dann ein System, das ausschließlich Elemente einer bestimmten Art enthält. Ein Hüllensystem S_pop_a könnte zahlreicher sein als ein Hüllensystem S_pop_b, |S_pop_a| > |S_pop_b|, es könnte aber auch sein, dass sich die Mächtigkeit einer Population im Laufe der Zeit ändert. Eine Population mit einer Mächtigkeit |S_pop_x| = 0 wäre ausgestorben. Die Veränderungen selbst können Wachstumsraten und Sterberaten anzeigen.
  12. Im Folgenden nehmen wir hier an, dass ein System S komplexer ist als ein System S‘ (S >~> S‘), wenn S ein System im Sinne der Definition ist und entweder (i) mehr innere Ebenen enthält oder (ii) pro innere Ebene eine höhere Dichte aufweist oder aber (iii) der Raum möglicher Verhaltenszustände der beteiligten Systeme größer ist. Bei Gleichheit der Größen (i) – (iii) könnte man zusätzlich die Größe (iv) berücksichtigen.
  13. Beispiel: Die Milchstraße, unsere Heimatgalaxie, umfasst zwischen 150 und 400 Mrd. Sterne (Sonnen) und hat einen Durchmesser von ca. 100.000 bis 180.000 Lichtjahre. In einem einführenden Buch über die Mikrobiologie präsentiert Kegel als neueste Schätzungen, dass der menschliche Körper etwa 37 Billionen (10^12) Körperzellen umfasst, dazu 100 Billionen (10^12) Bakterien im Körper und 224 Mrd. (10^9) Bakterien auf der Haut. Dies bedeutet, dass ein einziger menschlicher Körper mit seinen Körperzellen rein quantitativ etwa 150 Galaxien im Format der Milchstraße entspricht (1 Zelle = 1 Stern) und die Bakterien darin nochmals etwa 400 Galaxien. Dies alles zudem nicht verteilt in einem Raum von ca. 550 x 100.000 – 180.000 Lichtjahren, sondern eben in diesem unserem unfassbar winzigen Körper. Dazu kommt, dass die Körperzellen (und auch die Bakterien) in intensiven Austauschprozessen stehen, so dass eine einzelne Zelle mit vielen Tausend, wenn nicht gar zigtausenden anderen Körperzellen kommuniziert (Hormone im Blut können können viele Milliarden Zellen adressieren). Diese wenigen Zahlen können ahnen lassen, mit welchen Komplexitäten wir im Bereich des Biologischen zu tun haben. Dabei ist noch nicht berücksichtigt, dass ja die Zellen im Körper meist noch in funktionellen Einheiten organisiert sind mit weiteren Untereinheiten, so dass sich hier viele Ebenen finden lassen.

KOMPLEXITÄTSEREIGNISSE

 

  1. Unter Voraussetzung des bisherigen Komplexitätsbegriffs kann man nun die Ereignisse der biologischen Evolution mit diesem Begriff beschreiben und schauen, ob es irgendwann einen hervorstechenden Komplexitätssprung gibt, der möglicherweise den Beginn einer neuen Phase markiert.
  2. An dieser Stelle wird schon deutlich, dass die Wahl eines Komplexitätsbegriffs basierend auf Systemen möglicherweise noch zu schwach ist, um den zu beschreibenden Phänomenen gerecht zu werden. Den Begriff ‚Komplexitätssprung‘ kann man zwar formal definieren (es gibt immer viele Möglichkeiten), ob nun solch ein Konzept dann in der empirischen Realität aber genau das beschreibt, was wirklich dem Phänomen optimal entspricht, das kann sich letztlich nur am empirischen Ereignis selbst anschaulich entscheiden (im positiven Fall). Ein einfacher Ansatz wäre, einen Komplexitätssprung über den Begriff des minimalen Abstands zwischen zwei Komplexitäten S und S‘ zu definieren, und unter Einbeziehung ‚einer empirisch sinnvollen Konstante‘. Dann würde immer dann, wenn ein solcher Abstand gemessen werden kann, ein Komplexitätssprung vorliegt. Was wäre aber ein ‚empirisch sinnvoller Abstand‘ in biologischer Sicht?

PERIODISIERUNG

  1. Betrachtet man nach diesen Vorbemerkungen das Schaubild, dann kann man als ersten Abschnitt ‚Emergent Life‘ erkennen. Dies identifiziert die Zeit ab dem ersten nachgewiesenen Auftreten von biologischen Zellen, vor ca. 3.5 Mrd Jahren (nach neuesten Funden evtl. sogar schon ab 3.77 Mrd Jahren). Der Übergang von Molekülen zu sich selbst reproduzierenden Zellen markiert einen gewaltigen Komplexitätssprung.
  2. Man kann versuchen, den formalen Komplexitätsbegriff darauf anzuwenden. Nimmt man beispielsweise eine eukaryotische Zelle als System S, dann kann man typische Umgebungen ermitteln, interne Organisationslevel, die Dichte auf den Leveln sowie den Raum möglicher Verhaltenszustände von jedem beteiligten System. Nimmt man als Vergleich die strukturell einfacheren prokaryotischen Zellen (die als evolutionär älter gelten), dann kann man zu unterschiedlichen Werten kommen, die im Falle der prokaryotischen Zellen kleiner ausfallen. Im Unterschied zu einer Ansammlung von irgendwelchen Molekülen wird man noch größere Unterschiede feststellen. Will man diese strukturellen Unterschiede für eine Klassifikation nutzen, dann muss man sie gewichten. Ohne hier auf die Details einer solchen Gewichtung eingehen zu können (das wäre ein eigener riesiger Artikel) stellen wir hier einfach mal fest, dass gilt: S_eukaryot >~> S_prokaryot >~> S_molecule, wobei der ‚Abstand‘ zwischen den beiden Zelltypen deutlich kleiner ist als zwischen dem einfachen Zelltyp und einem einfachen Molekül, also Distance(S_eukaryot, S_prokaryot) < Distance(S_prokaryot, S_molecule).
  3. Unterstellen wir mal, alle Details vorausgehender Klassifikationen wären erfüllt. Was wäre damit erreicht? Wir wüssten schematisch, dass wir es mit drei verschiedenen Typen von Systemen zu tun hätte mit unterschiedlichen Levels, Input-Output-Räumen, unterschiedlichen Dichten … hätten wir damit aber irgendetwas von dem erfasst, was die evolutionäre Biologie, Molekularbiologie, Zellbiologie usw. bislang als charakteristisch für die biologische Zelle erkannt zu haben meint?
  4. Einige der wichtigen Eigenschaften werden informell so beschrieben: (i) Zellen haben eine erkennbare Struktur mit Wechselwirkungen zur Umgebung (insofern sind sie Systeme); (ii) sie sind in der Lage, Energie aus der Umgebung aufzunehmen und damit unterschiedliche chemische Prozesse zu moderieren; (iii) sie sind in der Lage, die Strukturen und Funktionen dieser Struktur in Form eines speziellen Moleküls zu kodieren (Bauplan, ‚Gedächtnis‘); (iv) sie können sich mit Hilfe des Bauplans reproduzieren, wobei die Reproduktion Abweichungen zulässt.
  5. Mindestens in diesen vier genannten Eigenschaften unterscheiden sich biologische Zellen von Molekülen. Der zuvor eingeführte Komplexitätsbegriff kann hier zwar eine höhere Komplexität herausrechnen, aber tut sich schwer, die vier Leiteigenschaften angemessen zu repräsentieren. Woran liegt das?
  6. Das ist einmal der Begriff der Energie. Dieser wurde von der Physik in vielen Jahrhunderten schrittweise erarbeitet und ist eine Eigenschaft, die generisch die gesamte empirische Welt durchzieht. Letztlich liegt er allem zugrunde als Äquivalent zur bewegten Massen. Wenn man nur Strukturen von Systemen betrachtet, kommt Energie nicht wirklich vor. Wenn es nun aber eine zentrale neue Eigenschaft eines Systems ist, freie Energie für eigene Zwecke ‚verarbeiten‘ zu können, dann müsste dies in die Systemstruktur aufgenommen werden (spezielle Funktionen…). Allerdings verarbeiten sogar Moleküle in gewisser Weise Energie, allerdings nicht so komplex und produktiv wie Zellen.
  7. Dann sind dort die metabolischen Prozesse (Stoffwechselprozesse) der Zellen. Diese sind extrem vielfältig und komplex miteinander verwoben. Der abstrakte Komplexitätsbegriff kann dies zwar anzeigen, aber nur ‚äußerlich‘; die Besonderheiten dieser Prozesse werden damit nicht sichtbar.
  8. Schließlich das Phänomen des Zellkerns mit Molekülen, die einen Bauplan kodieren; man könnte dies auch als eine Form von Gedächtnis beschreiben. Zum kodierten Bauplan gibt es auch eine komplexe Dekodierungsmaschinerie. Eine rein formale Repräsentation im Komplexitätsbegriff macht die Besonderheit nicht sichtbar. Wenn man weiß, worauf es ankommt, könnte man eine entsprechende Systemstruktur zusammen mit den notwendigen Operationen definieren.
  9. Was sich hier andeutet, ist, dass die abstrakte Seite der formalen Repräsentation als solche zwar nahezu alles zulässt an Formalisierung, aber welche Struktur letztlich etwas Sinnvolles in der empirischen Welt kodiert, folgt aus der abstrakten Struktur alleine nicht. Dies muss man (mühsam) aus den empirischen Phänomenen selbst herauslesen durch eine Art induktive Modellbildung/ Theoriebildung, also das, was die empirischen Wissenschaften seit Jahrhunderten versuchen.
  10. Der Versuch, ‚auf die Schnelle‘ die sich hier andeutenden Komplexitäten zu systematisieren, wird also nur gelingen, wenn die Verallgemeinerungen die entscheidenden empirischen Inhalte dabei ’nicht verlieren‘.
  11. Ohne diese Problematik an dieser Stelle jetzt weiter zu vertiefen (darauf ist später nochmals zurück zu kommen), soll hier nur ein Gedanke festgehalten werden, der sich mit Blick auf die nachfolgende Phase anbietet: mit Blick aufs Ganze und den weiteren Fortgang könnte man in der ersten Phase von Emerging Life als grundlegendes Ereignis die Ausbildung der Fähigkeit sehen, eine Art strukturelles Gedächtnis bilden zu können, das sich bei der Weitergabe strukturell variieren lässt. Damit ist grundlegend der Ausgangspunkt für die Kumulation von Wissen unter Überwindung der reinen Gegenwart möglich geworden, die Kumulierung von ersten Wirkzusammenhängen. Diese Urform eines Gedächtnisses bildet einen ersten grundlegenden Meta-Level für ein erstes Ur-Wissen von der Welt jenseits des Systems. Der Emerging Mind aus der nächsten Phase wäre dann der Schritt über das strukturelle Gedächtnis hin zu einem lokal-dynamischen Gedächtnis.
  12. Dann stellt sich die Frage, welche der nachfolgenden Ereignisse in der Evolution eine weitere Steigerung der Komplexität manifestieren? Kandidaten kann man viele finden. Zellen haben gelernt, sich in immer komplexeren Verbänden zu organisieren, sie haben immer komplexere Strukturen innerhalb der Verbände ausgebildet, sie konnten in immer unterschiedlicheren Umgebungen leben, sie konnten innerhalb von Populationen immer besser kooperieren, konnten sich auch immer besser auf die Besonderheiten anderer Populationen einstellen (als potentielle Beute oder als potentielle Feinde), und konnten immer mehr Eigenschaften der Umgebungen nutzen, um nur einige der vielfältigen Aspekte zu nennen. Manche bildeten komplexe Sozialstrukturen aus, um in zahlenmäßig großen Populationen gemeinsam handeln zu können (Schwärme, ‚Staaten‘, Verbünde, ….). Nach vielen Milliarden Jahren, von heute aus erst kürzlich, vor einigen Millionen Jahren, gab es aber Populationen, deren zentrale Informationsverarbeitungssysteme (Nervensysteme, Gehirne), das individuelle System in die Lage versetzen können, Vergangenes nicht nur zu konservieren (Gedächtnis), sondern in dem Erinnerbaren Abstraktionen, Beziehungen, Unterschiede und Veränderungen erkennen zu können. Zugleich waren diese Systeme in der Lage Gegenwärtiges, Gedachtes und neue Kombinationen von all dem (Gedachtes, Geplantes) symbolisch zu benennen, auszusprechen, es untereinander auszutauschen, und sich auf diese Weise ganz neu zu orientieren und zu koordinieren. Dies führte zu einer revolutionären Befreiung aus der Gegenwart, aus dem Jetzt und aus dem ‚für sich sein‘. Damit war mit einem Mal alles möglich: das schrittweise Verstehen der gesamten Welt, die schrittweise Koordinierung allen Tuns, das Speichern von Wissen über den Moment hinaus, das Durchspielen von Zusammenhängen über das individuelle Denken hinaus.
  13. Als nächster Komplexitätssprung wird daher das Auftreten von Lebewesen mit komplexen Nervensystemen gesehen, die ein Bewusstsein ausbilden konnten, das sie in die Lage versetzt, miteinander ihre internen Zustände symbolisch austauschen zu können, so dass sie einen Siegeszug der Erkenntnis und des Aufbaus komplexer Gesellschaften beginnen konnten. Dieses Aufkommen des Geistes (‚Emerging Mind‘) definiert sich damit nicht nur über die direkt messbaren Strukturen (Nervensystem, Struktur, Umfang,..), sondern auch über den Umfang der möglichen Zustände des Verhaltens, das direkt abhängig ist sowohl von den möglichen Zuständen des Gehirns, des zugehörigen Körpers, aber auch über die Gegebenheiten der Umwelt. Anders ausgedrückt, das neue Potential dieser Lebensform erkennt man nicht direkt und alleine an ihren materiellen Strukturen, sondern an der Dynamik ihrer potentiellen inneren Zustände in Wechselwirkung mit verfügbaren Umwelten. Es ist nicht nur entscheidend, dass diese Systeme symbolisch kommunizieren konnten, sondern auch WAS, nicht entscheidend alleine dass sie Werkzeuge bilden konnten, sondern auch WIE und WOZU, usw.
  14. Es ist nicht einfach, dieses neue Potential angemessen theoretisch zu beschreiben, da eben die rein strukturellen Elemente nicht genügend aussagestark sind. Rein funktionelle Aspekte auch nicht. Es kommen hier völlig neue Aspekte ins Spiel.

Die Fortsezung gibt es HIER.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Entmystifizierung des Ethikrates — Ethik eine Verhandlungssache?

(1) Horst Dreier, Prof. für Rechtsphilosophie, Staats- und Verwaltungsrecht in Würzburg, stellt sich in seinem Beitrag in der FAZ vom 17.August 2011 der Frage nach der Rolle des Deutschen Ethikrates. Klar und prägnant arbeitet er die gesetzlich definierte Rolle des Rates heraus, der eindeutig auf eine Beratungsfunktion beschränkt ist, die dem Parlament seine eigene Entscheidung nicht abnehmen kann. Da er unter Berufung auf Peter Graf Kielmansegg der Wissenschaft eine Sonderstellung für Fragen der Ethik abspricht — präzisiert durch die Bemerkung, dass man aus naturwissenschaftlichen Erkenntnissen keine normativen Schlüsse ziehen könne — verschiebt sich die Frage der normativen Klärung auf den Bereich der ‚Bewertung‘ von (naturwissenschaftlichen) Sachverhalten im Lichte der Kompetenz letztlich jeden einzelnen Bürgers („Bei ethischen Fragen sind die Bürger gleich zu achten“). Dieser einzelne Bürger ist allerdings ‚eingebettet‘ in die geltende Gesetzgebung, deren ‚Einhaltung‘ vom Bundesverfassungsgericht überwacht wird. Letzteres steht aber nicht ‚über‘ dem Gesetz; es ist nicht das sich selbst genügsame ‚perpetuum mobile‘ von ethischen Prinzipien, sondern ist dem geltenden Gesetzestext — und seiner ‚unterstellten Intentionen‘ — verpflichtet.

(2) Mit dieser Ortsbestimmung des Ethikrates könnte man den Eindruck gewinnen, als ob sich ‚das Ethische‘ in eine ‚Beliebigkeit‘ verflüchtigt. Zwar dürfen die Experten des Ethikrates Meinungen äußern — und letztlich auch alle Bürger (wo werden diese gefragt?) — aber durch die Verlagerung der ethischen Erkenntnis in das individuelle Denken, das im Ethischen gleichberechtigt ist, gibt es keinen wirklichen ‚Fixpunkt‘ mehr, an dem sich die individuellen Urteile messen können. Dreier nennt diesen Bereich jenseits der Fakten den Bereich ’normativer Wertungen‘, für den er mit Bezug auf Max Weber günstigstenfalls reklamiert, dass man diese normativen Inhalte einer ‚Diskussion‘ zuführen kann, eventuell in Form einer ‚konsistenten‘ (widerspruchsfreien) Darstellung kondensiert in ‚Wertaxiomen‘.

(3) Dieser Versuch einer formalen Eingrenzung des ‚Ethischen‘ im interdisziplinären Diskurs lässt erahnen, dass es hier nicht um ‚die‘ Wertaxiome geht, sondern um jene Wertaxiome, die unterschiedliche Vertreter artikulieren. Der Raum des Ethischen ist in diesem Konzept also ein ‚offener‘ Raum, der sich entwickeln kann, der anhand neuer Einsichten umakzentuiert werden kann; das Ethische wird damit eingebettet in den allgemeinen Erkenntnisprozess der Menschheit, der bekanntlich in den letzten Tausenden von Jahren starke Wandlungen erfahren hat.

(4) Diese Sicht einer Ethik, die sich im fortdauernden Diskurs ‚finden‘ muss, wird auch noch unterstützt durch die Ergebnisse der mathematischen und linguistischen Grundlagenforschung des 20.Jahrhunderts. Seit Goedel (1931) und Turing (1936/7) ist unabwendbar klar, dass selbst im abgegrenzten Bereich formaler (mathematischer) Theorien ‚konsistente‘ Theorien nur bis zu einer gewissen ‚Ausdrucksstärke‘ möglich sind. Das meiste, was heute in der Mathematik wichtig ist, lässt sich nicht als konsistent beweisen. Für den Bereich natürlicher Sprachen (dazu gehört Philosophie und Ethik allemal) ist die Frage der ‚Konsistenz‘ ganz bodenlos (u.a. Wittgenstein). Die Idee eines widerspruchsfreien ethischen Diskurses ist bestenfalls eine ‚regulative Idee‘, eine Illusion, die helfen kann, den Glauben an Konsistenz aufrecht zu erhalten, aber praktisch einlösbar ist eine Widerspruchsfreiheit in diesem Bereich grundsätzlich nicht. Die einzig mögliche Konsequenz aus diesen Sachverhalten ist, die Partialität jeglicher Erkenntnis, insbesondere auch der ethischen, sehr ernst zu nehmen, und Bruchstücke, fragile Konstruktionen, von vornherein niemals einfach auszugrenzen. In den Naturwissenschaften hat man gelernt, mit partiellen Erkenntnissen so umzugehen, dass man ‚inkrementelle Modelle (Theorien)‘ entwickelt, die im Laufe der Zeit ‚verbessert‘, ‚korrigiert‘ werden, ohne dass zu irgendeinem Zeitpunkt eine Theorie einen ‚Absolutheitsanspruch‘ hat. Dass diese Modell einer ‚dynamisch partiellen‘ Erkenntnis erfolgreich sein kann, belegen die letzten Jahrhunderte. Ob Horst Dreier diesen Konsequenzen zustimmen würde?

(5) Letztlich wird man wohl auch nicht umhin kommen, das Format eines ethischen Diskurses neu zu bestimmen, zumindest erheblich weitergehender als es bislang geschehen ist.  Es ist allerdings schwer zu sehen, aus welcher ‚Ecke‘ geisteswissenschaftlicher Aktivitäten diese ‚Erneuerung‘ kommen kann. Die  Diskursbeiträge der letzten Jahrhunderte haben nur demonstriert, dass sie diese Aufgabe nicht bewältigen können.

Ich glaube an Gott, was brauch ich dann die (komplizierten) Wissenschaften?

(1) Während einer Geburtstagsfeier mit vielen Gästen (wo sonst…) nahmen die Gespräche zur fortgeschrittenen Stunde immer intensivere Verläufe. An einer Stelle sagte dann eine engagierte Frau, dass Sie an Gott glaube, an die Welt als Schöpfung; das gäbe ihr Kraft und Sinn; und so lebe sie es auch. Die Wissenschaft brauche sie dazu nicht; die sei eher verwirrend.

 

 

(2) Mit solch einem ‚Bekenntnis‘ ist das Wissen zunächst einmal ’neutralisiert‘; was immer Wissen uns über den Menschen und seine Welt sagen könnte, es findet nicht statt, es gibt kein Wissen mehr. Mögliche Differenzierungen sind wirkungslos, mögliche Gründe unwichtig; mögliche Infragestellungen, gedankliche Herausforderungen können nicht greifen; damit verbundene mögliche Spannungen, Erregungen können nicht stattfinden. Die Welt ist ‚wie sie ist‘, d.h. wie das aktuelle Wissen des so Glaubenden sie zeichnet. Alles hat seine Ordnung, eine Ordnung die sich nicht beeinflussen lässt durch Wissenschaft.

 

 

(3) In gewisser Weise hört nach einem solchen Bekenntnis jedes Gespräch auf. Man kann zwar noch weiter Reden, aber inhaltlich kann man sich nur noch auf wechselseitige Bestätigungen beschränken: Ja, ich sehe das auch so; ja, ich glaube das auch; ja, ich finde das gut;…. abweichende Meinungen haben streng genommen keinen Platz in diesem Gefüge…weil sie einfach ausgeblendet werden (Menschen mit mehr Aggressionspotential gehen dann allerdings zum ‚Angriff‘ über und versuchen, die ‚abweichende‘ Meinung nieder zu machen). Aber auch das ‚einfache Ausblenden‘ einer anderen Meinung, zu sagen, dass man abweichende Meinungen nicht hören will, ist eine Form der ‚Entmündigung‘ und damit eine Form von ‚Missachtung‘. Wahrheit ist dann nicht mehr möglich.

 

 

(4) Mich hat diese Einstellung geschockt. Wenn man weiß, auf welch schwankendem Boden jegliche Form von Wissen über uns, die Welt und Gott steht und wenn man weiß, wie viel Unheil über Menschen im Namen des Glaubens gekommen ist, weil die Gläubigen zu wissen glaubten, was wahr ist und in diesem Glauben tausende andere unterdrückt, verfolgt, gefoltert und getötet haben, weil sie auch glaubten, dass ihre Form des Glaubens über alle anderen Erkenntnisse und Wahrheiten ‚erhaben‘ sei, dann ist jegliche Form der Ablehnung von Wissen (ob durch Verweis auf Gott (Wer kennt ihn wirklich), durch Verweis auf eine politische Ideologie, durch Verweis auf ethnische Besonderheiten, durch Verweis auf ‚besonderes Blut‘, usw.) letztlich in einem identisch: die bewusste willentliche Entscheidung, sein eigenes Bild von der Welt auf keinen Fall zu verändern; was immer die Wissenschaften über uns und die Welt herausfinden, das wird als ‚irrelevant‘ neutralisiert.

 

 

(5) Allerdings zeigt sich am Beispiel solcher ‚alltäglicher‘ Konflikte auch sehr unmittelbar, dass entwickelte (wissenschaftliche) Formen von Wissen alles andere als selbstverständlich sind. Es hat nicht nur viele tausend Jahre gebraucht, bis die Menschen mit komplexeren Wissensformen umgehen konnten, es ist heute, in unserer Gegenwart so, dass man sich des Eindrucks nicht erwehren kann, dass nicht nur viele derjenigen, die nicht studiert haben, ein gebrochenes Verhältnis zu wissenschaftlichem Wissen haben, sondern dass ebenso viele derjenigen, die akademische Abschlüsse vorweisen können (mehr als 50%?), das ‚Wesen von wissenschaftlichem Wissen‘   nicht verstanden zu haben scheinen und Anschauungen über uns Menschen und die Welt für ‚wahr‘ halten, die — nach meinem Kenntnisstand — ziemlich abstrus und willkürlich sind (so eine Art ‚Voodoo‘ unter dem Deckmantel von Wissenschaft und Aufklärung).

 

 

(6) Es macht wenig Sinn, über diesen Sachverhalt zu ‚moralisieren‘. Es ist die Realität, in der wir leben. Da unser Handeln von unserem Wissen — oder von der Meinung anderer, denen wir einfach folgen — geleitet ist, haben solche Auffassungen ihre alltäglichen Wirkungen.

 

 

(7) Wenn man also versucht Wissen ernst zu nehmen; wenn man Fragen zulässt und sie versucht ernsthaft zu beantworten; wenn man sogenannte Selbstverständlichkeiten immer wieder mal hinterfragt, um sich zu vergewissern, dass man keine falschen Voraussetzungen mit sich herum trägt; wenn man versucht, aus den vielen Detailerkenntnissen größere Zusammenhänge zu konstruieren und auch wieder zu verwerfen; wenn man versucht, Sachverhalte zu Ende zu denken, obgleich wenig Zeit ist, man erschöpft ist, und keiner davon etwas hören will, dann darf man dafür kein Lob erwarten, keine Ermutigung, kaum Zustimmung, sondern eher Ablehnung, Angst, Abwehr oder Bemerkungen wie ‚Was Du da wieder denkst‘, ‚Das braucht doch kein Mensch‘, ‚Hast Du nichts Besseres zu tun‘, ‚Das nervt einfach‘, ‚Mir ist das alles zu kompliziert‘,….

 

 

(8) Sich auf Dauer ernsthaft mit ‚wahrem‘ Wissen zu beschäftigen (nicht mit Modetrends, Buzz Words, usw.) liegt quer im Alltag, darf auf keine Unterstützung hoffen. Die meisten Menschen suchen nicht die ‚Wahrheit‘, sondern eher Bestätigungen für ihre aktuelle Unwahrheit; Bestätigungen fühlen sich einfach besser an als Infragestellungen durch Erkenntnisse, die dazu zwingen, das eigene Bild von der Welt zu verändern.

 

 

(9) Jedes Wissen hat ‚Ränder des Wissens‘, jene Bereiche, die vom bisherigen Wissen noch nicht erschlossen sind bzw. die durch aktuelles Wissen ‚verstellt‘ werden, d.h. ich werde im Wissen erst weiter kommen, wenn ich dieses ‚verstellende‘ Wissen als ‚falsch‘ bzw. ‚unzureichend‘ erkannt habe. Wie soll dies geschehen? Menschen, die hauptsächlich nur Bestätigungen suchen, haben praktisch keine Chance, die ‚Falschheit‘ ihres Wissens zu entdecken. Sie sind in ihrem aktuellen Wissen quasi gefangen wie in einem Käfig. Da sie ihren Käfig nicht sehen, ihn ja sogar für ‚richtig‘ halten, wird sich der Käfig im Normalfall immer nur noch weiter verfestigen.

 

 

(10) Das biologische Leben, von dem wir Menschen ein winziger Teil sind, hat die Jahrmilliarden dadurch gemeistert, dass es nicht einer bestimmten vorgegebenen Ideologie gefolgt ist, sondern dass es ‚alles, was möglich wahr, einfach probiert hat‘. Man kann dies ‚Zufall‘ nennen oder ‚Kreativität‘ oder ‚Spiel‘; letztlich ist es so, dass Zufall/ Kreativität/ Spontaneität/ Spiel jeglicher fester Form auf Dauer haushoch überlegen ist, da feste Formen von Wissen Spezialisierungen darstellen für bestimmte Aspekte von Welt, meistens dazu sehr statisch, und solche Formen sind sehr schnell sehr falsch. Besser zu sein als ‚zufallsgesteuertes Wissen‘ ist eine sehr hohe Messlatte, und biologische Systeme wirken nur deshalb gegenüber reinem Zufall überlegen, weil sie die Erfahrungswerte von 3 Milliarden Jahren ’spielerischer Evolution‘ in sich angesammelt haben. Mehr als drei Milliarden Jahre Experimente mit hunderten Milliarden Beteiligten pro Jahr sind eine Erfahrungsbasis, die in sich ein Wunder darstellt, das zu begreifen nicht leicht fällt. Wir, die wir von diesem ‚angesammelten Wissen‘ profitieren können, ohne dass wir auch nur irgendetwas selbst dazu beigetragen haben, haben meistens kein gutes Gefühl dafür, welch ungeheure Leistung es bedeutet, das bisherige Weltwissen auch nur ein kleines Stück zu erweitern. Wer sich die Mühe machen würde, beispielhaft  — von vielen möglichen spannenden Geschichten — die Geschichte des mathematischen Denkens zu verfolgen, das zum Herzstück von jeglichem komplexen Wissen gehört, kann sehen, wie sich die besten Köpfe über 3000 und mehr Jahre bemühen mussten, bis die Mathematik eine ‚Reife‘ erlangt hat, die erste einfache Wissenschaft möglich macht. Zugleich gilt, dass in unseren Zeiten, die mehr denn je von Technologie abhängen, das Wissen um Mathematik bei den meisten Menschen schlechter ist als bei den Denkern der Antike. Es ist eben nicht so, dass ein Wissensbereich, der über Jahrtausende mühsam aufgebaut wurde, dann automatisch in der gesamten nachfolgenden Kultur verfügbar ist; ein solches Wissen kann auch wieder verfallen; ganze Generationen können in der ‚Aneignung von Wissen‘ so versagen, dass ‚errungenes Wissen‘ auch wieder ‚verschwindet‘. Wissen in einer Datenbank nützt nichts, wenn es nicht reale Menschen mit realen Gehirnen gibt, die dieses Wissen auch tatsächliche ‚denken‘ und damit anwenden können. Immer größere Datenbanken und immer schnellere Netze nützen nichts, wenn das reale Wissen in den realen Köpfen wegen biologischer Kapazitätsgrenzen einfach nicht ‚mithalten‘ kann…

 

 

(11) Unsere heutige Kultur ist in der Tat an einer Art Scheideweg: unsere Technologie entwickelt sich immer schneller, aber die biologischen Strukturen unserer Körper sind bislang annähernd konstant. Bedeutet dies, dass (i) die Ära der Menschen vorbei ist und jetzt die Zeit der Supercomputer kommt, die den weiteren Gang der Dinge übernehmen? oder (ii) haben wir einen Wendepunkt der Entwicklung erreicht, so dass ab jetzt aufgrund der biologischen Begrenztheit der Menschen es nicht mehr nur um ’schneller‘ und ‚mehr‘ geht sondern um ‚menschengemäßere künstliche Intelligenz‘, die ein Bindeglied darstellt zwischen dem kapazitätsmäßig begrenztem menschlichem Denken einerseits und einer immer leistungsfähigeren Technologie? oder (iii) Beginnt jetzt die Ära der angewandten Gentechnologie, die uns in die Lage versetzt, unseren Körper schrittweise so umzubauen, dass wir die Erfordernisse eines biologischen Lebens auf der Erde besser meistern könne als bisher? Die Alltagserfahrung legt vielleicht (i) nahe, die bisherige historische Entwicklung deutet aber auf (ii) und (iii) hin. Denn — und das übersieht man leicht — der Weg des Lebens in den letzten ca. 3.2 Milliarden Jahren hat permanent Probleme lösen müssen, die verglichen mit den uns bekannten Problemen um ein vielfaches größer waren. Und das Prinzip des Lebens hat dies alles gemeistert, ohne dass wir auch nur einen Millimeter dazu beigetragen haben. Wenn wir uns also weniger an unsere vielfältigen kleinkarierten Ideologien klammern würden und stattdessen stärker auf die ‚innere Logik des Lebens‘ achten, dann sind die potentiellen Lösungen in gewisser Weise ’schon immer da‘. Dies ist nicht als ‚Determinismus‘ oder ‚Vorsehung‘ misszuverstehen. Nein, die Struktur der Materie enthält als solche alle diese Strukturen als Potential. Unsere gesamtes heutiges Wissen (von dem unsere Körper mit ihren Gehirnen ein kleiner Teil sind) ist letztlich nichts anderes als das versammelte Echo der Milliarden von Experimenten, in denen wachsende biologische Strukturen in einem permanenten Dialog mit dem vorfindlichen Universum Aspekte dieses Universums ’sichtbar‘ gemacht haben; wahres Wissen zeigt in dem Sinne nichts ‚Neues‘ sondern macht ’sichtbar‘, was schon immer da war bevor es dieses Wissen explizit gab. ‚Wissen schaffen‘ heißt im Wesentlichen ‚in Dialog treten‘, d.h. ‚Interagieren‘, d.h. ‚ein Experiment durchführen‘ und die Ereignisse im Umfeld der Dialoge ‚geeignet zusammenführen‘ (Bilder, Modelle, Theorien…). Was ‚Denken‘ wirklich ist wissen wir bislang eigentlich immer noch nicht wirklich, was unsere Gehirne aber nicht daran hindert, kontinuierlich Denkarbeit zu leisten. Unsere Gehirne denken für uns. Wir sind quasi ‚Konsumenten‘ dieser wundersamen Gebilde. Dass unsere Gehirne nicht ‚beliebig gut‘ denken sondern so ihren ‚eigenen Stil‘ pflegen, das merkt man erst nach vielen Jahren, wenn man sich intensiv mit der Arbeitsweise des Gehirns beschäftigt. Wenn wir über die ‚Welt‘ reden dann reden wir nicht über die Welt ‚wie sie um uns herum ohne uns ist‘, sondern über die Welt, ‚wie sie unsere Gehirne für uns aufbereiten‘. Unsere Gehirne arbeiten so perfekt, dass uns dieser fundamentale Unterschied lange Zeit — vielen Menschen vielleicht zeit ihres Lebens nie — nicht auffällt.

 

 

(12) Wir sind Teil dieses gigantischen Geschehens. Wir finden uns darin vor. Leben ist mehr als die Worte, die man darüber formulieren kann. Einen Sinn gibt es natürlich; er hängt nicht davon ab, ob wir ihn sehen oder nicht sehen, glauben oder nicht glauben. Der wahre Sinn durchdringt alles von Anbeginn. Wir können versuchen, uns ihm gegenüber zu verschließen, aber wir selbst mit unserem Körper als Teil des Ganzen, enthalten so viel von diesem Sinn, dass wir geradezu ‚voll gepumpt‘ sind mit diesem Sinn. Vor allem Erkennen kann man es auch fühlen.

 

 

(13) Was ‚Gott‘ mit allem zu tun hat? Ich bin mir nicht sicher, ob wir als Menschen diese Frage überhaupt verstehen können.

 

 

MENSCHENBILD IM WANDEL – Vortrag 24.Nov.2011

In Ergänzung zu diesem Block findet ein öffentlicher Vortrag statt:

Vortragsankündigung

INTELLIGENZ (1)

(1) In der heutigen Welt erleben wir eine Inflation im Gebrauch der Wörter   ‚Intelligenz‘, ‚intelligent‘ und ’smart‘. Im technischen Bereich sind immer mehr Produkte ’smart‘ ohne dass jemand sich auch nur ansatzweise die Mühe macht, diese Sprechweisen zu rechtfertigen; man tut einfach so, als ob dies so sei.

(2) Die Wurzel des Redens über ‚Intelligenz‘ ist aber das Erleben von Menschen, die Art und Weise wie wir als Menschen das Verhalten anderer Menschen im Vergleich zur umgebenden Natur erleben. In nicht wenigen Aspekten hebt sich das Verhalten des Menschen dadurch ab, dass wir einem Menschen ‚Absicht‘ unterstellen, ‚Erinnerungen‘, ‚Denken‘, usw. Bestimmte dieser beobachtbaren Eigenschaften  zusammengenommen unterstellen wir, wenn wir von ‚Intelligenz‘ sprechen.

(3) In dem Masse, wie wir gelernt haben, das eigene menschliche Verhalten besser zu verstehen und in den Gesamtzusammenhang des biologischen Lebens einordnen zu können, haben wir auch begonnen, verschiedenen anderen Lebensformen (Insekten, Säugetiere, …) zumindest Ansätze solcher Eigenschaften wie ‚Wahrnehmung‘, ‚Erinnerung‘, ‚Absicht‘ usw. zu zusprechen.

(4) Abseits vom Verhalten von Menschen haben wir keine ‚Referenzmuster‘ für ‚intelligentes Verhalten‘. Wenn wir eine Maschine (Roboter) bauen und von ihr behaupten, sie sei ‚intelligent‘ dann gewinnt diese Aussage höchstens Bedeutung durch Bezug auf vergleichbares Verhalten von Menschen; aber ohne diesen Bezug macht es keinen Sinn, von ‚Intelligenz‘ zu sprechen. Der Begriff der Intelligenz‘ unabhängig vom Menschen hat zunächst keine Bedeutung.

(5) Es ist vor allem die Psychologie, die sich mit dem beobachtbaren Verhalten von Menschen wissenschaftlich auseinandersetzt (im weiteren Sinne auch die allgemeinere biologische Verhaltensforschung (Ethologie)). Die Psychologie hat seit mindestens Sir Francis Galton  (1822 – 1911) und Alfred Binet (1857 – 1911) versucht, das als ’normal‘ anzusehende Verhalten der Mehrheit der Menschen (eines Jahrgangs) zum Massstab  zu nehmen, um damit das Verhalten eines jeden einzelnen ‚Bezogen auf dieses allgemeine Verhalten‘ ‚einzuordnen‘ (zu ‚messen‘).

(6) Natürlich haftet jeder Auswahl von konkreten Verhaltensweisen etwas ‚Willkürliches‘ an, dennoch stellt eine ‚Zusammenstellung‘ der zu einer bestimmten Zeit in einer bestimmten Gesellschaft ‚üblichen Verhaltensweisen‘ aber auch mehr dar als nur eine ‚bloss zufällige‘ Anordnung.

(7) Seitdem die Psychologen begonnen haben, mit solchen (z.T. schon unterschiedlichen) Zusammenstellungen von Verhaltensweisen (‚Testbatterien‘) gezielt ‚Messungen‘ vorzunehmen hat sich gezeigt, dass die Messergebnisse erstaunliche Konsistenzen aufweisen; ja, es lassen sich Prognosen über ‚Verhaltensweisen und Erfolge in der Zukunft machen‘, die weit jenseits des ‚Zufälligen‘ sind.

(8) Daraus kann man nicht folgern, dass die gewählten Verhaltensweisen die einzig ‚richtigen‘ sind, die mit INTELLIGENZ korrelieren, aber man darf zurecht annehmen, dass die Strukturen, die mittels des beobachtbaren Verhaltens ‚indirekt‘ gemessen werden, offensichtlich eine gewisse ‚Konsistenz‘ aufweisen, die ‚hinter‘ all der beobachtbaren Vielheit ‚am Werke‘ ist.

(9) Wenn die Psychologie also von ‚Intelligenz‘ spricht, dann bezieht sie sich auf kulturell stark repräsentative Verhaltensweisen, die man ‚messen‘ kann und die in ihrer Gesamtheit einen Hinweis liefern, ob ein einzelner Menschen sich so verhält, wie der große ‚Durchschnitt‘ (IQ=100) oder aber davon ‚abweicht‘; entweder durch ‚geringere‘ Leistung (IQ < 100)  oder durch ‚mehr‘ Leistung (IQ > 100).

(10) Wichtig ist, dass die verschiedenen benutzten Verhaltenskataloge (Testbatterien) kein direkt beobachtbares  ‚Objekt‘ Intelligenz definieren, sondern eher eine Art ‚Umschreibung‘ von etwas darstellen, was man nicht direkt sehen, sondern nur indirekt ‚erschließen‘ kann. Der psychologische Begriff der Intelligenz ist ein ‚theoretisches Objekt‘, also ein ‚Begriff‘ (Term), der durch formalen Bezug zu unterschiedlichen Messvorgängen eine ‚operationale‘ Bedeutung besitzt. Was letztlich das beobachtbare (messbare) Verhalten erzeugt, ist damit in keiner Weise klar.

(11) In der Psychologie gab es eine Vielzahl von Deutungsansätzen, wie man das ‚hinter dem Verhalten‘ liegende ‚Etwas‘ denken sollte. Am meisten verbreitet ist jener Ansatz, der zwischen einer ANGEBORENEN und einer ERWORBENEN Struktur unterscheidet: die durch die Erbanlagen weitgehend bestimmte angeborene Struktur definiert eine MASCHINERIE der VERARBEITUNG, deren Qualität sich in der GESCHWINDIGKEIT und FEHLERFREIHEIT zeigt (man spricht hier oft von FLUIDER Intelligenz). Die erworbene Struktur ist jener WISSEN, jene ERFAHRUNG, die sich durch die Anwendung der Maschinerie ERGIBT, so zu sagen das ERGENIS VON VERARBEITUNG (man spricht hier oft von KRISTALLINER Intelligenz). Während die kristalline Intelligenz stark verhaltens- und umweltabhängig ist ist die fluide Intelligenz weitgehend genetisch determiniert.

(12) Ob und wieweit die theoretisch bedingten Spekulationen der Psychologen über die fluide und kristalline Intelligenz zutreffen muss letztlich die Neurowissenschaft, und hier insbesondere die Neuropsychologie, entscheiden. Diese untersuchen die ‚biologische Maschinerie‘ des Gehirns und die Wechselwirkung mit dem Beobachtbaren Verhalten. Allerdings sind die Neurowissenschaften auf die Verhaltenstheorien der Psychologen angewiesen. Ohne die fundierten Untersuchungen des Verhaltens hängen die neurologischen Befunde buchstäblich ‚in der Luft‘: was nützt die Prozessbeschreibung eines Neurons wenn man nicht weiss, auf welches Verhalten dies zu beziehen ist. Und da es beim Menschen auf komplexe Verhaltensweisen ankommt die das gesamte komplexe Gehirn voraussetzen, ist diese Aufgabe nicht ganz einfach zu lösen (aus theoretischen Überlegungen muss man davon ausgehen, dass wir diese Aufgabe mit den heute verfügbaren Gehirnen nicht vollständig werden lösen können).

(13) Intelligenz messen: der Beginn der empirischen Wissenschaften ging einher mit der Einsicht, dass man auf Dauer nur dann zu ‚objektiven‘ Daten kommen kann, wenn man die Messprozeduren auf REFERENZOBJEKTE beziehen kann, die von den subjektiven Zuständen des einzelnen Beobachters UNABHÄNGIG sind. So kam es zur Einführung von Referenzobjekten für die Länge (m), das Gewicht (kg), die Zeit (s) usw. (die im Laufe der Zeit immer wieder durch neue ‚Versionen‘ ersetzt wurden; z.B. die Definition der ‚Sekunde‘ (s) oder der Länge (m)).

(13.1) Die Psychologen hatten im Fall der ‚Intelligenz‘  ‚Referenztestverfahren‘ eingeführt, die zwar unabhängig von den Gefühlen der Beteiligten waren, aber  es gab  kein unabhängiges Referenzobjekt INTELLIGENZ. Man erklärte einfach die MEHRHEIT der gerade lebenden Menschen zum STANDARD und verglich die zu ‚messenden Menschen‘ so gesehen mit ’sich selbst‘. Es war dann nicht wirklich überraschend, dass man im Laufe der Jahrzehnte feststellen musste, dass sich das REFERENZOBJEKT (nämlich die Leistung der ‚Mehrheit‘) nachweisbar ‚verschob‘. Ein IQ=100 war vor 50 –oder noch mehr– Jahren etwas anderes als heute!
(13.2) Das, was das Referenzobjekt INTELLIGENZ ’stabil‘ macht, das ist seine genetische Determiniertheit. Das, was es flexibel/veränderlich macht, das ist die Modifizierbarkeit durch genetische Variabilität und individuelle Lernfähigkeit bzw. die kontinuierliche Veränderung der Umwelt durch den Menschen selbst, die als veränderte sekundäre Welt auf den Menschen zurückwirkt.
(13.3) Bei aller Kritik an den Unzulänglichkeiten der aktuellen Messmethoden sollte man aber festhalten, dass das bisherige Verfahren trotz allem ein Geniestreich war und die Psychologie geradezu revolutioniert hatte.
(13.4) Trotzdem stellt sich die Frage, ob man heute mit neueren Mitteln das Projekt der Erforschung der Intelligenz noch weiterführen könnte?

(14) Für die Psychologen ist es unmöglich, die dem beobachtbaren Verhalten zugrunde liegenden Strukturen ‚als solche‘ direkt zu erforschen. Die Neurowissenschaftler können dies ansatzweise, indem sie reale Gehirne untersuchen, aber nur sehr limitiert; sie können nicht mit einem lebenden Gehirn wirklich Experimente machen (nur mit den Gehirnen von Tieren, und dies ist mehr und mehr ethisch äußerst fragwürdig!)

(15) Mit dem Aufkommen der Informatik entwickelten sich nicht nur theoretische Konzepte der BERECHENBARKEIT, sondern mehr und mehr auch eine TECHNOLOGIE, die es erlaubt, Berechnungsprozesse technisch zu realisieren. Dies wiederum ermöglicht die MODELLIERUNG und SIMULATION von nahezu beliebigen Strukturen und Prozessen, auch solchen, die BIOLOGISCHE Systeme modellieren und simulieren, einschließlich des GEHIRNS. Damit ist es prinzipiell möglich, zu jeder VERHALTENSWEISE, die in sogenannten Intelligenztests im Rahmen von TESTAUFGABEN gemessen werden, KÜNSTLICHE INTELLIGENZ (-STRUKTUREN) (KI := Künstliche Intelligenz, AI := Artificial Intelligence, CI := Computational Intelligence)  zu entwickeln, die in der Lage sind, genau diese Testaufgaben mit einem gewünschten IQ zu lösen. Auf diese Weise würde man eine ganze Kollektion von unterschiedlichen IQ-REFERENZOBJEKTEN erstellen können, die sich nicht mehr verändern und die –so wie das Kilogramm (kg), das Meter (m) oder die Sekunde (s)– dann als WIRKLICHE REFERENZOBJEKTE FÜR INTELLIGENZ dienen könnten. Es wäre dann  möglich, FORMEN VON INTELLIGENZ OBJEKTIV definieren zu können, die VERSCHIEDEN sind von der AKTUELLEN MENSCHLICHEN INTELLIGENZ. Auch könnte man damit den verschiedenen Formen TIERISCHER INTELLIGENZ mehr Rechnung tragen.

DENKMASCHINERIE (4)

Diesem Beitrag ging ein Teil 3 voraus.

(1) Es gibt unterschiedliche Perspektiven, wie man das, was wir als ‘Denken’ bezeichnen, betrachten kann. Je nachdem, welche dieser Perspektiven wir wählen, ergibt sich ein ganz unterschiedliches Bild von diesem ‘Denken’.

(2) Neben dem ALLTAGSDENKEN gibt es seit ein paar hundert Jahren auch das sogenannten WISSENSCHAFTLICHE DENKEN. Das wissenschaftliche Denken setzt das alltägliche Denken gewissermaßen als primären Bezugspunkt voraus, hebt sich aber dennoch von ihm ab und widerspricht ihm letztlich in vielen Punkten. Dies liegt daran, dass das ALLTAGSDENKEN eine Reihe von ANNAHMEN macht, die FALSCH sind, aber im Alltag meistens sehr NÜTZLICH. So atemberaubend die Leistungen des wissenschaftlichen Denkens auch sind, es ist eine limitierte, eingeschränkte Form des Denkens, die nicht nur das ALLTAGSDENKEN voraussetzt sondern –aus philosophischer, erkenntnistheoretischer Sicht– auch das  PHÄNOMENOLOGISCHE DENKEN. Letzteres kann man nur angenähert beschreiben als eine Struktur, die die INNENSICHT des subjektiven Erlebens mit Hilfe von alltagssprachlich und wissenschaflich eingeführten sprachlichen Konstrukten näherungsweise beschreibt.

(3) Allen drei Formen ALLTAGSDENKEN, WISSENSCHAFTSDENKEN sowie PHÄNOMENOLOGISCHEM DENKEN ist gemeinsam, dass sie das Denken zeigen, wie es sich  AUSWIRKT. Wie erscheinen Menschen, wenn sie denken im Alltag? Wie sieht es aus, wenn DENKENDE Menschen Experimnte machen, Modelle konstruieren und überprüfen? Welche Erlebnisse hat jemand, der DENKT? In all diesen Perspektiven ist DAS, WAS DAS DENKEN ERMÖGLICHT, NICHT im Blick. Wir können zwar ERLEBEN, dass wir uns ERINNERN können, die einzelnen Vorgänge beim Erinnern selbst können wir aber nicht ’sehen‘. Wir erleben, dass wir VERALLGEMEINERN können, wir können ABSTRAHIEREN, es passiert ‚AUTOMATISCH‘, aber wir können nicht ’sehen‘, wie dies im einzelnen funktioniert. usw. Diejenige MASCHINERIE, die unser Erleben, Wahrnehmen, Denken ERMÖGLICHT, ist uns innerhalb des BEWUSSTEN DENKENS VERBORGEN.

(4) Die PHILOSOPHEN haben sich darüber immer wieder Gedanken gemacht; sie nannten das dann manchmal ERKENNTNISTHEORIE. Einer der beeindruckendste und bis heute noch immer aktuelle Beitrag ist sicher die ‚Kritik der reinen Vernunft‘ von Immanuel Kant (2.Aufl. 1787) (ohne damit andere schmälern zu wollen). Wie kaum ein anderer hat er die Frage nach den BEDINGUNGEN des eigenen Erkennens gestellt und mit seiner TRANSZENDENTALEN ANALYTIK u.a. herausgearbeitet, dass in der ART UND WEISE, wie wir WAHRNEHMEN die Struktur von RAUM UND ZEIT von vornherein (a priori) ‚eingebaut‘ ist. Bücher wie die von  Konrad Lorenz 1977 ‚Die Rückseite des Spiegels‘ oder 1982 das Buch ‚Erkennen: Die Organisation und Verkörperung von Wirklichkeit‘ (zuvor schon  1972 (mit Varela) das Buch  ‚De máquinas y seres vivos‘)  von Maturana sind zwar nicht die ersten, die die biologischen Grundlagen unseres Denkens thematisieren, aber diese Publikationen markieren eine Wende im Denken über das Denken. Die rasante Entwicklung der Neurowissenschaften hat dann ihr Übriges dazu beigetragen, die Frage nach der MASCHINERIE ‚in unserem Kopf‘, die unser Denken ermöglicht, weiter zu beleuchten.

(5) Heute erscheint es jedenfalls gesichert, dass alles, was wir WAHRNEHMEN, ERINNERN, FÜHLEN, DENKEN usw. darauf basiert, dass wir ein NERVENSYSTEM (GEHIRN) besitzen, das innerhalb unseres Körpers in der Lage ist, SPEZIFISCHE SPANNUNGSZUSTÄNDE (ERREGUNGSZUSTÄNDE)  zu repräsentieren, zu modulieren, und weiter zu leiten, und dies in einer Massivität, Parallelität und letztlich Komplexität, die alles übersteigt, was wir sonst so in der Natur kennen.

(6) Die Kenntnisse über Details dieser Maschinerie und über den einen oder anderen ‚funktionalen‘ Zusammenhang sind recht weit fortgeschritten. Allerdings liegen mehr als die Hälfte der biologischen Substanz des Gehirns (z.B. die genaue Funktion der Astrozyten) noch bis heute im tiefsten Dunkel. Ferner ist es bislang fast unmöglich, die PARALLELITÄT zwischen BEWUSSTEM ERKENNEN und UNTERSTELLTER MASCHINERIE klar und ausführlich zu erforschen (Neuropsychologie), da gerade das BEWUSSTE DENKEN sich einer direkten eindeutigen Beschreibung bislang entzieht. Es gibt eine Fülle von Einzelhypothesen, aber keinerlei Struktur, die den Namen MODELL oder gar THEORIE wirklich verdient. Neurobiologen wissen meist sehr viel über biochemische Details von Nervenzellen oder deren Komponenten, aber kaum etwas über größere Zusammenhänge, geschweige denn etwas darüber, was eine THEORIE DES GEHIRNS sein könnte.

(7) Es ist schwer abschätzbar, wie lange die Wissenschaft (und die Philosophie?) brauchen wird, eine (empirische) THEORIE DES GEHIRNS als Teil des Körpers auszuarbeiten. Zum VERSTEHEN unserer spezifisch MENSCHLICHEN BEWUSSTHEIT, unserer MENSCHLICHEN GEISTIGKEIT, unseres MENSCHLICHEN DENKENS wird diese Theorie allerdings nur dann etwas beitragen können, wenn es neben der  Theorie des biologischen Gehirns TH_NN eine entsprechend ausgearbeitete Theorie des bewussten menschlichen Denkens Th_Consc gibt, so dass sich die ERLEBBAREN Eigenschaften des Denkens mit den MESSBAREN Eigenschaften des neuronalen Systems KORRELIEREN bzw. AUFEINANDER ABBILDEN lassen. D.h. wir brauchen letztlich eine METATHEORIE des Denkens Th_NNCons in der ÜBER die beiden anderen Theorien Th_NN und Th-Consc GESPROCHEN werden kann und in der die WECHSELWIRKUNG zwischen dem BEWUSSTEN und dem NEURONALEN explizit herausgearbeitet wird. Dabei vermute ich, dass die Theorie des BEWUSSTEN DENKENS Th_Consc eine PHÄNOMENOLOGISCHE Theorie sein muss.

(8) Aktuell besitzen wir nach meiner Einschätzung nur FRAGMENTE einer möglichen biologischen Theorie der neuronalen Strukturen Th_NN und ebenfalls bestenfalls nur FRAGMENTE einer phänomenologischen Theorie. Ich sehe nicht, dass zur Zeit  irgendjemand die  NOTWENDIGKEIT einer wirklichen THEORIE weder für Th_NN noch für Th_Consc sieht, geschweige denn für eine INTEGRIERENDE METATHEORIE der beiden.

(9) Für die Beschreibung der neuronalen Maschinerie sehe ich grundsätzlich zwei Strategien: (i) Eine möglichst ‚getreue‘ Abbildung der biologischen Strukturen oder (ii) eine Modellierung, die versucht, die ‚Prinzipien‘ herauszuarbeiten. Strategie (i) entspricht einer EMPIRISCH BIOLOGISCHEN Theoriebildung im ‚vollen Sinne‘. Strategie (ii) verkörpert eher den INGENIEURMÄSSIGEN Zugang. Zwischen einer ‚radikalen‘ Form von Strategie (i) und (ii) gibt es ein Kontinuum von Varianten, die letztlich ineinander übergehen. Wo genau der Bezug zum ‚Biologischen‘ aufhört und das ‚rein technische‘ Konstrukt  anfängt ist kaum klar definierbar. Wie auch immer man den ‚Einstieg‘ in eine der beiden Strategien wählt, jede Strategie, die funktioniert, wird uns wertvolle Erkenntnisse liefern und auf unterschiedliche Weise helfen, praktische Probleme zu lösen. Für konkrete ‚Therapien‘ wird eine stärker nach (i) gerichtete Strategie Unterstützung bieten können; für ingenieurmässige Lösungen, in denen ‚künstliche Gehirne‘ dem Menschen helfen sollen, wird eine Strategie (ii) erfolgversprechender sein. Eine klare Antwort wird momentan wohl niemand geben können.

Fortsetzung: In gewisser Weise sind die Teile 2-4 in einem späteren Vortrag bei der Philosophischen Gesellschaft Bremerhaven wieder aufgegriffen und weiter entwickelt worden.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

PHÄNOMENOLOGISCHES DENKEN (3)

Diesem Beitrag ging ein Teil 2 voraus.

(1) Es gibt unterschiedliche Perspektiven, wie man das, was wir als ‘Denken’ bezeichnen, betrachten kann. Je nachdem, welche dieser Perspektiven wir wählen, ergibt sich ein ganz unterschiedliches Bild von diesem ‘Denken’.

(2) Neben dem ALLTAGSDENKEN gibt es seit ein paar hundert Jahren auch das sogenannten WISSENSCHAFTLICHE DENKEN. Das wissenschaftliche Denken setzt das alltägliche Denken gewissermaßen als primären Bezugspunkt voraus, hebt sich aber dennoch von ihm ab und widerspricht ihm letztlich in vielen Punkten. Dies liegt daran, dass das ALLTAGSDENKEN eine Reihe von ANNAHMEN macht, die FALSCH sind, aber im Alltag meistens sehr NÜTZLICH. So atemberaubend die Leistungen des wissenschaftlichen Denkens auch sind, es ist eine limitierte, eingeschränkte Form des Denkens, die nicht nur das ALLTAGSDENKEN voraussetzt sondern –aus philosophischer, erkenntnistheoretischer Sicht– auch das  PHÄNOMENOLOGISCHE DENKEN.

(3) Im PHÄNOMENOLOGISCHEN Denken macht man sich die Tatsache zunutze, dass die primäre, erste, nicht weiter hintergehbare WURZEL UNSERES WISSENS das ERLEBEN VON ETWAS ist. Was immer wir ‚inhaltlich‘ auch zu erkennen glauben, zunächst einmal müssen wir ÜBERHAUPT ETWAS erkennen, anhand dessen unser ‚UNS SELBST BEWUSST SEIN‘ ‚aufleuchten‘ kann. Insofern geht es hier um unsere INHALTSVERMITTTELTE BEWUSSTHEIT (neuropsychologisches und meditationsorientiertes Denken unterscheidet gerne noch andere Formen von BEWUSSTSEIN, die an dieser Stelle keine Rolle spielen).

(4) Im Bereich dieses ERLEBENS VON ETWAS sind ALLE ERLEBNISSE zunächst einmal GLEICH: Weder sind sie unterschieden nach ihrer HERKUNFT noch nach irgendwelchen anderen EINTEILUNGSKRITERIEN wie z.B. ‚konkret‘, ‚abstrakt‘, ‚empirisch‘, ‚intersubjektiv‘, ’subjektiv‘ usw. Hier gibt es nur ERLEBTES. Ein ‚ERLEBTES‘ nenne ich hier PHÄNOMEN (das alt-griechische Verb ‚phaino‘ spricht davon, dass etwas ‚erscheint‘, ‚ans Licht kommt‘; im ERLEBEN ‚ERSCHEINT ETWAS‘). Man könnte diese primäre Einstellung technisch einfach LEVEL 0 nennen.

(5) Fakt ist, dass man im Bereich des primären ERLEBENS zwischen den einzelnen PHÄNOMENEN UNTERSCHEIDEN kann. Dies ist möglich, da die verschiedenen Phänomene AN SICH bzw. IN SICH (inhärent) EIGENSCHAFTEN (Qualia) aufweisen, anhand deren sie sich voneinander ABHEBEN. Diese Eigenschaften muss das Denken nicht erfinden sondern FINDET SIE VOR; sie SIND DA. In dem Moment, wo man diese ZUSÄTZLICHEN INFORMATIONEN der PHÄNOMENE BERÜCKSICHTIGT verlässt man LEVEL 0 und beginnt sich auf LEVEL 1.

(6) Es ist nicht von vornherein klar, welche SYSTEMATIK die ‚beste‘ ist, um diese Fülle an Eigenschaften zu ’strukturieren‘. Viele große Philosophen haben sich an dieser Aufgabe versucht. Jeder hat sein eigenes Konzept ausprobiert. Das grundlegende Problem an dieser Stelle der Erklärung ist, dass ich als SCHREIBER mit einem potentiellen LESER nur mittels einer SPRACHE –in diesem Fall deutsche Schriftsprache– kommunizieren kann. Und, wie schon der Abschnitt über das ALLTAGSDENKEN deutlich gemacht hat, kann ich mich mit einem ANDEREN nur in dem Maße über die BEDEUTUNG eines AUSDRUCKS verständigen, wenn diese MITZUTEILENDE BEDEUTUNG sich auf etwas BEZIEHT, das SCHREIBER und LESER GEMEINSAM TEILEN. Im ALLTAGSDENKEN ist das die als gemeinsam unterstellte EXTERNE WELT, mittels der wir unsere BEDEUTUNGEN ABSTIMMEN (Kalibrieren) können. IM FALLE VON SUBJEKTIVEN GEGEBENHEITEN –wie hier im Falle der PHÄNOMENE– ist dies zunächst einmal NICHT so! Angenommen, die PHÄNOMENE wären REIN SUBJEKTIV, dann hätten wir keine Chance, eine SPRACHE einzuführen, die es verschiedenen INHABERN EINES PHÄNOMEN-BEWUSSTSEINS erlauben würde, MITEINANDER DARÜBER zu sprechen. Daraus folgt, dass eine REINE PHÄNOMENOLOGIE, also eine ANALYSE DER PHÄNOMENE NACH DENEN IHNEN INHÄRENTEN EIGENSCHAFTEN, OHNE eine GEEIGNETE SPRACHE UNMÖGLICH ist.

(7) Um also den unbezweifelbar vorhandenen RAUM DER PHÄNOMENE (Level 0 + Level 1) für das VERSTEHEN UNSERES DENKENS nutzbar zu machen, muss man klären, wie wir ÜBERHAUPT DARÜBER SPRECHEN können, ohne in Beliebigkeit oder abgründigen Vagheiten abzugleiten.

(8) Am Beispiel des ALLTAGSDENKENS wurde als GRUNDLEGENDE STRATEGIE der BEDEUTUNGSSICHERUNG sichtbar, dass die potentiellen Kommunikationsteilnehmer von dem ausgehen müssen, was SIE GEMEINSAM haben. Bezogen auf das Gemeinsame kann man dann Begriffe einführen, deren BEDEUTUNG durch dieses GEMEINSAME ‚gedeckt‘ (referenziert) wird. Im Bereich des alltäglichen und wissenschaftlichen Denkens gilt das MESSEN als eine der ‚härtesten‘ Formen von GEMEINSAM FIXIERTER BEDEUTUNG. Bei näherer Betrachtung gilt aber, dass die am Messen BETEILIGTE PERSONEN nicht den MESSVORGANG ‚als solchen‘ wahrnehmen, sondern nur die SUBJEKTIVEN ERLEBNISSE, die dieser Messvorgang IN JEDEM EINZELNEN VERURSACHT/ ERZEUGT! Dies bedeutet, aus der Perspektive des PHÄNOMENRAUMES gibt es solche Phänomene Ph_Pers, die wir GELERNT haben als REPRÄSENTANTEN von ANDEREN PERSONEN zu VERSTEHEN und solche Phänomene Ph_Meas, die wir als REPRÄSENTANTEN VON MESSVORGÄNGEN AUFFASSEN. Im ‚Alltagsmodus‘ sprechen wir verkürzend von ‚den Anderen‘ oder ‚dem Messen‘. ‚Nah‘ betrachtet, aus der Perspektive des TATSÄCHLICHEN Erlebens, haben wir bestimmte ERLEBNISSE (PHÄNOMENE), mit unterscheidenden PHÄNOMEN-EIGENSCHAFTEN, anhand deren wir diese Unterscheidungen vornehmen.

(9) An diesem winzigen Beispiel wird ferner deutlich, dass das REDEN ÜBER PHÄNOMENE nicht nur ein Problem der VERFÜGBAREN SPRACHE ist, sondern offensichtlich auch an den ANDAUERNDEN ERLEBNISSTROM gebunden ist, der sich KONTINUIERLICH VERÄNDERT, und der EINGEBETTET ist in etwas, das wir IMPLIZITES LERNEN nennen. Dies bedeutet, es ist nicht nur so, dass wir PHÄNOMENE erleben, WIE SIE SIND, sondern gleichzeitig mit dem ERLEBNISSTROM können wir ERINNERN, und zwar in ‚verdichteten‘ Formen wie ABSTRAHIERENDEN BEGRIFFEN, in denen verschiedene EINZELN ERLEBBARE Phänomene in einem ABSTRAKTEN BEGRIFF (KONZEPT) ‚zusammengefasst‘ werden. So sehen wir KONKRETE Objekte, die wir ALLE mit dem einen Wort ‚STUHL‘ BEZEICHNEN, obgleich jedes einzelne konkrete Erlebnis sich von dem anderen anhand aufzeigbarer Eigenschaften UNTERSCHEIDET. Das WORT ‚STUHL‘ bezieht sich offensichtlich auf EIGENSCHAFTEN, die in allen diesen einzelnen ‚Stuhl-Erlebnissen‘ irgendwie VORKOMMEN, OHNE aber zugleich ‚zu sagen‘, wie noch ANDERE konkrete ‚Stuhl‘-Ereignisse aussehen könnten.

(10) Aus diesen Beobachtungen legt sich der Schluss nahe, dass das Konzept des PHÄNOMENOLOGISCHEN DENKENS eher NICHT das ALLERERSTE ist, was wir erkennen können, sondern dass es sich hier um ein ABGELEITETES, THEORETISCHES Konzept handelt, das sowohl einen LÄNGEREN ERLEBNISSTROM voraussetzt wie auch eine HINREICHEND ENTWICKELTE SPRACHE. Dies deutet darauf hin, dass PHÄNOMENOLOGIE so etwas ist wie eine PHILOSOPHISCHE THEORIE — auf den ersten Blick eigentlich ein Widerspruch in sich, da PHILOSOPHIE traditionellerweise verstanden wird als letzte Reflexionsinstanz, die alles und jedes ‚hinterfragt‘; eine THEORIE ist aber der Versuch einer SYSTEMATISCHEN STRUKTURBILDUNG. Doch im nächsten Moment macht es doch Sinn: um die STRUKTUR des RAUMS DER PHÄNOMENE darstellen zu können muss in PHILOSOPHISCHER MANIER über die Frage des GEGEBENSEINS von ETWAS reflektiert werden. Und in dem Masse, wie die Fragen ANTWORTEN ermöglichen, kann eine SYSTEMATISCHE STRUKTURBILDUNG im Stile einer THEORIE stattfinden.

(11) Wenn es nun so zu sein scheint, dass die PHÄNOMENOLOGIE an den KONTINUIERLICHEN ERLEBNISSTROM gebunden ist, der IN SICH ‚typische‘ VERÄNDERUNGEN aufweist, die wiederum durch ERLEBBARE EIGENSCHAFTEN und darin IMPLIZIT SICHTBAR WERDENDEN STRUKTUREN charakterisiert sind, sowie an eine dazu BEGLEITEND SICH ENTWICKELNDE SPRACHE, dann muss eine systematisierende PHÄNOMENOLOGISCHE THEORIE in den VERSCHIEDENEN PHASEN eines ERLEBNISSTROMES UNTERSCHIEDLICH aussehen! Der PHÄNOMENOLOGISCHE RAUM eines einjährigen Menschen KANN NICHT der GLEICHE sein wie der einer 35-jährigen Frau oder eines 71-jährigen Mannes.

(12) Wenn wir schon von SPRACHE sprechen als jenem HILFSMITTEL, mittels dessen ein SPRECHER einem HÖRER etwas SAGEN MÖCHTE und wir festgestellt haben, dass die GEMEINTE BEDEUTUNG (normalerweise) ETWAS ANDERES ist als die BENUTZTEN SPRACHLICHEN AUSDRÜCKE, und wir ferner ERFAHREN, dass wir sehr wohl die BEZIEHUNGEN zwischen SPRACHLICHEM AUSDRUCK und damit GEMEINTER BEDEUTUNG ‚herstellen‘ können, dann besagt dies, dass wir BEZIEHUNGEN (RELATIONEN) ZWISCHEN VERSCHIEDENEN PHÄNOMENEN WISSEN (ERKENNEN, ERLEBEN) können. So kann der GESPROCHENE SPRACHLICHE AUSDRUCK ‚Diese Person da‘ als mögliches Beispiel für die ABSTRAKTE REPRÄSENTATION DIES AUSDRUCKS verstanden werden, der wiederum BEZOGEN IST auf eine ABSTRAKTE BEDEUTUNG von ‚Person, diese, da‘ und diese abstrakte Bedeutung wiederum kann bezogen werden auf eine KONKRETE PERSON IM UMFELD DES SPRECHERS. Damit gibt es schon verschiedene ARTEN von ERLEBBAREN (WISSBAREN) BEZIEHUNGEN: (i) KONKRETES Phänomen Ph_Concr als Instanz von einem ABSTRAKTEN Phänomen Ph_Abstr*; (ii) ABSTRAKTES Phänomen Ph_Abstr zu einem anderen ABSTRAKTEM Phänomen Ph_Abstr*. Und das sind nicht die einzigen.

(13) Eine PHÄNOMENOLOGISCHE THEORIE müsste also sowohl die verschiedenen ARTEN VON PHÄNOMENEN unterscheiden, dazu die unterschiedlichen BEZIEHUNGEN (RELATIONEN), in denen die Phänomene auftreten können, sowie die DYNAMIK (VERÄNDERUNGEN), die sich an diesen Phänomenen ‚zeigt‘. Ferner müsste diese Theorie auch deutlich machen, wie sich die Struktur des phänomenologischen Raumes unter Umständen im Laufe des Lebens ändert.

(14) Die ENTWICKLUNG einer PHÄNOMENOLOGISCHEN THEORIE müsste ferner der ENTWICKLUNG  des ALLTAGSDENKENS und der ALLTAGSSPRACHE folgen. Denn nur in dem Maße, wie eine Alltagssprache L_Every verfügbar ist, sind KOMMUNIKATIONSPROZESSE möglich, innerhalb deren sich gemeinsam geteilte phänomenologische Strukturen ’sichtbar‘ machen lassen. Da die ERLEBNISSTRUKTUR bei ‚GLEICHGEBAUTEN‘ biologischen Systemen ‚im Normalfall‘ SEHR ÄHNLICH ist, ist zu erwarten, dass die AUSFORMULIERUNGEN einer phänomenologischen Theorie recht weit kommen könnte. Relativ zum NORMALFALL wären dann alle ABWEICHUNGEN von besonderem Interesse (so zeigen gerade die PATHOLOGISCHEN Fälle aus der Neuropsychologie sehr Vieles über das Funktionieren unseres Gehirns und des davon abhängigen Erlebens was ohne diese pathologischen Fälle niemals so klar geworden wäre). Idealerweise würde eine phänomenologische Theorie auch als FORMALE THEORIE formuliert, die zudem COMPUTERGESTÜTZTE SIMULATIONEN möglich macht.

Eine Fortsetzung findet sich HIER.

denken4_phaenomenologisches_denken_500.png
Erste Aspekte zum phänomenologischen Raum

Wissenschaftliches Denken (2)

(1) Es gibt unterschiedliche Perspektiven, wie man das, was wir als ‚Denken‘ bezeichnen, betrachten kann. Je nachdem, welche dieser Perspektiven wir wählen, ergibt sich ein ganz unterschiedliches Bild von diesem ‚Denken‘.

(2) Neben dem ALLTAGSDENKEN gibt es seit ein paar hundert Jahren auch das sogenannten WISSENSCHAFTLICHE DENKEN. Das wissenschaftliche Denken setzt das alltägliche Denken gewissermassen als primären Bezugspunkt voraus, hebt sich aber dennoch von ihm ab und widerspricht ihm letztlich in vielen Punkten. Dies liegt daran, dass das ALLTAGSDENKEN eine Reihe von ANNAHMEN macht, die FALSCH sind, aber im Alltag meistens sehr NÜTZLICH.

(3) Wie das Alltagsdenken nimmt auch das wissenschaftliche Denken an, dass es eine gemeinsam geteilte EXTERNE WELT gibt, in der vielfältigste EREIGNISSE VORKOMMEN. Im Unterschied zum ALLTAGSDENKEN akzeptiert das WISSENCHAFTLICHE DENKEN aber nur jene DATEN von der externen Welt, die nach klar vereinbarten MESSMETHODEN REPRODUZIERBAR von JEDEM MENSCHEN GEMESSEN werden  können.

(4) Zum MESSEN gehört die Einführung einer geeigneten NORM (STANDARD), die für alle, die Messen wollen, an allen Orten und zu jedem Zeitpunkt innerhalb einer bestimmten GENAUIGKEIT GLEICH sein muss (z.B. ‚kg‘, ‚m‘, ’s’…). Diese Stanbdards werden von einer internationalen Behörde verwaltet.

(5) MESSUNGEN sind immer PUNKTUELL an einem BESTIMMTEN ORT zu einer BESTIMMTEN ZEIT, durchgeführt mit einem BESTIMMTEN MESSGERÄT von bestimmten Personen nach einem BESTIMMTEN VERFAHREN unter BESTIMMTEN BEDINGUNGEN. Das ERGEBNIS von MESSUNGEN sind MESSWERTE, nämlich die Angabe der gemessenen NORM (EINHEIT) sowie eine Zahl bezogen auf die Norm (z.B. (3.5, m) oder (4.333, s) usw.).

(6) Messwerte werden in einer geeigneten DATENSPRACHE L_data aufgeschrieben in Form von MESSPROTOKOLLEN. Ein Messwert wird hier auch DATUM genannt und eine Menge von Messerten DATEN.

(7) Nur das, was als reproduzierbarer  Messwert vorliegt gilt als eine Eigenschaft der EXTERNEN (=EMPIRISCHEN) WELT. Alles andere existiert für die Wissenschaft NICHT.

(8) Bevor FORSCHER Messen können müssen Sie natürlich ein VORVERSTÄNDNIS darüber besitzen, was sie überhaupt messen wollen. Sofern es ihnen gelingt, sich solch ein Vorverständnis zu erarbeiten verfügen sie über einen MÖGLICHEN BLICK (VIEW) auf die externe Welt. Unter Voraussetzung eines solchen VORVERSTÄNDNISSES können sie dann überlegen und planen, was sie wie MESSEN wollen. Unter Umständen müssen sie auch erst neue Messverfahren ERFINDEN, um das messen zu können, was sie als WICHTIG VERMUTEN.

(9) Das, WAS MAN MESSEN KANN und das, WAS MAN AUFGRUND EINES VORVERSTÄNDNISSES INS AUGE FASSEN KANN muss NICHT DECKUNGSGLEICH sein. In der Regel kann man immer nur einen Teil von dem messen, was man im Vorverständnis ‚vor Augen hat‘.

(10) DATEN als solche sagen nahezu nichts aus über die externe Welt. Interessant werden Daten erst dann, wenn man sie in ZUSAMMENHÄNGE einordnen kann. Beispiele für solche Zusammenhänge sind ZEITLICHE (TEMPORAL) oder RÄUMLICHE (SPATIAL) MUSTER (PATTERN). Wenn also z.B. bestimmte  Farben immer nur in bestimmten gleichen räumlichen Anordnungen auftreten, dann spricht dies für einen OBJEKTZUSAMMENHANG; gehen andererseits bestimmte Ereignisse zeitlich immer bestimmten anderen Ereignissen voraus, spricht dies für einen KAUSALZUSAMMENHANG. Usw.

(11) Solche ZUSAMMENHÄNGE kann man NICHT DIREKT WAHRNEHMEN, sondern diese müssen SEKUNDÄR KONSTRUIERT werden, um dann AKTIV ZU SCHAUEN, WELCHE DATEN sich in welche ZUSAMMENHÄNGE EINORDNEN lassen. Dies ist eine EXPLORATIVE Tätigkeit.

(12) Um über diese explorative Tätigkeit des Konstruierens von Zusamenhängen und über das tentative Einordnen der Daten in Zusammenhänge SPRECHEN zu können, benötigt man eine geeignete THEORIESPRACHE L_theory. In der Regel benutzt man dafür heute FORMALE SPRACHEN (MATHEMATIK, LOGIK, MENGENLEHRE). Mit solch einer THEORIESPRACHE kann man dann beliebige KÜNSTLICHE MENGEN, BEZIEHUNGEN ZWISCHEN MENGEN sowie PROZESSE mit OBJEKTEN dieser Mengen definieren und mit Hilfe von geeigneten LOGISCHEN FOLGERUNGSBEGRIFFEN BEWEISE (ABLEITUNGEN, PROOFs) konstruieren, die dann zeigen, ob aus einer GEGEBENEN KONSTELLATION sich eine bestimmte FOLGEKONSTELLATION ABLEITEN (BEWEISEN) lässt oder nicht. Im Zeitalter des Computers kann vieles davon auch COMPUTERGESTÜTZT (COMPUTERAIDED) getan werden, z.B. das MODELLIEREN bzw. THORIE FROMULIEREN wie auch das SIMULIEREN (automatisierte Beweise) wie auch das automatische VERIFIZIEREN (Überprüfen bestimmter Eigenschaften im Raum ALLER theoretischen Möglichkeiten mittels z.B. MODEL-CHECKING).

(13) Sofern Messverfahren verfügbar sind und erste theoretische Modelle samt all den formalen Hilfswerkzeugen (Beweisbegriff usw.) kann man mögliche ABLEITUNGEN von möglichen ZUKÜNFTIGEN ZUSTÄNDEN auch dazu benutzen, um gezielt EXPERIMENTE zu machen. Wenn ein theoretisches Modell die PROGNOSE erlaubt, dass bei Vorliegen einer bestimmten KONSTELLATION K ein ganz bestimmter FOLGEZUSTAND F mit einer gewissen Wahrscheinlichkeit P eintritt, dann kann man versuchen, in der realen Welt eine VERSUCHSANORDNUNG aufzubauen, in der man die Konstellation K bewusst HERSTELLT und man dann BEOBACHTET (MISST), welche Daten auftreten. Liegen Daten vor, kann gefragt werden, ob diese im Sinne des theoretisch prognostizierten FOLGEZUSTANDES F interpretiert werden können. Ist dies der Fall, wird dies als BESTÄTIGUNG der Theorie gewertet. Im anderen Fall ist unklar, wie dies zu interpretieren ist: War der Versuchsaufbau falsch? Gelingt es wiederholt nicht, die Prognose zu bestätigen wird das theoretische Modell auf jeden Fall an GLAUBWÜRDIGKEIT verlieren.

(14) Das KONSTRUIEREN VON MODELLEN mittels formaler THEORIESPRACHERN sowie die UNTERSUCHUNG DER EIGENSCHAFTEN dieser formalen Strukturen findet sich so im alltäglichen Denken NICHT; es wäre auch garnicht möglich, da im Alltagsdenken normalerweise nicht immer ganz klar ist, was denn genau die Daten sind. Ferner ist die Alltagssprache in ihrer GRAMMATIK und BEDEUTUNGSSTRUKTUR so unscharf, dass FORMALE LOGISCHE BEWEISE damit nicht geführt werden können. Während der unscharfe Charakter der Alltagssprache und das alltägliche –grundlegend intuitive– Denken für die Zwecke des Alltags sehr gut geeignet ist, ist sie für die Konstruktion wissenschaftlicher Theorien vollständig unzulänglich. Nichtsdestotrotz bildet das alltägliche Denken mit der Alltagssprache die unumgängliche Basis für jedes wissenschaftliches Denken.

(15) WISSENSCHAFTLICHE THEORIEN stellen von daher einerseits einen grossen FORTSCHRITT im Denken dar, zugleich sind sie aber bislang reduziert auf geringe Ausschnitte der insgesamt zur Erklärung anstehenden erfahrbaren Welt. Der menschliche Körper kann in manchen Bereichen partiell sicher mehr von der Welt erfahren als es das wissenschaftliche Messen bislang gestattet (umgekehrt aber auch: in der Wissenschaft kann man sehr viele Eigenschaften messen, die der menschlichen Wahrnehmung völlig unzugänglich sind), aber die Unschärfe der körpereigenen Wahrnehmung sowie die Unschärfe des intuitiven Alltagsdenkens laufen beständig Gefahr, Strukturen zu sehen, die es so garnicht gibt (das subjektive ‚Wohlfühlen‘ im Rahmen bestimmter Denkvorstellungen ist kein Garant dafür, dass diese Vorstellungen ‚wahr‘ sind).

(16) Es sollte auch darauf hingewiesen werden dass es nunmehr zwar schon seit einigen hundert Jahren eine EXPERIMENTELLE (EMPIRISCHE) WISSENSCHAFT gibt, dass es aber bis heute nicht gelungen ist, einen einheitlichen THEORIEBEGRIFF in den verschiedenen wissenschaftlichen Disziplinen zu verankern. Während es bzgl. des MESSENS eine einigermassen Übereinstimmung zu geben scheint findet sich dies im Bereich Modell- bzw. THEORIEBILDUNG eher nicht. Zwar gab es im 20.Jh. interessante Ansätze zu einer einheitlichen WISSENSCHAFTSTHEORIE, doch nach Aufdeckung grundlegender Probleme im Aufbau von Theorien sind diese Ansätze wieder zerfallen. Man begnügt sich jetzt mit vielen HISTORISCHEN Untersuchungen zur Wissenschaftsgeschichte oder mit der Untersuchung SPEZIELLEER FORMALISMEN, aber ein einheitliches THEORIEKONZEPT kann man in den Disziplinen nicht finden. Vielmals  kann man sogar den Eindruck haben, dass ausser einer  Unmenge von Messwerten keinerlei ernsthafte theoretische Ansätze vorliegen (statistische Modelle sind keine vollen Theorien).

Eine Fortsetzung findet sich HIER.

 

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

denken_3_wissrahmen_500.png
Struktur des wissenschaftlichen Denkens (Überblick)