Buch: Die andere Superintelligenz. Oder: schaffen wir uns selbst ab? – Kapitel 5

VORBEMERKUNG: Der folgende Text ist ein Vorabdruck zu dem Buch Die andere Superintelligenz. Oder: schaffen wir uns selbst ab?, das im November 2015 erscheinen soll

Das Wunder des Zeichens

Wenn wir zu verstehen beginnen, dass die wunderbare Welt unseres Erkennens im Gehirn stattfindet, das in unserem Körper eingeschlossen getrennt von der Welt existiert, kann sich die Frage stellen, wie denn das Gehirn von Dir und mein Gehirn miteinander kommunizieren können. Wie erfahre ich, was Du willst, und Du, was ich will? Woher kann ich wissen, warum Du diese Handlung gut findest, und wie erfährst Du, warum ich die andere Handlung gut finde?

Diese Fragen zielen auf das Wunder der Koordination zwischen Menschen, aber letztlich auch zwischen Tieren, auch zwischen Pflanzen, ja generell: wieso können biologische Zellen ihr Verhalten koordinieren?

Hier gibt es noch viele Fragen, auf die die Wissenschaften bis heute keine voll befriedigenden Antworten gefunden hat. Auf einige dieser Fragen werde ich weiter unten noch eingehen. Jetzt, hier, in diesem Kapitel, soll es um die Frage gehen, wie wir Menschen die Frage der Kommunikation mittels Sprache — zumindest ansatzweise — gelöst haben.

Auf etwas zeigen

Wenn Menschen mit anderen zusammen am Tisch sitzen und Essen ist es oft so, dass man einen Gegenstand vom Tisch benötigt, der weiter weg steht und man denjenigen bittet, der am nächsten dran sitzt, einem den Gegenstand zu reichen.

Man kann dies tun, indem man mit der Hand, den Fingern, mit dem Gesicht in die Richtung des Gegenstandes deutet und die andere Person ‚erkennt‘ aus der Richtung und dem, was sich auf dem Tisch befindet, was ‚gemeint‘ ist; die andere Person deutet dann vielleicht selbst auf diesen Gegenstand, mit einem fragenden Blick, und wenn es der Gegenstand ist, den man meint, dann nickt man vielleicht, freundlich, mit einem Lächeln, und die andere Person reicht einem den Gegenstand.

In diesem Fall waren es Bewegungen des Körpers und bestimmte Körperhaltungen die in einer konkreten Situation mit Teilen der Situation in Interaktion treten und die, eine andere ‚kooperierenden Person‘ vorausgesetzt, von dieser anderen kooperierenden Person mit bestimmten Teilen der Situation ‚in Beziehung gesetzt‘ werden. Eine Handbewegung ist in diesem Fall nicht einfach eine Handbewegung ‚für sich‘, sondern eine Handbewegung als Teil einer größeren Situation, wo der ‚Andere‘ die Handbewegung mit einem bestimmten Teil der Situation, einem Gegenstand G, in eine ‚Beziehung‘ bringt. Diese Beziehung ist selbst kein realer Gegenstand sondern ist eine der vielen ‚möglichen gedachten Beziehungen‘ im Kopf des Anderen zwischen der beobachteten Handbewegung und den verschiedenen Gegenständen auf dem Tisch. Durch den fragenden Blick will der Andere wissen, ob seine ‚gedachte Beziehung‘ jene Beziehung ist, die der Bittende ‚intendiert‘ (sich vorgestellt, gedacht, …) hatte. Wenn der Bittende bestätigend nickt, dann fühlt der Andere sich ‚bestätigt‘ und nimmt die hypothetische gedachte Beziehung als jene Beziehung, die jetzt in dieser Situation vom Bittenden ‚gemeint‘ ist. Punktuell, kurzfristig wurde also im Raum der vielen Möglichkeiten eine bestimmte mögliche Beziehung als hier und jetzt gewollte gedacht und durch Bewegungen ‚manifestiert‘ (ausgedrückt, mitgeteilt, …).

Wenn wir dieses alltägliche Beispiel verallgemeinern, dann haben wir folgende (theoretische) Zutaten:

  1. Wir haben mindestens zwei Teilnehmer A und B, die ein Kommunikationsspiel spielen.
  2. Wir unterstellen bei jedem Teilnehmer ein Bewusstsein, das einem Teilnehmer ermöglicht, Eigenschaften der Außenwelt W in seinem Bewusstsein ‚hinreichend gut‘ zu ‚repräsentieren‘.
  3. Jeder Teilnehmer hat einen Körper, der von dem anderen wahrgenommen werden kann und der Eigenschaften besitzt, die eine Unterscheidung von Körperhaltungen und Körperbewegungen erlauben.
  4. In der gemeinsam geteilten Situation (als Teil der Außenwelt) gibt es Objekte, die Eigenschaften besitzen, wodurch sie sich voneinander unterscheiden und aufgrund deren sie von den Teilnehmern ‚wahrgenommen‘ werden können.
  5. Wir unterscheiden zwischen der ‚Stimulation‘ der Sinnesorgane in Gestalt von sensorischem Input I durch die Objekte OBJ der Außenwelt (als stim: SIT \times OBJ \longmapsto I) und der eigentlichen Wahrnehmung als Ergebnis der internen Verarbeitung der Stimulation I in bewusste Perzepte P (als perc: I \times IS \longmapsto IS \times P) (‚IS‘ steht für irgendwelche internen Zustände, die bei diesem Prozess auch noch eine Rolle spielen.). Dies berücksichtigt, dass die gleichen Außenweltreize von verschiedenen Anderen unterschiedlich verarbeitet werden können.
  6. Objekte in der Außenwelt werden — auf unterschiedliche Weise — so wahrgenommen, als ob sie sich in einem dreidimensionalen Raum befinden. Dies bedeutet, eine Situation hat eine ‚Raumstruktur‘, in der die Objekte in bestimmten Positionen und Lagen vorkommen. Dadurch ergeben sich zwischen den Objekten charakteristische räumliche Beziehungen. Während die Stimulation der Sinnesorgane diese räumlichen Strukturen partiell ‚vereinfacht‘, kann die Wahrnehmung mit Unterstützung des Gehirns daraus partiell räumliche Strukturen ‚zurückrechnen‘.
  7. Wenn zwei Gegenstände sich im Raum der Außenwelt so befinden, dass wir sie wahrnehmen können (z.B. eine Schüssel auf dem Tisch und eine Hand, die in diese ‚Richtung‘ deutet), können wir außer der räumlichen Beziehung auch andere mögliche Beziehungen (z.B. eine ‚Zeigebeziehung‘) wahrnehmen. Diese Beziehungen existieren als mögliche ‚gedachte Beziehungen‘ im Bewusstsein eines Teilnehmers. Ein Teilnehmer kann sich unendlich viele Beziehungen denken.
  8. Dass ein Anderer A zwei Objekte der Außenwelt mit einer ‚gedachten Beziehung‘ verbinden kann, die der Bittende B in seinem Bewusstsein ’sich vorstellt’/ ‚denkt‘, setzt ferner voraus, dass es zwischen der Wahrnehmung und dem ‚Vorstellen’/ ‚Denken‘ zwischen A und B hinreichend viel ‚Ähnlichkeit‘ gibt. Könnte ein A grundsätzlich sich nicht jene ‚Beziehungen‘ ‚vorstellen‘, die sich B vorstellt, wenn er mit seiner Hand in Richtung eines bestimmten Gegenstands (z.B. der einen roten Schüssel …) deutet, dann könnte B so viel deuten wie er will, der Andere A würde sich einfach nicht vorstellen

Nach dieser — noch immer vereinfachenden — Darstellung des Sachverhalts, können wir uns dem Begriff des Zeichens zuwenden.

Der Begriff des Zeichens

Mit dieser Frage gerät man in den Bereich der allgemeinen Wissenschaft von den Zeichen, der Semiotik (Anmerkung: Die Geschichte der Semiotik ist lang und vielschichtig. Einen guten Überblick bietet Winfried Noeth in seinem ‚Handbuch der Semiotik‘ von 2000, publiziert von J.B. Metzler (Stuttgart/Weimar)). Obwohl es je nach Zeit und Denkmode sehr unterschiedliche Formulierungen gibt, kann man eine Kernstruktur erkennen, die sich in allen unterschiedlichen Positionen durchhält.

Allerdings sollte man sich vorab klar machen, ob man — wie es historisch zunächst der Fall war — den Begriff des Zeichens primär durch Bezugnahme auf den Raum des Bewusstseins charakterisieren will, oder durch Bezugnahme auf das beobachtbare Verhalten (wie es die empirischen Wissenschaften favorisieren).

Der berühmteste Vertreter einer bewusstseinszentrierten Vorgehensweise ist Charles Sanders Peirce (1839 – 1914). Für den verhaltensorientierten Ansatz einflussreich war Charles William Morris (1901 – 1979). Eine Kombination aus bewusstseinsbasierten und verhaltensorientierten Aspekten bietet Ferdinand de Saussure (1857 – 1913).

Der Gebrauch eines Zeichens setzt — wie zuvor — eine Kommunikationssituation voraus mit mindestens zwei Teilnehmern, die mit ihren Körpern in der Situation anwesend sind und über hinreichend gleiche Körperstrukturen für Wahrnehmung und Denken verfügen.

Am Beispiel der Situation des Essens möchte ich die rote Schüssel mit dem Nachtisch gereicht bekommen; diese steht nicht in meiner Griffweite. Ich sehe meine Schwester Martina so sitzen, dass Sie mir die Schüssel reichen könnte. Ohne Sprache könnte ich nur mit Handbewegungen und Gesichtsausdrücken versuchen, ihr klar zu machen, was ich möchte. Mit Sprache könnte ich Laute erzeugen, die als Schallwellen ihr Ohr erreichen und sagen würden ‚Hallo M, kannst Du mir bitte mal die rote Schüssel reichen?‘. Sofern meine Schwester Deutsch kann (was der Fall ist), wird sie diese Schallwellen in ihrem Kopf so ‚übersetzen‘, dass sie einen Bezug herstellt zu ihrer Wahrnehmung der roten Schüssel, zur Wahrnehmung von mir, und wird eine Aktion einleiten, mir die Schüssel zu reichen.

Der gesprochene Satz ‚Hallo M, kannst Du mir bitte mal die rote Schüssel reichen?‘ als ganzer stellt ein Ausdrucksmittel dar, bildet ein Material, mittels dessen ein Sprecher (in dem Fall ich), einen Hörer (in dem Fall meine Schwester) in die Lage versetzt, nur aufgrund des Schalls einen Bezug zu einem realen Objekt herzustellen und dieses Objekt in eine Handlung (mir das Objekt rüber reichen) einzubetten. Meine Schwester als Hörerin ist damit interpretierend tätig; sie stellt aktiv eine Verbindung her zwischen dem gehörten Schall und Elementen ihrer Wahrnehmung der Situation. Diese Interpretation befähigt sie, eine Handlung zu planen und auszuführen.

Rein verhaltensorientiert kann man sagen, dass die gesamte sprachliche Äußerung ein Zeichenmaterial darstellt, das vom Hörer intern ‚verarbeitet‘ wird, was zu einer bestimmten Handlung führt (die rote Schüssel reichen). Der Hörer nimmt hier eine Interpretation (Int) vor, durch die der Schall, das Zeichenmaterial (ZM) in Beziehung gesetzt wird zu etwas Wahrgenommenem; dies führt wiederum zu einer beobachtbaren Handlung, die damit zur Bedeutung (M) des Zeichenmaterials wird: Int: ZM \longmapsto M. Anders ausgedrückt, das Gesagte, der Sprachschall, bekommt durch diesen Zusammenhang eine neue Funktion; der Schall steht nicht mehr nur ‚für sich alleine‘, sondern es spielt eine Rolle in einer Beziehung. Damit wird das an sich neutrale Schallereignis zu einem ‚Zeichen‘. Ein Hörer verwandelt mit seiner Interpretation ein an sich neutrales Ereignis in ein Zeichen für etwas anderes, was man die Bedeutung des Zeichens nennt.

Als Wissenschaftler kann man hier weiter verallgemeinern und den Hörer als ein Input-Output-System betrachten mit dem Sprachschall und den visuellen Wahrnehmungen als Input I und dem beobachtbaren Verhalten als Output O und der Interpretation Int als Verhaltensfunktion \phi, geschrieben \phi: I \times IS \longmapsto IS \times O

Interpretieren

Wer die Thematik ‚Zeichen‘, ‚Semiotik‘, ‚Sprache‘, Sprachverstehen‘ usw. ein wenig kennt, der weiß, dass wir uns damit einer Materie genähert haben, die sehr umfangreich und beliebig kompliziert ist, so kompliziert, dass fast alle wirklich interessanten Fragen noch kaum als gelöst bezeichnet werden können. Ich beschränke mich daher hier nur auf einige Kernpunkte. Nach Bedarf müssten wir das vertiefen.

Wie man an dieser Stelle ahnen kann, ist der Vorgang des Interpretierens das eigentliche Herzstück des Zeichenbegriffs. Hier geschieht die Zuordnung zwischen gehörtem Schall (oder gelesenem Text, oder gesehenen Gesten, oder …) zu anderen bekannten Wissensinhalten, vorzugsweise zu Wahrnehmungselementen der aktuellen Situation. Will man die Details dieses Interpretationsprozesses beschreiben, hat man mit einem verhaltensbasierten Ansatz ein Problem: alles, was sich im ‚Innern‘ eines biologischen Systems abspielt, ist zunächst nicht beobachtbar. Da hilft es auch nicht, wenn man heute einen Körper ‚aufmachen‘ kann und Körperorgane, Zellen, Prozesse in den Zellen untersuchen kann. Schaltzustände von Zellen, speziell Gehirnzellen, sagen als solche nichts über das Verhalten. Es sei denn, man ist in der Lage, explizit einen Zusammenhang zwischen den Zuständen von Gehirnzellen und beobachtbarem Verhalten herzustellen, was in der Neuropsychologie zur Methode gehört. Ähnlich könnte man bei der expliziten Parallelisierung von beobachtbarem Verhalten und rein subjektiven Phänomenen vorgehen oder eine explizite Parallelisierung zwischen Aktivitäten von Gehirnzellen (oder auch anderer Zellen) mit rein subjektiven Phänomenen.

Die verhaltensbasierte empirische Psychologie hat in zahllosen Modellbildungen gezeigt, wie man auf der Basis von Verhaltensdaten empirisch kontrollierte Hypothesen über mögliche Verarbeitungsmechanismen im System formulieren kann. Wieweit diese Modelle sich im Rahmen von neuropsychologischen Studien in der Zukunft bestätigen lassen oder diese modifiziert werden müssen, das wird die Zukunft zeigen.

Abstraktionen – Allgemeinbegriffe

Wenn wir mittels sprachlicher Ausdrücke Gegenstände unserer Alltagswelt ansprechen, benutzen wir fast ausnahmslos sogenannte Allgemeinbegriffe. Ich frage nach der ‚Schüssel‘ wohl wissend, dass es hunderte von Gegenständen geben kann, die konkret verschieden sind, die wir aber alle als ‚Schüssel‘ bezeichnen würden; desgleichen mit Ausdrücken wie ‚Tasse‘, ‚Flasche‘, ‚Tisch‘, Stuhl‘, usw.

Indem wir sprachliche Ausdrücke benutzen machen wir stillschweigend Gebrauch von der Fähigkeit unseres Gedächtnisses, dass alles, was wir gegenständlich wahrnehmen, ‚verallgemeinert‘ wird, d.h. von Details abgesehen wird und Kerneigenschaften abstrahiert werden (die Philosophen sprechen auch von Kategorisierung, der Bildung von Kategorien; eine andere Bezeichnung ist das Wort ‚Klasse‘). Dies geschieht offensichtlich unbewusst, ‚automatisch‘; unser Gedächtnis arbeitet einfach so, stillschweigend, lautlos. Was immer wir wahrnehmen, es wird in ein abstraktes Konzept ‚übersetzt‘, und alles, was zukünftig diesem Konzept ‚ähnlicher‘ ist als anderen Konzepten, das wird dann diesem Konzept zugerechnet. Ein gedankliches Gegenstandskonzept kann auf diese Weise für viele hundert unterschiedliche konkrete Gegenstände stehen. Und die Sprache braucht immer nur ein einziges Wort für ein solches abstraktes Gegenstands-Konzept.

Im konkreten Fall (wie z.B. dem Essen) ist die Verständigung meist einfach, da vielleicht nur eine einzige Schüssel auf dem Tisch steht. Wenn nicht, dann haben diese Schüsseln eventuell eine unterscheidende Eigenschaft (anhand ihrer räumlichen Position, Farbe, Größe, Inhalt, …). Die Schüssel ’neben‘ …, die ‚rote‘ Schüssel…, die ‚kleine weiße Schüssel‘ …, die Schüssel mit dem Reis ….

Wenn wir den Interpretationsprozess genauer beschreiben wollen, dann müssten wir diese Abstraktionsprozesse und ihre Anwendung in die Theoriebildung mit einbeziehen.

Diese Abstraktionsprozesse finden wir nicht nur bei ‚Gegenständen‘, sondern auch bei der Lautwahrnehmung. Wen wir ein gesprochenes Wort wie ‚Tasse‘ hören, dann hören wir dieses gesprochene Wort auch dann, wenn es schneller, langsamer, höher, tiefer, lauter oder leiser usw. gesprochen wird. Alle diese verschiedenen Äußerungsereignisse sind physikalisch sehr unterschiedlich und die moderne Sprachtechnologie hat viele Jahrzehnte gebraucht, um ‚in den meisten Fällen‘ das ‚richtige‘ Wort zu erkennen. Wir Menschen gehen mit diesen vielen unterschiedlichen Realisierungen vergleichsweise mühelos um. Auch hier verfügt unser Wahrnehmungs- und Gedächtnissystem über sehr leistungsfähige Abstraktionsprozesse, die zur Ausbildung von Lautkategorien und dann Wortklassen führen.

Wechselwirkungen zwischen Kategorien und Sprache

Damit finden wir auf der untersten Ebene des sprachlichen Zeichengebrauchs zwei selbständige Abstraktions- und Kategoriensysteme (Laute, Gegenstände), die im Zeichengebrauch zusammen geführt werden. Bevor Kinder diese beiden Systeme nicht meistern, können sie nicht wirklich Sprache lernen. Wenn sie es aber geschafft haben, diese Laut- und Gegenstandskategorien in sich zu realisieren, dann explodiert ihr Sprachlernen. (Anmerkung: Für einen Überblick siehe: Language development. Besonders aufschlussreich sind die empirischen Daten zur Entwicklung der Lautbildung, des Bedeutungserwerbs und der Grammatik. Umfassendere Theoriebildungen sind meist sehr spekulativ.)

Eine oft diskutierte Frage ist, in wieweit die Kategorienbildung bei den Gegenständen unabhängig ist von der Korrelation mit den Laut- und Wortkategorien (Anmerkung: Siehe einen Überblick zum Streit über die Sapir-Whorf-Hypothese.). Sofern diese Abstraktionsprozesse in genetisch bedingten Verarbeitungsprozessen gründen (wie z.B. der Farbwahrnehmung) darf man davon ausgehen, dass die sprachlichen Besonderheiten diese grundsätzlichen Kategorienbildung im Gegenstandsbereich nicht verändern, höchstens unterschiedlich nutzen. Für das gemeinsame Erlernen von Sprache bildet die Unabhängigkeit der vorsprachlichen Kategorienbildung eine Voraussetzung, dass eine Sprache gelernt werden kann. Gibt es hier Abweichungen (Anmerkung: wie z.B. bei Farbblindheit, generell Sehstörungen oder gar Blindheit, bei Taubheit, bei Störungen der Sinneswahrnehmungen, usw.), dann wird das gemeinsame Erlernen von Sprache in unterschiedlichen Graden erschwert bzw. eingeschränkt.

Bedeutung als Werden

Man kann erkennen, dass schon auf dieser untersten Ebene des Sprachgebrauchs Menschen, obgleich sie das gleiche Wort benutzen (wie ‚Flasche‘, ‚Tasse‘, …), damit ganz unterschiedliche Dinge verbinden können, je nachdem welche konkreten Gegenstände sie im Laufe ihrer Lerngeschichte sie wahrnehmen konnten. Je weiter sich diese Gegenstände von einfachen Alltagsgegenständen entfernen und komplexere Gegenstände benennen wie Tätigkeiten (‚Autofahren‘, ‚Einkaufen‘, ‚Reparieren‘, ..), komplexe Situationen (‚Parkhaus‘, ‚Jahrmarkt‘, ‚Sportveranstaltung‘, …) oder komplexe Organisationen (‚Gemeindeverwaltung‘, ‚politische Partei‘, ‚Demokratie‘, …), umso vielfältiger und umso unschärfer (‚fuzzy‘) werden die damit eingeschlossenen konkreten Eigenschaften. So wunderbar die Verfügbarkeit von abstrakten Begriffen/ Klassen/ Kategorien/ Allgemeinbegriffen den Gebrauch von Sprache vereinfacht, so trügerisch können diese Begriffe sein. 10 Menschen benutzen das Wort ‚Gott‘ und jeder versteht damit möglicherweise etwas ganz anderes.

Der Aufbau einer gemeinsam geteilten Bedeutungswelt ist in keiner Weise ein ‚Selbstgänger‘; langer Atem, gemeinsame Anstrengungen, Abstimmungen, Abgleiche, viel Kommunikation ist notwendig, um Verstehen zu ermöglichen, Missverständnisse zu verringern und bewusster Manipulation entgegen zu treten.

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

M.DONALD: EVOLUTION DES MENSCHLICHEN BEWUSSTSEINS – Kurzbesprechung, Teil 2

Diesem Beitrag ging voraus Teil 1.

1) Das siebte Kapitel ist überschrieben ‚The First Hybrid Minds on Earth‘ (etwa: ‚Die ersten hybriden Geister auf der Erde‘). (S.252)
2) [Anmerkung: Das Problem ist, dass es für den Plural des englischen Begriffs ‚minds‘ in diesem Kontext keine direkte Übersetzung gibt. Die Übersetzung ‚Geister‘ ist eher irreführend, da mit ‚Geister‘ im Deutschen etwas anderes assoziiert wird als mit dem Plural von ‚minds‘. Das liegt daran, dass der deutsche Singular ‚Geist‘ einmal die ‚geistige Kapazität‘ im allgemeinen meinen kann, aber auch ein ontologisch schillerndes Wesen, das als ‚Geist‘ zwar ‚irgendwie‘ da ist, aber nicht so, wie ein reales Wesen. Von der ‚geistigen Kapazität‘ im Singular gibt es im Deutschen aber keinen wirklichen Plural, also die ‚geistige Kapazität‘ in vielfachen Ausprägungen, viele ‚reale‘ Wesen mit einem ‚realen‘ Geist. Die Übersetzung von ‚mind‘ als ‚Verstand‘ oder ‚Vernunft‘ ist nicht ganz falsch, aber auch nicht ganz richtig. Aber auch von ‚Verstand‘ und ‚Vernunft‘ gibt es im Deutschen keinen Plural! Das ist eigentlich interessant. Warum kann man im Deutschen von ‚Geist‘, ‚Verstand‘ und ‚Vernunft‘ nicht im Plural sprechen bzw. denken? Faktisch sind diese Eigenschaften an individuelle Körper gebunden, von denen es viele gibt. Warum kann man im Deutschen dann nicht von ‚den Geistern‘, den ‚Verständen‘, ‚den Vernünften‘ sprechen? Ich denke, hier zeigt sich in der Sprache etwas, das man nicht so einfach hinnehmen sollte.]
3) Das Kapitel startet mit der These, dass die Entwicklung ’symbolischer Fähigkeiten‘ (’symbolic skills‘) nicht durch Beschränkung auf ein isoliertes Gehirn alleine erklärt werden können, da es sich um Phänomene handelt, die ‚inhärent vernetzte Phänomene‘ (‚inherent network phenomena‘) sind.(vgl. S.252)
4) [Anmerkung: Wenn ich einen Körper als Ansammlung von vielen Zellen (ca. 14 Billionen, 14 * 10^12) verstehe, die in ihrer Ausformung von einem genetischen Bauplan und seiner ‚Umsetzung‘ in Form von ‚Wachstum‘ abhängig sind, dann kann ich die genetische und die ontogenetische Maschinerie natürlich bis zu einem gewissen Grad beschreiben, ohne explizit Bezug auf externe Faktoren zu nehmen. Eine solche Beschreibung ist auch nicht ‚falsch‘, da das, was ich beschreibe, ja empirisch aufweisbar ist. Dennoch kann diese empirische nicht falsche Beschreibung in ihrem Verzicht auf korrelierende Kontext-Faktoren möglicherweise entscheidende Faktoren ‚unterschlagen‘ (‚verdrängen‘,…). Dies wäre dann der Fall, wenn sich die ‚körperinternen‘ Faktoren in ihren Veränderungen nur ‚verstehen lassen würden‘, wenn man die korrelierenden Faktoren einbeziehen würde. Verstehen ist aber relativ, kriterienabhängig: welche Eigenschaften erscheinen einem ‚wichtig‘, so dass man sie in eine Erklärung einbeziehen möchte? ]
5) [Anmerkung: In einer empirischen Erklärung gelten nur Phänomene, die notwendig sind, um das Auftreten eines bestimmten Phänomens auch in Form einer Voraussage ‚erklären‘ zu können, etwa: Wenn X gegeben ist, dann wird Y mit einer Wahrscheinlichkeit von p auftreten. Wenn ich mehrere biologische Arten A1, …, Ak habe, die eine Eigenschaft P0 gemeinsam haben, sich aber jeweils in mindestens einer Eigenschaft P1, …, Pk voneinander unterscheiden, dann würde eine Beschränkung auf P0 zwar nicht falsch sein, aber eben nicht alles erklären. Um die Art Ai in ihrer Besonderheit erklären zu können, müsste ich die Eigenschaften P0 + Pi erklären, nicht nur P0 alleine.]
6) [Anmerkung: Wie im Falle biologischer Systeme bekannt, entwickeln sich besondere Arten Ai mit einer Spezialeigenschaft Pi in der Regel immer in Abhängigkeit von einer besonderen Umgebungseigenschaften Ei. Dies bedeutet, man kann das Auftreten der Eigenschaft Pi bei der Art Ai nicht ‚verstehen‘, wenn man die korrelierende Eigenschaft Ei nicht berücksichtigt. Aus diesem Grund betrachtet die moderne Biologie biologische Systeme Ai niemals isoliert, sondern immer nur im Kontext von jeweiligen umgebenden Lebensräumen Ei und die ‚Wechselwirkungen‘ zwischen Umgebung und der Population der Art Ai. Diese Wechselwirkungen setzen sich zusammen aus individuellen Eigenschaften des jeweiligen individuellen biologischen Systems (z.B. spezifische Wahrnehmungsfähigkeit, Verdauungsfähigkeit, Bewegungsform, usw.) und verbunden damit mit der Zahl der Nachkommen während der Lebenszeit. Die individuellen Fähigkeiten erweisen ihre Bedeutung in der Fähigkeit, dass die Population als Ganze in jeder Generation über hinreichend viele und fähige Nachkommen verfügt. Diese Sicht der Dinge war in der Biologie nicht immer schon da; sie musste Schritt für Schritt erarbeitet werden.]
7) [Anmerkung: Die These von Donald , dass man den Kontext einbeziehen muss, ist von daher einerseits nichts grundlegend Neues. Andererseits legt er den Finger auf Kontexteigenschaften, die als solche qualitativ verschieden sind von den vorausgehenden. ‚Symbole‘ sind vieldeutige Werkzeuge, die der Mensch so in der Natur nicht vorgefunden, sondern die er selber geschaffen hat. In dem Maße, wie er sie geschaffen hat, können sie zu einem Teil seiner Umgebung werden, die wie die ’natürliche‘ Umgebung auf ihn ‚einwirken‘ kann. Und hier kommt die nächste Besonderheit: Symbole als Umgebung wirken nicht nur physisch auf den Menschen ein wie die natürliche Natur, sondern sie beeinflussen die gedanklichen Prozesse des Menschen, sie bilden ‚Formen‘, ‚Muster‘, ‚Regeln‘, Strukturen‘, ‚Inhalte‘ usw. der gedanklichen Prozesse, mit Hilfe deren sich der Mensch in seiner Welt ‚orientiert‘. Die Orientierung besteht darin, dass der Mensch ‚im Medium seiner Gedanken‘ seine Wahrnehmungen von der Welt (und sich selbst) ‚interpretiert‘. Anders gesagt: mit den Symbolen als Werkzeug schafft der Mensch eine Umgebung, die auf ihn zurückwirken kann, und mit Hilfe von der er die Welt interpretiert; eine bizarre ‚Rückkopplung‘. Dies ist keine genetisch-ontogenetisch vermittelte Koevolution sondern eine symbolisch vermittelte Koevolution ‚mit sich selbst‘; das ist eine neue Qualität. Der Mensch schafft sich in symbolischen Räumen ein Medium, das als dieses Medium auf sein Denken zurückwirkt und darin permanent sein Medium verändert.]
8) [Anmerkung: Verglichen mit der genetischen basierten Evolution ist diese Art von symbolischer Koevolution um Dimensionen schneller. Durch die ‚Ungleichzeitigkeit‘ von genetischer und symbolischer Koevolution ist ein massiver Konflikt vorprogrammiert: wird die schnellere symbolische Evolution die langsamere genetische Evolution letztlich strukturell verändern können (durch ‚Gentechnik‘) oder wird die symbolische Evolution durch Schaffung eines ‚künstlichen Geistes‘ die genetische Evolution überflüssig machen? ]
9) Diese These bedeutet im Fall der Sprache, dass es – nach Donald — nicht die Fähigkeit zum Sprechen als solche war, die zum Phänomen der Sprache in ihrem vollem Umfang geführt hat, sondern in der Bildung von ‚gedanklichen Gemeinschaften‘ (‚cognitive communities‘). Dies bedeutet, das Zusammensein und das Zusammenwirken von mehreren Menschen als solchen muss gegeben gewesen sein, damit sich aus einem elementaren ‚Sprechen‘ ein ‚Sprache‘ entwickeln konnte. (vgl. SS.252-254)
10) [Anmerkung: So suggestiv diese Formulierungen von Donald klingen mögen, so erscheint mir doch Vorsicht geboten. Wie schon das einfache Beispiel mit den beiden Nervenzellen A und B andeutete, die ein UND oder OR-Gatter realisieren: der einzelnen Zelle kann man dies Eigenschaft nicht ansehen. Noch kann man sagen, dass A sich nur so entwickeln konnte, weil es B gab (oder umgekehrt); in dem Falle reicht es aus, dass sowohl A als auch B bestimmte Grundeigenschaften besitzen, die in Kombination unterschiedliche Funktionen ‚zeigen‘. Das gleiche gilt für Atome; auch wenn man nicht sagt, dass Wasserstoff ‚H‘ sich bilden musste, weil es Sauerstoff ‚O‘ gab (oder umgekehrt), gilt, dass eine Kombination von ‚H‘ und ‚O‘ zu ‚H2O‘ möglich ist und dann in dieser Kombination ’neue‘ Eigenschaften zeigt. M.a.W. das Vorkommen von einzelnen Gehirnen im Rahmen einer Population bedeutet, dass die Gehirne ‚ihre eigene Umgebung‘ sind. Das Besondere wäre nicht die Umgebung als solche, sondern die Tatsache, dass Gehirne spezielle Eigenschaften besitzen, die, wenn sie auf ein anderes Gehirn treffen, ’sichtbar‘ werden. Im Falle der Sprache als einem vernetzten Beziehungssystem von ‚Sprachmaterial‘ (‚token‘) ‚Z‘, möglichem ‚intentionalem Gegenstand‘ ‚O'(‚real‘ oder ‚gedacht‘), ‚gewusster Bedeutungsbeziehung‘ ‚B: Z <---> O‘ und einem ’semiotischen System‘ ‚S‘ als Träger und Realisator dieser Bedeutungsbeziehungen, sind Gehirne in einem Körper – soweit wir sie kennen – die idealen Mediatoren für Sprache: Gehirne können intentionale Gegenstände O ‚repräsentieren‘, sie können Zeichenmaterial Z ‚produzieren‘, sie können beliebige Bedeutungsbeziehungen B realisieren, und sie können diese Fähigkeiten als dynamische Systeme kontinuierlich einsetzen. Dies bedeutet, die Präsenz von mindestens zwei Gehirnen bietet alle Voraussetzungen dafür, dass sich Sprache bilden kann. ]
11) [Anmerkung: Vor diesem Hintergrund erscheint es bemerkenswert, dass die Wissenschaft sich bislang so schwer tut, Sprachbildungsprozesse mit dem Computer nach zu vollziehen. Seit den pionierhaften Talking-Heads Experimenten eines Luc Steels sind wir nicht viel weiter gekommen (siehe Quellen unten) (vergleicht man die Forschungsmittel, die generell ausgegeben werden mit jenen, die für Forschungen zur künstlichen Intelligenz ausgegeben werden, so ist der Betrag für künstliche Intelligenz so niedrig, dass man ihn kaum in Prozenten ausdrücken kann. Aber ich bezweifle, ob es nur am Geld liegt.]
12) Das erste, was Kinder in solchen gedanklichen Gemeinschaften lernen müssen, das ist ein Satz von ‚reziproken Verhaltensmustern‘, in denen man sich wechselseitig der Aufmerksamkeit versichern kann. Dies wiederum geht nur, sofern die Gedächtnisstrukturen hinreichend differenziert sind. Objekte, Relationen, Strukturen, Rollen, Abläufe usw. müssen erinnert werden können; Selbstmodelle und Fremdmodelle, die Metareflexionen voraussetzen. Dies alles impliziert komplexe Lernprozesse, die wiederum Zeit brauchen und entsprechende soziale Umgebungen, die dazu beitragen, dass bestimmte Muster ’sozial einprogrammiert‘ werden. (vgl.SS.254-257)
13) [Anmerkung: Aufgrund des nachweisbaren Zusammenhangs zwischen bestimmten Umgebungseigenschaften Ei und bestimmten Eigenschaften Pi einer bestimmten Art Ai ist die Versuchung groß, diesen Zusammenhang ‚kausal‘ zu interpretieren, also im Sinne ‚weil‘ es Ei gibt, daher bildete sich Pi heraus. Mir scheint, dies ist – wenn überhaupt – höchstens die ‚halbe Wahrheit‘. Bedenkt man die Funktionsweise der genetischen basierten Evolution, so ist die primäre Quelle von möglichen Strukturen das Wechselspiel von Selbstreproduktion des genetischen Codes und der molekularen Übersetzung des Codes in Proteinstrukturen als Ontogenese. Dies bedeutet, dass – egal welche Umgebungseigenschaften jeweils gegeben sind – primär der verfügbare genetische Code und dessen molekulare Übersetzung darüber entscheidet, was sich überhaupt an Strukturen bilden kann. So könnte es grundsätzlich auch so sein, dass die Menge der genetisch bedingten Strukturen grundsätzlich nicht zu den umgebungsmäßig gegebenen Eigenschaften Ei passen würde. In diesem Fall könnten die Umgebungseigenschaften niemals ‚bewirken‘, dass sich ‚geeignete‘ Strukturen bilden. Der Eindruck von möglichen kausalen Zusammenhängen ist ‚beobachterabhängig‘ und eher ein ‚Artefakt des Denkens‘. Dass es zu scheinbaren ‚Anpassungen‘ kommen kann ist zwar ein ‚Auswahlprozesse‘ (Selektion‘), aber nicht in dem Sinne, dass die gegebenen Umgebungseigenschaften Ei aller erst die speziellen genetischen Eigenschaften Gi schaffen, die zu den phänotypischen Eigenschaften Pi führen, sondern weil der genetische und ontogenetische Prozess ‚von sich aus‘ die Eigenschaften Gi bereitstellen kann bzw. sie bereitgestellt hatte können diese dann ’selektiert‘ werden, weil jene Phänotypen, die aus diesen Gi hervorgegangen sind, mehr Nachkommen haben, als jene Phänotypen, die aus einem anderen Genotyp Gj hervorgegangen sind. Die Dramaturgie von geologischem Erdprozess und genetisch basierter Evolution ist damit in keiner Weise aufgeklärt; hier gibt es mehr Fragen als Antworten.‘]
14) Donald ergänzt seine Bemerkungen zum Gedächtnis dahingehend, dass er für das menschliche Gedächtnis postuliert, dass es die beobachtbaren Verhaltensleistungen nur unterstützen kann, wenn es in viele funktional differenzierte Bereich aufgegliedert ist, die parallel arbeiten können. So müssten wir grundsätzlich unterscheiden können zwischen ‚Selbst‘ und ‚Anderer‘, ‚Gegenwart‘, ‚Vergangenheit‘ und ‚Zukunft‘. (vgl. SS.257-259)
15) [Anmerkung: Es ist interessant, wie vage und allgemein die Aussagen zum Gedächtnis sind, obgleich doch gerade das Gedächtnis so zentral sein soll für die symbolisch vermittelte Kultur (ein ähnliches Phänomen war bei Norman zu beobachten. Auch bei ihm waren die Aussagen zum Gedächtnis sehr vage, plakativ, nicht durch harte empirische Modellbildung abgesicherten. Andererseits, wenn man sieht, wie schwer sich selbst die neuesten neurowissenschaftlichen Forschungen zum Raumgedächtnis und episodischen Gedächtnis tun, dann darf man Donald hier nicht zu hart kritisieren. Aber zumindest sollte er dann darauf hinweisen, dass es ziemlich spekulativ ist, was er da sagt…]

LITERATURHINWEISE

Steels, L.; Cooperation between distributed agents through self-organisation, Intelligent Robots and Systems ’90. ‚Towards a New Frontier of Applications‘, Proceedings. IROS ’90. IEEE International Workshop on, pp. 8 – 14 supl, 1990
Steels, Luc (1990) „Components of Expertise“ , AI Magazine Volume 11 Number 2 (1990), pp. 28-49.
Steels, L.; Mathematical analysis of behavior systems, From Perception to Action Conference, 1994., Proceedings, pp. 88 – 95, 1994
Steels, L.; A self-organizing spatial vocabulary, Artificial Life Journal, 2(3), pp. 319-332, 1995
Steels, L.; Language Games for Autonomous Robots, IEEE Intelligent Systems , Volume 16 Issue 5, pp.16 – 22, 2001
Steels, Luc; (2001) Grounding Symbols through Evolutionary Language Games. In: Cangelosi A. and Parisi D. (Eds.) Simulating the Evolution of Language Springer.
Steels, L.; Evolving grounded communication for robots, Trends in Cognitive Science 7(7), July 2003, pp.308 – 312
Steels, L.; Semiotic Dynamics for Embodied Agents, Intelligent Systems, IEEE, Volume: 21 , Issue: 3, pp. 32 – 38, 2006
Steels, L.; The Symbol Grounding Problem has been solved. So What’s Next?, In Glenberg, A.; Graesser, A.; Vega, M. de; (Eds.), Symbols, Embodiment, and Meaning, Oxford University Press, pp. 506-557, 2008
Steels, L.; Work on Symbol Grounding now needs concrete Experimentation, Intern. J. of Signs and Semiotic Systems, 1(1), pp. 57-58, 2011
Steels, Luc (2011) „Design Patterns in Fluid Construction Grammar“ , Amsterdam: John Benjamins Pub.
Steels, Luc (2011) „Modeling the cultural evolution of language.“ Physics of Life Reviews, 8(4) pp. 339-356.

Fortsetzung folgt in Teil 3.

Einen Überblick über alle bisherige Blogeinträge nach Titeln findet sich HIER.

DIE ANDERE DIFFERENZ – Teil3 – Definition des Lebens

(1) Nachdem in vorausgehenden Blogeinträgen das biologische Leben mit dem Konzept der ‚anderen Differenz‘ beschrieben wurde ergänzt um   ein paar theoretische Überlegungen zu möglichen formalen Modellen, hier nochmals kurze Überlegungen zur ‚Definition‘ von ‚Leben‘.

 

(2) Definitionen im Sinne der formalen Logik sind solche Begriffe (‚Terme‘), die als ‚Abkürzungen‘ für eine Menge ’schon bekannter Eigenschaften‘ eingeführt werden. Also Definiendum := Definiens; das ‚Definiendum‘ ist das zu Erklärende und das ‚Definiens‘ ist das schon Bekannte, mit dem erklärt wird.

 

 

(3) Solch eine Definition sieht unscheinbar aus, stellt aber einen ‚Auswahlprozess‘ dar: aus der großen Menge E der verfügbaren bekannten Eigenschaften wird eine kleine Teilmenge E‘ ausgewählt, die künftig unter einem neuen ‚Namen‘ (Label) auftreten soll, da der Autor einer solchen  Einführung Gründe hat (das wird jetzt mal unterstellt), genau diese Eigenschaften E‘ als in mindestens einer ‚Hinsicht‘ als ‚relevant‘ anzusehen.

 

(4) Sofern es sich bei solchen Eigenschaften E‘ um ‚empirische Eigenschaften‘ handelt, also Eigenschaften von Dingen, die sich im intersubjektiven Raum ‚beobachten‘ – oder gar ‚messen‘ – lassen, kann eine solche Auswahl möglicherweise eine Menge von Eigenschaften beschreiben, die ein ‚zusammenhängendes Phänomen‘ beschreiben. Beispiele wären technische Geräte (Kafffeemaschine, Mobiltelefon, Waschmaschine,….) oder Gebäude (Einfamilienhaus, Bürogebäude, Brücke, …), aber auch Pflanzen und Tiere, oder Kombinationen davon wie eine ‚Viehweide‘, ein ‚Reservat‘, ein ‚Sumpfgebiet‘, ein ‚Dschungel‘, usw. Ein ‚zusammenhängendes Phänomen‘ wäre in diesem Sinne also so etwas wie ein ‚Gegenstand‘, ein ‚Objekt‘, eventuell mit ‚unscharfen Rändern‘, wo man unsicher ist, ob dies auch noch ein ‚Haus‘, ein ‚Telefon‘ oder eine bestimmte ‚Pflanze‘ ist.

 

(5) Die Bildung einer Auswahl von Eigenschaften E‘ mit einem neuen ‚Namen‘, mit einer neuen ‚Abkürzung‘, stellt im ’normalen Leben‘ meist ein Vorgang dar, bei dem Menschen versuchen solche Eigenschaftsbündel E‘ hervor zu heben, die für den praktischen Ablauf des Lebens irgendwie eine Bedeutung haben und die in dieser spezifischen Konstellation ‚vorkommen‘. Während bei technischen Geräten der Hersteller in der Regel sagen kann, welche Eigenschaften sein Gerät ‚laut Plan‘ haben soll (und wir aufgrund von solchen Angaben auch die Korrektheit und Vollständigkeit eines Gerätes samt seiner Funktion normalerweise überprüfen können), ist es bei  ’natürlichen Gegenständen‘ zunächst mal so, dass wir nicht wissen, was ‚laut Plan‘ dazugehören soll. Geologische und klimatische Prozesse z.B. sind so komplex, dass wir bis heute nicht nur viele konkrete Experimente anstellen müssen, um Hinweise DAT_emp auf ‚beteiligte Eigenschaften‘ ‚finden‘ zu müssen, wir können aufgrund solcher empirischer Messwerte DAT_emp mit den bisher bekannten Modellen TH_emp immer nur sehr begrenze Aussagen machen, Annäherungen an den Gesamtzusammenhang. Im Falle biologischer Gegenstände haben wir gelernt, dass wir mit RNA- bzw. DNA-Molekülen die ‚Pläne‘ für die daraus sich entwickelnden Pflanzen und Tieren vorliegen haben, eine genaue Zuordnung zwischen einem solchen RNA-/ DNA-Plan und den daraus sich ergebenden individuellen Wachstumsprozessen (Ontogenese) lässt sich aber bislang nur sehr begrenzt treffen. Immerhin hat man mit diesen Plänen eine Art ‚Signatur‘ des jeweiligen zugehörigen Organismus in der Hand, und diese Signaturen kann man miteinander vergleichen. ‚Ähnlichkeiten‘ zwischen solchen Signaturen werden dann als ‚genetische Verwandtschaft‘ gedeutet; je ähnlicher umso mehr miteinander verwandt.

 

(6) Wenn es nun darum geht, zu definieren, was man unter dem neuen Begriff  ‚(biologisches) Leben‘ verstehen, dann steht man vor der Herausforderung, zu entscheiden, welche der bekannten empirischen Eigenschaften E‘ man als ‚relevant‘ ansieht für diesen Begriff. Welche Eigenschaft E’_i muss man unbedingt ‚dazutun‘ und zwar so, dass ein Verzicht auf diese Eigenschaft E’_i den Begriff wesentlich ‚unvollständig‘ machen würde, also E‘ = {E’_1, E’_2, …}.

 

(7) Wichtig hierbei ist schon der Hinweis ‚bekannt‘: wer immer sich an solch einer Begriffsbildung versucht, er wird das Problem haben, dass er/ sie immer nur aus jenen Eigenschaften E auswählen kann, die zu diesem Zeitpunkt ‚bekannt‘ sind. Das ‚verfügbare Wissen E‘ ist zu jeder Zeit t unterschiedlich gewesen, und auch innerhalb einer Zeitspanne (t, t‘) kann das verfügbare Wissen bei verschiedenen Menschen sehr unterschiedlich sein (ein Spezialist für Pflanzenkunde wird in der Regel über ein ganz anderes Wissen E_x von E verfügen wie ein Jurist E_x‘ oder ein Schreiner E_x“, also E_x ≠ E_x‘ ≠ E_x“. Wenn man also über die ‚bekannten‘ Eigenschaften E spricht, dann sollte man also mindestens einen Zeitpunkt t mit angeben, oder ein Zeitintervall (t,t‘), und zusätzlich den jeweiligen ‚Autor‘. Angenommen t‘ sei deutlich später wie t, dann würde man vielleicht vermuten, dass die bekannten Eigenschaften E zum Zeitpunkt t‘ E(t‘) alle bekannten Eigenschaften E zu einem vorausgehenden Zeitpunkt t E(t) mit beinhalten E(t) subset E(t‘). Dies muss aber keinesfalls so sein, denn entweder ist dieses Wissen zwischendurch wieder verloren gegangen (durch die Zerstörung von Bibliotheken mit dem griechischen Wissen gab es viele Jahrhunderte, in denen das Wissen ‚geringer‘ war als zu den Zeiten der Griechen; erst durch die vor der Zerstörung angefertigten Übersetzungen ins Arabische, die mit dem Islam dann über Spanien wieder nach Europa kamen, gelang das Wissen dann wieder ‚zurück‘ in die Köpfe und entfaltete im Mittelalter eine neue, ungeheure Kraft), oder aber, man gewann neue tiefgreifende Einsichten, so dass man nun ‚andere‘ Eigenschaften E* subset E(t‘) kennt, die zuvor keine Rolle gespielt haben, also E(t) cut E(t‘) = E*, die dann nun in die Definition eingehen können. Die Entwicklung des Wissens um Eigenschaften im Laufe der Zeiten E(t) –> E(t+1) –> E(t+2) –> … muss also keinesfalls ‚geradlinig‘ verlaufen; eine Population kann Eigenschaften ‚vergessen‘, die schon mal wichtig waren oder ’neue‘ finden, die zuvor nicht bekannt waren.

 

(8) Bei meinen Überlegungen, die zum Konzept der Differenz führten, habe ich mich von vielen Autoren inspirieren lassen (siehe Blogeinträge vorher oder einige meiner Buchbesprechungen bei Amazon (Deutsch und Englisch!)). Direkt nenne würde ich hier jetzt nur Gale (2009) und – insbesondere — Ward und Brownlee (2000). Storch et al (2007) ist ein Beispiel – wie man es heute leider oft findet –wo hochkarätige Experten sehr viel Detailwissen zusammengetragen haben, wo aber der eigentliche ‚Leitbegriff‘ selbst — nämlich der des Lebens – nicht thematisiert wird! In einem Buch über ‚Evolutionsbiologie‘ gibt es keinen einzigen Gedanken dazu, was eigentlich der Leitbegriff all der vielen beeindruckenden Einzeluntersuchungen ist, keinerlei theoretisches Konzept zum Leben; hier wird mit großer Detailkenntnis eine molekulare ‚Maschinerie‘ im historischen Kontext geschildert, es bleibt aber – aus philosophie-wissenschaftlicher Sicht — völlig unklar, ob dies etwas mit ‚Leben‘ zu tun haben soll, weil nirgends definiert ist, was diese Autoren unter ‚Leben‘ verstehen (wobei aus übergreifendem Wissen klar ist, dass diese vielen Details natürlich ‚irgendwie‘ etwas mit ‚Leben‘ zu tun haben, nur vergeben sich diese Autoren eine Chance, dies klar zu machen).

 

(9) Die Variabilität der bekannten Eigenschaften E(t) hängt dabei nicht nur von der generellen ‚Bekanntheit‘ ab, sondern auch, wie die unten angeführten Publikationen demonstrieren, vom ‚Standpunkt des Betrachters‘. Wenn ich mich primär nur für die chemischen Eigenschaften bestimmter Moleküle interessiere, achte ich auf andere Aspekte, als wenn ich die Frage stelle, was denn die grob als ‚biologisch‘ klassifizierten Eigenschaften E_biol subset E_emp generell charakterisiert, auch mit Blick auf andere Kontexte als die Erde. Eine solche ‚erweiterte Perspektive‘ kennzeichnet die Astrobiologie. Sie fragt explizit nach den Bedingungen, unter denen ‚Leben‘ auf der Erde möglich wurde, ist und sein wird sowie, ob und in welchem Umfang ‚Leben‘ auch woanders im Universum möglich ist. Um solch eine Frage so generell stellen zu können, muss man sich Gedanken machen, wie man den möglichst prägnant den Begriff ‚Leben‘ so fasst, dass alle Eigenschaften E_life subset E_emp, die unbedingt notwendig sind, explizit kenntlich gemacht werden, so dass man das Phänomen ‚Leben‘ im gesamten Universum ‚identifizieren‘ kann. Dazu reicht es in keinem Fall, einfach zu unterstellen, jeder wisse ja, was ‚Leben‘ sei, daher genüge es, einfach mal unterschiedliche dinge aufzuzählen, die irgendwie in diesem Zusammenhang bekannt sind. Solche Aufzählungen haben zwar den grossen Vorteil, dass sie strenggenommen niemals ‚falsch‘ oder ‚wahr‘ werden können ( da ja nicht klar ist, im Hinblick auf welche Eigenschaftsmenge sie letztlich ‚bewertet‘ werden sollen), verlieren damit aber wissenschaftlich entschieden an Wert.

 

(10) Als einzelner Mensch beurteilt man das, was man möglicherweise unter ‚Leben‘ versteht, vom Standpunkt seines ’subjektiven Erlebens‘. Dies ist eine Mischung aus ‚Aussenweltwahrnehmungen‘ mit ‚Innenwahrnehmungen‘, also im letzteren Fall von allerlei diffusen Stimmungen, Gefühlen, Bedürfnissen usw. Wir können ‚Leben‘ gar nicht ohne unseren eigenen Standpunkt, nicht ohne die Besonderheiten unseres eigenen Körpers, wahrnehmen. Von daher haben persönliche Schilderungen von ‚Leben‘ stark psychologische und autobiographische Färbungen. Durch die moderne Wissenschaft haben wir aber gelernt, wie wie zwischen den ’subjektiven Anteilen‘ unserer Welterfahrung und den empirisch beschreibbaren Eigenschaften unterscheiden können. Da unser subjektives Erleben an unser Gehirn gebunden ist, dieses in einem Körper eingebettet ist, der sowohl eine individuelle Geschichte hat (Wachstum, Lernen, Ontogenese) wie auch als Teil einer Population eine phylogenetische Geschichte besitzt (die Teil der übergreifenden biologischen Evolution ist, die wiederum eingebettet ist ein eine chemische Evolution, die wiederum nicht isoliert ist, …), wird man das subjektive Erleben auch besser einordnen können, wenn man es von diesen übergreifenden Zusammenhängen aus betrachtet (ohne dass man das subjektive Erleben darauf ‚reduzieren‘ würde; damit würde man wichtige Erkenntnisse ‚verschenken‘, die nur so verfügbar sind).

 

(11) Biologen tendieren dazu, Phänomene des Lebens von ihren ‚Mechanismen‘ her zu betrachten, was naheliegt, da ja der Biologe sich dem Phänomen des ‚Lebens‘ von seinen konkreten Erscheinungsformen her nähert. Durch Inspizierung vieler tausender, zehntausender – oder mehr — spezieller Erscheinungsformen von ‚Leben‘ wird er in die Lage versetzt zu vergleichen, zu klassifizieren, Beziehungen aufzuspüren, Abhängigkeiten zu identifizieren, um dann – möglicherweise – mittels erster ‚Modelle‘ oder ‚Theorien‘ diese vielen Phänomene zu ’systematisieren‘. Insofern geht es dann nicht nur um ‚reine Eigenschaften‘ E_biol oder E_life, sondern es geht dann auch schon um Eigenschaften E_biol, die in sich Klassifikationen darstellen, um Beziehungen (Relationen) R_biol und Dynamiken f_biol, Ax_biol, deren typisches ‚Wechselspiel‘ erst das Phänomen ‚Leben‘ so beschreibt, wie es der Experte zu erkennen meint. Also irgendwie wird man eine Struktur haben wie z.B. TH_biol = <E_biol, R_biol, f_biol, Ax_biol>. Und im Normalfall wird es so sein, dass man mit einer ersten  Theorie TH_biol_0 anfängt, und dann im Laufe der Zeit diese dann immer immer verändert TH_biol_i, bis man dann den Zustand der gerade aktuellen Theorie TH_biol_now erreicht hat.

 

(12) Während man in dem erwähnten Buch von Storch et al. keinerlei Definition zum Begriff Leben findet – erst Recht natürlich keine Theorie – findet sich im Buch von Gale (2009) zumindest eine ‚Liste von Eigenschaften‘ (Gale, 2009:17), allerdings ohne einen klaren funktionalen Zusammenhang (und damit auch keine Theorie). Sowohl Gale (S.17) wie auch Ward and Brownlee (S.56) verweisen aber auf charakteristische dynamische Eigenschaften wie ‚Wachstum‘, ‚Interaktion mit der Umwelt‘, sowie ‚Vererbung mit Variationen‘. Dies alles unter Voraussetzung von minimalen zellulären Strukturen, der Fähigkeit zur Informationskodierung, sowie der Fähigkeit, Energie aus der Umgebung aufzunehmen um diese komplexen Leistungen verfügbar machen.

 

(13) Die Physik, die sich nicht primär für das Konzept ‚Leben‘ ineressiert, sondern an mehr allgemeinen Begriffen wie ‚Energie‘ und ‚Materie‘ (und deren Zuammenspiel) interessiert ist, hat unter anderem die Gesetzmäßigkeit aufgedeckt, dass die Entropie (salopp die ‚Unordnung‘) in einem geschlossenen System einen Maximalwert annimmt. Das aktuelle Universum ist von diesem Zustand noch weit entfernt. Die ‚Differenzen‘ zur maximalen Entropie manifestieren sich als lokale ‚Ordnungen‘ in Form von ‚frei verfügbarer Energie‘. Sofern ‚Leben‘ angenähert das ist, was Gale (2009) sowie Ward and Brownlee (2000) mit ihren wenigen Begriffen nahelegen, dann hat sich das Phänomen des Lebens genau an diesen Differenzen zur maximalen Entropie gebildet, im Umfeld freier Energien, und nicht nur das, sondern das Phänomen des ‚Lebens‘ demonstriert quasi ein Antiprinzip zur Entropie: statt Strukturen ‚auszugleichen‘ werden hier Strukturen in Form frei verfügbarer Energien in andere Strukturen umgeformt, und zwar expansiv und mit einer immer größeren Komplexität. Das Phänomen des Lebens als Ganzes ist vergleichbar mit einem großen Staubsauger, der alle frei verfügbare Energie im kosmologischen Gesamtzustand unter der maximalen Entropie ‚aufsaugt‘ und damit neue, vorher nicht dagewesene Strukturen generiert, die neue Eigenschaften aufweisen, die weit über die bekannten physikalischen Phänomene hinausgehen. Angenommen, das Phänomen des Lebens als Ganzes könnte die frei verfügbaren Energien idealerweise vollständig nutzen, dann würde sich die maximale Existenzzeit des Lebens im Universum aus der Zeit ergeben, in der im Universum noch Energie frei verfügbar ist. Sicher aber sind weitere Varianten möglich, die wie heute einfach noch nicht sehen, weil unsere Wissensfähigkeit dramatisch eingeschränkt ist.

 

(14) Andererseits, während die Biologen stark an den konkreten Eigenschaften von Manifestationen des Lebens ‚hängen‘, kann man versuchen, diese Eigenschaften von einem ‚abstrakteren‘ Standpunkt aus zu betrachten, was ich in den vorausgehenden Blogeinträgen versucht hatte. Nach dem bekannten Spruch, dass man ‚den Wald vor lauter Bäumen nicht sieht‘, kann die Vielzahl der Eigenschaften biologischer Systeme das Denken daran hindern, die im Leben implizit vorhandenen Strukturen zu erkennen. In meinen Überlegungen hatte ich versuchsweise angenommen, dass die gesamte Maschinerie biologischer Systeme (z.B. der ganze ‚Körper‘), dessen Komplexität uns erschlägt, möglicherweise nur ein ‚Mittel zum Zweck‘ ist, nämlich die Rahmenbedingungen für ein neuronales System zu schaffen, dessen Zweck wiederum die Fähigkeit ist, ‚Eigenschaften der Welt‘ in ‚kognitive Strukturen‘ umzuwandeln, durch die das gesamte Universum schrittweise ‚transparent‘ wird und damit ’sich selbst‘ nahezu beliebig ‚umbauen‘ könnte. Wie wir heute wissen, lässt sich jede Form von uns heute bekanntem Wissen und Denken über minimale Potentialsysteme realisieren, die beliebig vernetzbar sind. Von diesem Leitgedanken aus liegt es nahe, die Vielfalt der Eigenschaften biologischer Systeme unter dieser Rücksicht zu analysieren. Dies führte zur Idee des minimalen Differenzsystems, vernetzbar, energetisch betrieben, kopierbar mit Veränderungen. Alles keine wirklich neue Gedanken.

 

(15) ‚Leben‘ wäre dann also jenes Phänomen im Universum, das in der Lage ist, ausgehend von den freien Energien einer nicht-maximalen Entropie beliebig skalierbare Differenzsysteme erzeugen zu können, die sich variierend kopieren lassen, und die mit ihren jeweiligen Umgebungen (und damit mit sich selbst) interagieren – und das heißt auch: kommunizieren – können. Mit welchem konkreten Material und unter welchen konkreten Randbedingungen dies auftritt, ist unwesentlich. Das ‚Geistige‘, das sich in Gestalt von ‚Lebensformen‘ zeigt, ist letztlich eine implizite Eigenschaft der gesamten umgebenden Materie-Energie, weswegen es nicht klar ist, was das Verschwinden eines konkreten Körpers (‚Tod‘) für das Phänimen des ‚Geistes‘ letztlich bedeutet. Seiner ‚Natur‘ nach kann ‚Geist‘ nicht ’sterben‘, nur eine bestimmte Realisierungsform kann sich ändern.

 

 

 Unsere Verwandten die Tiere 1

 

 

Eine Übersicht über alle bisherigen Blogeinträge findet sich hier.

 

 

 

LITERATURHINWEISE

 

Gale, J.; Astrobiology of Earth. The Emergence, Evolution, and Future of Life on a Planet in Turmoil. New York: Oxford University Press, 2009

 

Storch, V.; Welsch, U.; Wink, M.; Evolutionsbiologie. 2.Aufl. rev. and ext., Berlin – Heidelberg: Springer Verlag, 2007

 

Ward, P.D.; Brownlee, D.; Rare earth. Why Complex Life is Uncommon in the Universe. New York: Springer-Verlag New York, Inc., 2000