Archiv der Kategorie: Einstein – Albert

WAS IST LEBEN ? … Wenn Leben ‚Mehr‘ ist, ‚viel Mehr‘ …

Autor: Gerd Doeben-Henisch

Datum: 8.Febr 2025 – 13.Febr 2025

Kontakt: cagent@cognitiveagent.org

Eine englische Version findet sich HIER!

KONTEXT

Dies ist eine direkte Fortsetzung der vorausgehenden Texte

  1. „WAS IST LEBEN ? Welche Rolle haben wir ? Gibt es eine Zukunft ?“
  2. „WAS IST LEBEN ? … DEMOKRATIE – BÜRGER“
  3. „WAS IST LEBEN ? … PHILOSOPHIE DES LEBENS“

Diesem Text ging ein Vortrag am 31.Jan 2025 voraus, in dem ich die grundlegenden Ideen schon mal formuliert hatte.

EINLEITUNG

In den vorausgehenden Texten wurde der ‚Rahmen‘ abgesteckt, innerhalb dessen sich die nachfolgenden Texte zum Thema „Was ist Leben? …“ bewegen werden. Eine Sonderstellung nimmt dabei der Text zur ‚Philosophie‘ ein, da hier darauf aufmerksam gemacht wird, in welcher ‚Perspektive‘ wir uns bewegen, wenn wir über uns selbst und die umgebende Welt anfangen nachzudenken und dann auch noch zu ’schreiben‘. Zur Erinnerung an die philosophische Perspektive hier der letzte Abschnitt als Zitat und zur Erinnerung:

„Letztlich ist ‚Philosophie‘ ein ‚Gesamtphänomen‘, das sich im Zusammenspiel vieler Menschen in einem Alltag zeigt, erlebbar ist und nur hier, in Prozessform, Gestalt annehmen kann. ‚Wahrheit‘ als ‚harter Kern‘ jeglichen wirklichkeitsbezogenen Denkens findet sich dadurch immer nur als ‚Teil‘ eines Prozesses, in dem die wirkenden Zusammenhänge wesentlich zur ‚Wahrheit einer Sache‘ gehören. Wahrheit ist daher niemals ’selbstverständlich‘, niemals ‚einfach‘, niemals ‚kostenlos‘; Wahrheit ist eine ‚kostbare Substanz‘, die zu ‚gewinnen‘ jeglichen Einsatz erfordert, und ihr Zustand ist ein ‚flüchtiger‘, da die ‚Welt‘ innerhalb deren Wahrheit ‚erarbeitet‘ werden kann, sich als Welt kontinuierlich ändert. Ein Hauptfaktor dieser beständigen Veränderung ist das Leben selbst: das ‚Dasein von Leben‘ ist nur möglich innerhalb eines ‚andauernden Prozesses‘ durch den ‚Energie‘ ‚emergente Bilder‘ aufleuchten lassen kann, die nicht zum ‚Ausruhen‘ geschaffen sind, sondern für ein ‚Werden‘, dessen letztes Ziel noch vielfach ‚offen erscheint‘: Leben kann sich tatsächlich — partiell — selbst zerstören oder sich selbst — partiell — ermächtigen. Irgendwo da mitten drin befinden wir uns. Die aktuelle Jahreszahl ‚2025‘ ist dafür eigentlich wenig aussagekräftig.“

WENN LEBEN ‚MEHR‘ IST, ‚VIEL MEHR‘ …

Im ersten Text dieses Textprojektes ‚Was ist Leben‘ wurde unter dem Label ‚EARTH@WORK. Cradle of Humankind‘ im Prinzip schon vieles gesagt, was für eine ’neue Sicht‘ auf das ‚Phänomen Leben‘ im Lichte der modernen wissenschaftlichen und philosophischen Erkenntnisse gesagt werden kann und eigentlich dann auch gesagt werden muss. Hier zur Erinnerung der Text:

„Die Existenz [des Planeten Erde] war faktisch die Voraussetzung dafür, dass das heute bekannte biologische Leben sich so entwickelt hat, wie wir es kennen lernen konnten. Es sind erst wenige Jahre her, seitdem wir ansatzweise verstehen können, wie sich das bekannte ‚biologische Leben‘ (Natur 2) aus dem ’nicht-biologischen Leben‘ (Natur 1) ‚entwickeln‘ konnte. Bei einer noch tiefer gehenden Analyse kann man nicht nur die ‚Gemeinsamkeit‘ in der benutzten ‚Materie‘ erkennen, sondern auch die ’neuartigen Erweiterungen‘, die das ‚Biologische‘ gegenüber dem ‚Nicht-Biologischen‘ auszeichnet. Statt dieses ‚Neuartige‘ in einen Gegensatz zu verwandeln, wie es das bisherige Denken der Menschheit getan hat (z.B. ‚Materie‘ versus ‚Geist‘, ‚Matter‘ versus ‚Mind‘), kann man das Neuartige auch als ‚Manifestation‘ von etwas ‚tiefer Liegendem‘ verstehen, als eine ‚Emergenz‘ von neuen Eigenschaften, die wiederum auf Eigenschaften hindeuten, die in der ‚Grundlage von allem‘ — nämlich in der ‚Energie‘ — vorhanden sind, sich aber erst bei der Bildung von immer komplexeren Strukturen zeigen können. Diese neuartige Interpretation wird angeregt durch die Erkenntnisse der modernen Physik, insbesondere der Quantenphysik in Verbindung mit der Astrophysik. Dies alles legt es dann nahe, die klassische Formel von Einstein (1905) e=mc2 umfassender zu interpretieren als bisher üblich (abgekürzt: Plus(e=mc2)).“

Dieser kurze Text soll im weiteren etwas mehr entfaltet werden, um die Dramatik ein wenig mehr sichtbar zu machen, die sich im Zusammenklang der vielen neuen Erkenntnisse andeutet. Manche werden diese Perspektiven vielleicht ‚bedrohlich‘ empfinden, andere als die ‚lang ersehnte Befreiung‘ von ‚falschen Bildern‘, die unser reale mögliche Zukunft bislang eher ‚verdeckt‘ haben.

Kontexte

Wenn wir einen ‚Apfel‘ sehen, ganz isoliert, dann ist dieser Apfel für sich genommen mit seinen Formen und Farben irgendwie ‚unbestimmt‘. Wenn wir aber ‚erleben‘ können, dass man einen Apfel z.B. ‚essen‘ kann, seinen Geschmack spüren, seine Wirkung auf unsren Körper, dann wird der Apfel ‚Teil eines Kontextes‘. Und wenn wir dann zufällig auch noch etwas ‚wissen‘ über seine Zusammensetzung und deren mögliche Wirkung auf unseren Körper, dann erweitert sich das ‚Bild des Erlebens‘ um ein ‚Wissensbild‘ und kann damit einen ‚Erlebens-Wissens-Kontext‘ in uns bilden, der den Apfel aus seiner ‚anfänglichen Unbestimmtheit‘ entreißt. Als Teil eines solchen Kontextes ist der Apfel ‚Mehr‘ als vorher.

Ähnlich mit einem ‚Stuhl‘: einfach so hat er irgendwie eine Form, hat Farben, zeigt Oberflächeneigenschaften, aber mehr nicht. Kann man erleben, dass dieser Stuhl in einem ‚Zimmer‘ steht ‚zusammen mit anderen ‚Möbelstücken‘, dass man sich ‚auf einen Stuhl setzen kann‘, dass man seinen Platz im Zimmer verändern kann, dann entsteht ein erlebtes Bild von einem größeren Ganzen, in dem der Stuhl ein Teil ist mit bestimmten Eigenschaften, die ihn von den anderen Möbelstücken unterscheiden. Wenn wir dann noch wissen, dass Möbelstücke in ‚Zimmern‘ vorkommen, die Teile von ‚Häusern‘ sind, dann entsteht wieder ein recht komplexer ‚Erlebens-Wissens-Kontext‘ in uns, der aus dem einzelnen Stuhl wieder ‚Mehr‘ macht.

Diese Art von Überlegungen können wir im Alltag auf sehr viele Objekte anwenden. Tatsächlich gibt es kein einziges Objekt, das ganz alleine, nur für sich vorkommt. Ganz krass findet sich dies bei ‚biologischen Objekten‘: Tieren, Pflanzen, Insekten, …

Nehmen wir uns selbst — wir als Menschen — als Beispiel. Lassen wir den Blick schweifen von dem Punkt, wo sich jeder gerade jetzt befindet, über das ganze Land, über den ganzen Kontinent, ja über das ganze Rund unseres Planeten, dann finden sich heute (2025) nahezu überall Menschen. Standardmäßig als Mann und Frau gibt es kaum eine Umgebung, wo nicht Menschen leben. Die jeweiligen Umgebungen können sehr einfach sein oder hoch verdichtet mit riesigen Gebäuden, Geräten, Menschen auf engstem Raum. Hat man den Blick so geweitet, dann ist klar, dass auch wir Menschen ‚Teil von etwas sind‘: sowohl von der jeweiligen geografischen Umgebung wie auch Teil einer großen biologischen Lebensgemeinschaft. Im Alltagserleben begegnen wir normalerweise immer nur wenigen (auch mal einige Hundert, speziell auch einige Tausend) anderen Menschen, aber durch das verfügbare Wissen können wir erschließen, dass wir viele Milliarden sind. So ist es wieder der ‚Erlebens-Wissens-Kontext‘ , der uns in einen größeren Kontext versetzt, in dem wir klar ‚Teil von etwas Großem‘ sind. Auch hier repräsentiert der Kontext ein Mehr gegenüber uns selbst als einzelner Person, als einzelnem Bürger, als einzelnem Menschen.

Zeit, Zeitscheiben, …

Wenn man die Dinge um uns herum — und dann auch uns selbst — im ‚Format‘ von ‚Kontexten‘ erleben und denken kann, dann ist es nicht weit, das Phänomen der ‚Veränderung‘ zu bemerken. Da, wo wir gerade sind, im ‚Jetzt‘, im ‚aktuellen Augenblick‘, gibt es keine Veränderung; alles ist, wie es ist. Sobald aber der ‚aktuelle Augenblick‘ von einem ’neuen Augenblick‘ gefolgt wird, und dann immer mehr neue Augenblicke ‚hintereinander‘, dann werden wir unweigerlich ‚Veränderungen‘ feststellen können: die Dinge ändern sich, alle Dinge in dieser Welt ändern sich; es gibt nichts, was sich nicht ändert!

Im ‚individuellen Erleben‘ kann es sein, dass wir mit unseren Augen, Ohren, Geruchssinn und sonstigen Sinnen für mehrere Augenblicke ’nichts sinnlich wahrnehmen‘. Dies ist möglich, weil unsere körpereigenen Sinnesorgane die Welt nur sehr grob wahrnehmen können. Mit den Methoden der neuen Wissenschaften, die nahezu beliebig ‚ins Kleine‘ und ‚ins Große‘ schauen können, können wir ‚wissen‘, dass zum Beispiel unsere ca. 37 Billionen (1012) Körperzellen in jedem Moment hoch aktiv sind, indem sie ‚Botschaften‘ austauschen, ‚Material austauschen‘, sich ‚reparieren‘, abgestorbene Zellen durch neue ersetzen, usw. Unser eigener Körper ist also in jedem Augenblick einem regelrechten ‚Veränderungssturm‘ ausgesetzt, ohne dass wir dies irgendwie bemerken können. Das Gleiche gilt für den Bereich der ‚Mikroben‘, kleinsten Lebewesen, die wir nicht sehen können, die aber zu vielen Milliarden nicht nur ‚um uns herum‘ leben, sondern sie besiedeln unsere Haut und sind auch ständig hochaktiv. Dazu kommt das Material der Gebäude um uns herum. In jedem Moment finden Veränderungsprozess im Material statt, so dass es nach einer bestimmten Anzahl von Jahren so ‚gealtert‘ ist, dass es seine geplante Funktion immer weniger erfüllen kann; Brücken können dann auch einstürzen, wie wir erleben können.

Generell können wir von ‚Veränderungen‘ nur sprechen, wenn wir ein ‚Vorher‘ und ein ‚Nachher‘ unterscheiden können, und wir die vielen Eigenschaften, die ein ‚Augenblick vorher‘ aufweist, mit den Eigenschaften ‚vergleichen‘ können, die ein ‚Augenblick nachher‘ aufweist. Im Raum unserer ’sinnlichen Wahrnehmung‘ gibt es immer nur ein ‚Jetzt‘ ohne vorher und nachher. Durch die Eigenschaft des ‚Erinnerns‘ in Zusammenarbeit mit einem ‚Merken‘ von aktuellen Ereignissen verfügt unser ‚Gehirn‘ aber über die wunderbare Fähigkeit, ‚Augenblicke‘ bis zu einem gewissen Grade ‚quasi zu speichern‘, und ergänzend über die Fähigkeit, ‚verschiedene gespeicherte Augenblicke‘ nach bestimmten Kriterien mit einer aktuellen sinnlichen Wahrnehmung zu vergleichen. Gibt es ‚Unterschiede‘ zwischen der ‚aktuellen sinnlichen Wahrnehmung‘ und den bislang ‚gespeicherten Augenblicken‘, dann macht uns das Gehirn darauf ‚aufmerksam‘; es ‚fällt uns auf‘.

Dieses Phänomen der ‚erlebbaren Veränderungen‘ ist die Basis für unser ‚Empfinden von Zeit‘. Wir Menschen haben zwar schon immer auch ‚externe Ereignisse‘ zur Hilfe genommen, um erlebbare Veränderungen in einen größeren Rahmen einordnen zu können (Tag-Nacht, Jahreszeiten, diverse Konstellationen von Sternen, Zeitmaschinen wie verschiedenste ‚Uhren‘, … unterstützt durch Zeitaufzeichnungen, später auch ‚Kalendern‘), aber die Fähigkeit, Veränderungen erleben zu können, bleibt für uns grundlegend.

Wenn man über dies alles ’nachdenkt‘, dann kann man z.B. das Konzept der ‚Zeitscheibe‘ formulieren: Wenn man sich einen ‚Zeitabschnitt‘ denkt — der natürlich unterschiedlich kurz oder lang sein kann (Nanosekunden, Sekunden, Stunden, Jahre, …) — und alle Orte unseres Planeten samt allem, was sich da gerade befindet, als einen einzigen ‚Zustand‘ ansieht, und dies macht man für jeden Zeitabschnitt, der auf den ersten Zeitabschnitt folgt, dann bekommt man eine ‚Reihe/ Folge‘ von ‚Zeitscheiben‘. Bei dieser Konstellation ist es dann so, dass jede Veränderung, wo immer sie innerhalb des Zustands stattfindet, sich mit ihren ‚Wirkungen‘ in einer der folgenden Zeitscheiben ‚auswirkt‘. Je nach ‚Dicke der Zeitscheibe‘ ist es in der ‚direkt nachfolgenden Zeitscheibe‘ oder eben ‚viel später‘. In diesem Modell geht nichts verloren. Je nach ‚Dicke‘ ist das Modell eher ’sehr präzise‘ oder ’sehr grob‘. So wird z.B. die Bevölkerungsentwicklung von einer Gemeinde in Deutschland immer nur stichprobenartig am letzten Tag eines Jahres erhoben. Würde man dies jede Woche machen, dann würden sich die einzelnen Kenngrößen (Geburten, Sterbefälle, Zuzüge, Weggang, …) sehr unterscheiden.

Im Übergang von einer zur nächsten Zeitscheibe wirkt sich ‚jede Veränderung‘ aus, also auch, was jeder einzelne Mensch tut. Allerdings muss man unterscheiden zwischen konkreten Wirkungen (wenn ein junger Mensch regelmäßig zur Schule geht) und einem ‚langfristigen Ergebnis (Schulabschluss, erworbene Kompetenzen,…), das sich ’nicht direkt‘ als konkretes Veränderungsereignis zeigt. Erwerb von Erfahrungen, Wissen, Kompetenzen … wirkt sich ‚im Innern‘ eines Menschen aus durch ‚Aufbau von unterschiedlichen Strukturen‘, die den einzelnen Menschen in die Lage versetzen, z.B. auf neue Weise zu ‚Planen, zu entscheiden und zu Handeln‘. Dieser ‚Aufbau von unterschiedlichen Strukturen‘ im Innern eines Menschen ist nicht direkt beobachtbar. Diese Strukturen können aber die ‚Qualität des Verhaltens‘ sehr stark beeinflussen.

Zeitscheiben des Lebens auf dem Planet Erde

Es klang eben schon an, dass die ‚Dicke einer Zeitscheibe‘ sich darin auswirkt, welche Ereignisse man sieht. Dies hängt damit zusammen, dass wir auf dem Planet Erde sehr viele ‚unterschiedliche Arten von Veränderungen‘ kennen gelernt haben. Vorgänge am Himmel und Vorgänge in der Natur dauern gefühlt eher ‚länger‘, Wirkungen von konkreten mechanischen Aktionen finden eher ’schnell‘ statt, Veränderungen der Erdoberfläche brauchen tausende, viele tausende oder gar Millionen von Jahren.

Hier soll der Blick auf die großen Entwicklungsschritte des (biologischen) Lebens auf dem Planeten Erde gelenkt werden. Wir selbst — als Homo sapiens — sind Teil dieser Entwicklung und es kann interessant sein, zu klären, ob die Tatsache, dass wir ‚Teil des großen Lebens‘ sind Perspektiven sichtbar macht, die wir im ’normalen Alltag‘ eines einzelnen Menschen praktisch nicht erkennen können, obgleich diese Perspektiven möglicherweise von großer Bedeutung für jeden von uns sind.

Die Auswahl von ‚markanten Ereignissen‘ in der Entwicklung des Lebens auf der Erde ist natürlich sehr stark abhängig von dem ‚Vor-Wissen‘, mit dem man an die Aufgabe herangeht. Ich habe hier nur solche Punkte ausgewählt, die sich in nahezu allen wichtigen Publikationen finden. Die Angabe jenes Zeitpunkts, ‚ab dem‘ diese Ereignisse anerkannt werden, haben grundsätzlich eine ‚Unschärfe‘, da sowohl die ‚Komplexität‘ des Ereignisses wie auch die Problematik der ‚zeitlichen Bestimmung‘ bis heute nicht viel genauer sein kann. Folgende markante Ereignisse habe ich ausgewählt:

  1. Molekulare Evolution (ab ~3.9 Mrd. Jahren)
  2. Prokaryotische Zellen (ab ~3.5 Mrd. Jahren)
  3. Großes Sauerstoffereignis (ab ~2.5 Mrd. Jahren)
  4. Eukaryotische Zellen (ab ~1.5 Mrd. Jahren)
  5. Vielzeller (ab ~600 Mio. Jahren)
  6. Auftreten der Gattung Homo (ab ~2.5 Mio. Jahren)
  7. Auftreten des Homo sapiens (ab ~300.000 Jahren)
  8. Auftreten von Künstlicher Intelligenz (ab ~21. Jahrhundert)

Mich hat dann interessiert, wie groß die Abstände zwischen diesen Ereignissen waren. Für die Berechnung wurden immer die Anfangspunkte der markanten Ereignisse genommen, da sich im weiteren Verlauf kein Zeitpunkt gut festlegen lässt. Folgende Tabelle hat sich dann ergeben:

  1. Molekulare Evolution zu Prokaryotischen Zellen: 400 Millionen Jahre
  2. Prokaryotische Zellen zum Großen Sauerstoffereignis: 1 Milliarde Jahre
  3. Großes Sauerstoffereignis zu Eukaryotischen Zellen: 1 Milliarde Jahre
  4. Eukaryotische Zellen zu Vielzellern: 900 Millionen Jahre
  5. Vielzeller zum Auftreten der Gattung Homo: 597,5 Millionen Jahre
  6. Gattung Homo zum Homo sapiens: 2,2 Millionen Jahre
  7. Homo sapiens zur Künstlichen Intelligenz: 297.900 Jahre

Als nächstes habe ich diese Zeitabstände umgerechnet in ‚prozentuale Anteile der Gesamtzeit‘ von 3.9 Milliarden Jahren. Damit er gibt sich folgende Tabelle:

  1. Molekulare Evolution zu Prokaryotischen Zellen: 400 Millionen Jahre = 10,26%
  2. Prokaryotische Zellen zum Großen Sauerstoffereignis: 1 Milliarde Jahre = 25,64%
  3. Großes Sauerstoffereignis zu Eukaryotischen Zellen: 1 Milliarde Jahre = 25,64%
  4. Eukaryotische Zellen zu Vielzellern: 900 Millionen Jahre = 23,08%
  5. Vielzeller zum Auftreten der Gattung Homo: 597,5 Millionen Jahre = 15,32%
  6. Gattung Homo zum Homo sapiens: 2,2 Millionen Jahre = 0,056%
  7. Homo sapiens zur Künstlichen Intelligenz: 297.900 Jahre = 0,0076%

Mit diesen Zahlen kann man dann schauen, ob diese Daten als ‚Datenpunkte‘ auf einer Zeitachse irgendeine auffällige Eigenschaft erkennen lassen. Natürlich gibt es hier rein mathematisch sehr viele Optionen, wonach man schauen könnte. Mich hat zunächst nur interessiert, ob es eine ‚mathematisch definierte Kurve‘ geben kann, die mit diesen Datenpunkten ’signifikant korreliert‘. Nach zahlreichen Tests mit verschiedenen Schätzfunktionen (siehe Erläuterungen im Anhang) ergab sich, dass die logistische Funktion (S-Kurve) von ihrem Design her die Dynamik der realen Daten der Entwicklung von biologischen Systemen am besten wiedergibt.

Für diese Schätzfunktion wurden die Datenpunkte ‚Molekulare Evolution‘ sowie ‚Auftreten von KI‘ ausgeklammert, da sie nicht zum Entwicklungsgeschehen von biologischen Systemen im engeren Sinne gehören. Damit ergaben sich folgende Datenpunkte als Ausgangspunkt für das Finden einer Schätzfunktion :

0 Molekulare Evolution zu Prokaryoten 4.000000e+08 (NICHT)
1 Prokaryoten zum Großen Sauerstoffereignis 1.000000e+09
2 Sauerstoffereignis zu Eukaryoten 1.000000e+09
3 Eukaryoten zu Vielzellern 9.000000e+08
4 Vielzeller zu Homo 5.975000e+08
5 Homo zu Homo sapiens 2.200000e+06
6 Homo sapiens zu KI 2.979000e+05 (NICHT)

Für die ausgewählten Ereignisse ergaben sich dann jeweils die kumulierte Zeit zu:

0 0.400000
1 1.400000
2 2.400000
3 3.300000
4 3.897500
5 3.899700
6 3.899998

Und als Voraussage des nächsten ‚besonderen‘ Ereignisses in der Entwicklung biologischer Systeme ergab sich das Jahr ‚4.0468‘ Mrd (unsere Gegenwart ist bei ‚3.899998‘ Mrd). Damit soll das nächste strukturelle Ereignis bei konservativer Schätzung ca. 146.8 Mio Jahre in der Zukunft liegen. Es könnte aber auch — nicht ganz unwahrscheinlich — in ca. 100 Mio Jahren stattfinden.

Die Kurve erzählt jene ‚Wirkgeschichte‘, die ‚klassische biologische Systeme‘ bis zum Homo sapiens mit ihren ‚bisherigen Mitteln‘ erzeugen konnten. Mit dem Auftreten des Typs ‚Homo‘, und dann insbesondere mit der Lebensform ‚Homo sapiens‘, kommen aber völlig neue Eigenschaften ins Spiel. Mit der Teil-Population des Homo sapiens gibt es eine Lebensform, die mittels ihrer ‚kognitiven‘ Dimension und ihrer neuartigen ‚symbolischen Kommunikation‘ extrem viel schneller und komplexer Handlungsgrundlagen generieren kann. Damit ist nicht auszuschließen, dass das nächste markante evolutionäre Ereignis nicht nur weit vor 148 Mio Jahren stattfinden kann, sondern sogar vor 100 Mio Jahren.

Diese Arbeitshypothese wird noch dadurch gestärkt, dass der Homo sapiens nach ca. 300.000 Jahren mittlerweile ‚Maschinen‘ bauen kann, die er ‚programmieren‘ kann, und die viele Aufgaben, die für die ‚kognitive Durchdringung‘ unserer komplexen Welt schon jetzt das einzelne menschliche Gehirn überfordern, große Dienste erweisen können. Die Maschinen als nicht-biologische Systeme haben zwar keine ‚Entwicklungs-Basis‘ wie die biologischen Systeme, aber im Format einer ‚Co-Evolution‘ könnte das Leben auf der Erde mit Unterstützung von solchen ‚programmierbaren Maschinen‘ sehr wahrscheinlich die weitere Entwicklung beschleunigen.

Mensch sein, Verantwortung und Emotionen

Mit der soeben vorgenommenen Kontexterweiterung für die Frage nach der möglichen Rolle von Menschen im Kontext der globalen Entwicklung eröffnen sich viele interessante Perspektiven, die für uns Menschen nicht nur angenehm sind. Sie sind allesamt eher ‚unbequem‘ in dem Sinne, dass diese Perspektiven erkennen lassen, dass unsere bisherige ‚Selbstgenügsamkeit mit uns selbst‘ — fast vergleichbar mit einem ‚globalen Narzissmus‘ –, uns nicht nur ‚uns selbst entfremdet‘, sondern dass wir, die wir ein Produkt des Gesamtlebens auf dem Planeten sind, dabei sind, genau dieses Gesamtleben zunehmend empfindlich zu zerstören. Es scheint, dass die meisten nicht begreifen, was sie da tun, oder, wenn sie es vielleicht sogar ahnen, all dies beiseite schieben, weil ihnen das ‚Ganze‘ zu weit weg erscheint vom ‚aktuellen individuellen Lebenssinn‘.

Dieser letzte Punkt ist ernst zu nehmen: Wie kann eine ‚Verantwortung für das globale Leben‘ für uns Menschen von uns einzelnen Menschen überhaupt ‚verstanden‘, geschweige denn ‚praktisch umgesetzt‘ werden? Wie sollen Menschen, die aktuell ca. 60 – 120 Jahre leben, sich Gedanken machen für eine Entwicklung, die viele Millionen oder gar mehr Jahre in die Zukunft zu denken ist?

Die Frage nach der Verantwortung wird noch zusätzlich erschwert durch eine ‚konstruktive Besonderheit‘ des aktuellen Homo sapiens: Eine Besonderheit des Menschen besteht darin, dass seine ‚Kognitive Dimension‘ (Wissen, Denken…) nahezu vollständig unter der Kontrolle vielfältigster Emotionen steht. Selbst im Jahr 2025 gibt es ungeheuer viele ‚Weltbilder‘ in den Köpfen von Menschen, die mit der realen Welt wenig bis gar nichts zu tun haben, aber die emotional wie ‚zementiert‘ wirken. Der ‚Umgang mit Emotionen‘ erscheint bislang ein großer blinder Fleck zu sein: Wo wird dies wirklich ‚trainiert‘ und flächendeckend erforscht, dazu alltagsnah, für jeden?

Alle diese Fragen rühren letztlich an unserem bisherigen ‚Selbstverständnis als Menschen‘. Wenn wir diese neue Perspektive ernst nehmen, dann müssen wir Menschen
offensichtlich neu und tiefer begreifen, was es heißt ‚Mensch zu sein‘ in solch einem gewaltigen ‚alles umfassenden Prozess‘. Ja, und dies wird offensichtlich nicht gehen, wenn wir uns selbst körperlich und geistig nicht deutlich weiter entwickeln. Die aktuelle Ethik mit ihrem ‚Veränderungsverbot‘ für Menschen, wie sie aktuell beschaffen sind, kann angesichts der ungeheuren Herausforderung im Grenzfall genau das Gegenteil bewirken: nicht ‚Erhalt‘ des Menschen sondern ‚Vernichtung‘. Es deutet sich an, dass es ‚wirklich bessere Technik‘ möglicherweise nur geben wird, wenn auch das Leben selbst, und hier speziell wir Menschen, uns dramatisch weiter entwickeln.

Ende des Dualismus ‚Nicht-Biologisch‘ : ‚Biologisch‘ ?

Bis zu dieser Stelle der Überlegungen sprechen wir so, wie es bislang üblich ist, wenn man über das ‚Leben‘ (die biologischen Systeme) und davon unterschieden von dem System Erde mit all dem ‚Nicht-Biologischen‘ spricht. Diese Unterscheidung zwischen ‚Biologisch‘ und ‚Nicht-Biologisch‘ sitzt sehr tief im Bewusstsein mindestens der europäischen Kultur und all jener Kulturen, die davon stark geprägt wurden.

Natürlich ist es nicht zufällig, dass sehr früh schon der Unterschied zwischen ‚belebter Materie‘ (Biologischen Systemen) und ‚unbelebter Materie‘ erkannt und benutzt wurde. Letztlich lag dies daran, dass ‚belebte Materie‘ Eigenschaften aufwies, die man so nicht bei ‚unbelebter Materie‘ feststellen konnte. Dabei blieb es bis heute.

Ausgestattet mit dem heutigen Wissen kann man diesen uralten Dualismus aber nicht nur in Frage stellen, man kann ihn eigentlich überwinden.

Der Ausgangspunkt für diesen denkerischen Brückenschlag findet man auf Seiten des Biologischen in der Tatsache begründet, dass ja die ersten einfachen Zellen, die Prokaryoten, aus ‚Molekülen‘ bestehen, diese wiederum aus ‚Atomen‘, diese wiederum aus … diese Hierarchie der Bestandteile kennt keine Grenze nach unten. Klar ist nur, dass eine ‚prokaryotische Zelle‘, die früheste Form von Leben auf dem Planet Erde, vom ‚Baumaterial‘ her vollständig aus dem Material besteht, aus dem alle nicht-biologischen Systeme bestehen, ein Material, was letztlich der ‚allgemeine Baustoff‘ ist, aus dem das ganze übrige Universum besteht. Dies wird im folgenden Bild angedeutet:

Für den Bereich der ‚unbelebten Materie‘ hat Einstein (1905) mit der Formel ‚e = mc2‚ dargelegt, dass zwischen der Masse‘ ‚m‘ einer beobachtbaren Materie und dem theoretischen Begriff der (nicht beobachtbaren) Energie ‚e‘ eine bestimmte Gleichwertigkeit besteht, wenn man die Masse m mit einem bestimmten ‚Betrag an Energie‘ auf eine bestimmte ‚Geschwindigkeit‘ ‚beschleunigt‘. Man kann aus Energie e nicht nur eine Masse m gewinnen sondern umgekehrt auch umgekehrt aus einer Masse m auch wieder Energie e.

Diese Formel hat sich bis heute bewährt.

Was aber bedeutet diese Formel für eine Materie m, die im ‚Zustand des Biologischen‘ vorliegt? Biologische Strukturen müssen nicht ’selbst ‚beschleunigt‘ sein, um ‚biologisch zu existieren‘. Allerdings müssen biologische Zellen zusätzlich zur ‚Energie‘ ihrer materiellen Bestandteile kontinuierlich ‚Energie aufnehmen‘, um ihre ’spezielle materielle Struktur‘ aufzubauen, zu erhalten, und zu verändern. Zusätzlich zu diesen ‚Aktivitäten‘ kann Materie im Format des Biologischen sich ’selbst reproduzieren‘. Im Rahmen dieser ‚Selbstreproduktion‘ findet zusätzlich ein ’semiotischer Prozess‘ statt, der später im Fall der symbolischen Kommunikation der hochkomplexen Lebewesen — insbesondere beim Homo sapiens — zur Grundlage einer neuartigen und hoch leistungsfähigen Kommunikation zwischen den biologischen Systemen geworden ist.

Die ’semiotische Struktur‘ im Kontext der Reproduktion kann man wie folgt (vereinfacht) beschreiben: eine Art von Molekülen (M1) ‚wirken‘ auf Moleküle (M2) so, als ob die Elemente der Moleküle M1 ‚Steuerbefehle‘ für die Moleküle von M2 sind, wodurch die Moleküle M2 chemische ‚Prozesse‘ anstoßen, durch welche neue Moleküle (M3) zusammen gebaut werden. Die Elemente von von M1, die ‚wie Steuerbefehle‘ wirken, verhalten sich dabei wie sogenannte ‚Zeichen‘ im Rahmen der Theorie der Semiotik. Die Moleküle ‚M3‘, die vom Molekül M2 erzeugt werden, sind im Rahmen der Semiotik zu verstehen als die ‚Bedeutung‘ von M1 und M2 wäre die ‚Bedeutungsbeziehung‘ für M1 mit M3.

Nicht nur das menschliche Gehirn arbeitet mit solchen semiotischen Strukturen, auch jeder moderne Computer besitzt diese semiotische Struktur. Dies deutet an, dass es sich möglicherweise um eine universelle Struktur handelt.

Akzeptiert man diese Überlegungen, dann scheint es so zu sein, dass sich ‚biologische Materie‘ von ‚nicht-biologischer Materie‘ dadurch unterscheidet, dass biologische Materie über die Eigenschaft verfügt, dass sie mit Hilfe von Energie nicht-biologische Materie so anordnen kann, dass zwischen den einzelnen nicht-biologischen Elementen (Atome, Moleküle) funktionale ‚Beziehungen‘ entstehen, die man als ‚semiotische Strukturen‘ interpretieren kann: nicht-biologische Elemente funktionieren ‚in einem Zusammenhang‘ (!) sowohl als ‚Zeichen‘ wie auch als ‚dynamische Bedeutungsbeziehung‘ wie auch als ‚Bedeutung‘.

Es stellt sich jetzt die Frage, wie weit man die ‚zusätzlichen Eigenschaften‘, die Materie im Format des Biologischen ‚zeigt‘, nicht nur als ‚emergente Eigenschaften‘ verstehen sollte, sondern darüber hinaus zugleich auch als ‚Manifestationen von Eigenschaften der Energie selbst‘! Da man die Energie e selbst nicht direkt beobachten kann, sondern nur indirekt durch ihre beobachtbaren Wirkungen, ist es der Forschung freigestellt, ob sie die gewohnte ‚Perspektive‘ von Einsteins 1905-Formel ‚e = mc2‚ weiter beibehalten will — und damit in Kauf nimmt, dass die komplexesten Eigenschaften des Universums weiter ‚unerklärt‘ bleiben –, oder ob die Forschung auch ‚unbelebte Materie im Format des Biologischen‘ in die Betrachtung einbeziehen will. Biologische Systeme sind ohne Energie nicht erklärbar. Allerdings fordert ihre ‚Dreifachstruktur‘ mit Materie als ‚Objekte‘ und mit Materie als ‚Metaebene‘ und noch Materie als ‚Akteur‘ dazu heraus, der unterstellten ‚Energie‘ mehr ‚interne Eigenschaften‘ zuzugestehen als bislang gewährt. Resultiert diese ‚Weigerung‘ aus einer ‚falschen Eitelkeit des Erkennenden‘, der nicht zugeben will, dass ihm ‚in der Materie selbst‘ etwas entgegen tritt, was deutlich mehr ist als ‚unbelebte Materie‘? Und ja, der ‚Erkennende‘ ist ja selbst genau dies: ‚Materie im Format des Biologischen‘ mit Eigenschaften, die weit über alles hinausgehen, was bislang die Physik bereit war, zu buchstabieren. Von der Vielfalt der Emotionen, die hier auch überall im Spiel sind, wurde bei dieser Erzählung noch nicht viel gesagt. Was, wenn die Energie auch für diesen Komplex zuständig ist? Vielleicht müssen wir alle — Philosophen, Wissenschaftler, .. — zurück auf ‚Start‘? Vielleicht müssen wir lernen, die Geschichte des Lebens auf dem Planeten und den wahren Sinn unseres Menschseins lernen, ganz neu zu erzählen …. Eigentlich haben wir dabei nichts zu verlieren. Alle bisherigen Geschichten taugen nicht all zu viel. Die mögliche Zukunft ist mit Sicherheit spannender, aufregender, reicher … als alles, was bislang erzählt wurde…

ANHANG PYTHON PROGRAMM

Ich habe mit Unterstützung von chatGPT4o eine ganze Reihe von Schätzfunktionen durchprobiert (z.B. Potenzfunktion, invertierte Potenzfunktion, Exponentialfunktion, Hyperbolische Funktion, Gompertz-Funktion, Logistische Funktion, Summierte Potenzfunktion, jeweils mit unterschiedlichen Varianten). Im Ergebnis zeigte sich die logistische (S-Kurve) Funktion als jene, die sich den realen Datenwerte am besten ‚anpasste‘ und eine ‚konservative Schätzung‘ für die Zukunft ermöglichte, die einigermaßen ‚plausibel‘ erscheint und die sich nach Bedarf notfalls noch ein wenig präzisieren lassen würde. Doch angesichts der vielen offenen Parameter für die Zukunft scheint eine ‚konservative Schätzung‘ am besten geeignet: man kann eine gewisse Richtung erkennen, aber es bleibt ‚Spielraum‘ für unverhoffte Ereignisse.

Das nachfolgende python-Programm wurde mit der Entwicklungsumgebung Python 3.12.3 64-bit mit Qt 5.15.13 und PyQt5 5.15.10 auf Linux 6.8.0-52-generic (x86_64) (Für spyder siehe: Spyder-IDE.org ) ausgeführt.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 10 07:25:38 2025

@author: gerd (supported by chatGPT4o)
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

# Daten für die Tabelle
data = {
    "Phase": [
        "Molekulare Evolution zu Prokaryoten",
        "Prokaryoten zum Großen Sauerstoffereignis",
        "Sauerstoffereignis zu Eukaryoten",
        "Eukaryoten zu Vielzellern",
        "Vielzeller zu Homo",
        "Homo zu Homo sapiens",
        "Homo sapiens zu KI"
    ],
    "Dauer (Jahre)": [
        400e6,
        1e9,
        1e9,
        900e6,
        597.5e6,
        2.2e6,
        297900
    ]
}

# Gesamtzeit der Entwicklung des Lebens (ca. 3,9 Mrd. Jahre)
total_time = 3.9e9

# DataFrame erstellen
df = pd.DataFrame(data)

# Berechnung des prozentualen Anteils
df["% Anteil an Gesamtzeit"] = (df["Dauer (Jahre)"] / total_time) * 100

# Berechnung der kumulativen Zeit
df["Kumulative Zeit (Mrd. Jahre)"] = (df["Dauer (Jahre)"].cumsum()) / 1e9

# Extrahieren der relevanten kumulativen Zeitintervalle (Differenzen der biologischen Phasen)
relevant_intervals = df["Kumulative Zeit (Mrd. Jahre)"].iloc[1:6].diff().dropna().values

# Definieren der Zeitindices für die relevanten Intervalle
interval_steps = np.arange(len(relevant_intervals))



# Sicherstellen, dass x_cumulative_fit korrekt definiert ist
x_cumulative_fit = np.arange(1, 6)  # Index für biologische Phasen 1 bis 5
y_cumulative_fit = df["Kumulative Zeit (Mrd. Jahre)"].iloc[1:6].values  # Die zugehörigen Zeiten

# Logistische Funktion (Sigmoid-Funktion) definieren
def logistic_fit(x, L, x0, k):
    return L / (1 + np.exp(-k * (x - x0)))  # Standardisierte S-Kurve

# Curve Fitting für die kumulierte Zeitreihe mit der logistischen Funktion
params_logistic, _ = curve_fit(
    logistic_fit,
    x_cumulative_fit,
    y_cumulative_fit,
    p0=[max(y_cumulative_fit), np.median(x_cumulative_fit), 1],  # Startwerte
    maxfev=2000  # Mehr Iterationen für stabilere Konvergenz
)

# Prognose des nächsten kumulierten Zeitpunkts mit der logistischen Funktion
predicted_cumulative_logistic = logistic_fit(len(x_cumulative_fit) + 1, *params_logistic)

# Fit-Kurve für die Visualisierung der logistischen Anpassung
x_fit_time_logistic = np.linspace(1, len(x_cumulative_fit) + 1, 100)
y_fit_time_logistic = logistic_fit(x_fit_time_logistic, *params_logistic)

# Visualisierung der logistischen Anpassung an die kumulierte Zeitreihe
plt.figure(figsize=(10, 6))
plt.scatter(x_cumulative_fit, y_cumulative_fit, color='blue', label="Real Data Points")
plt.plot(x_fit_time_logistic, y_fit_time_logistic, 'r-', label="Logistic Fit (S-Curve)")
plt.axvline(len(x_cumulative_fit) + 1, color='r', linestyle='--', label="Next Forecast Point")
plt.scatter(len(x_cumulative_fit) + 1, predicted_cumulative_logistic, color='red', label=f"Forecast: {predicted_cumulative_logistic:.3f} Bn Years")

# Titel und Achsenbeschriftungen
plt.title("Logistic (S-Curve) Fit on Cumulative Evolutionary Time")
plt.xlabel("Evolutionary Phase Index")
plt.ylabel("Cumulative Time (Billion Years)")
plt.legend()
plt.grid(True)
plt.show()

# Neues t_next basierend auf der logistischen Anpassung
predicted_cumulative_logistic

Out[109]: 4.04682980616636 (Prognosewert)

DAS UNIVERSUM MIT DEN AUGEN VON Lawrence M.Krauss. Gedanken zu seinem Buch A UNIVERSE FROM NOTHING, Teil 2

Lawrence M.Krauss, a universe from nothing. Why there is something rather than nothing. London: Simon & Schuster UK Ltd, 2012

KONTEXT

  1. Diesem Teil ging Teil 1 voraus, der einige allgemeine Bemerkungen enthält

KAP.1: ANFÄNGE

Ergänzende Informationen zu Kap.1 von Krauss (2012)
Ergänzende Informationen zu Kap.1 von Krauss (2012)

  1. Die Hauptaussage dieses Kapitels läuft auf die Feststellung hinaus, dass das Universum ein expandierendes Universum ist. Dazu werden einige Fakten angeführt, die diese Aussage illustrieren. Aufgrund der Sprünge im Text, ist es nicht leicht, den historischen Ablauf zu rekonstruieren. Auch fehlen nahezu überall Quellenangaben, so dass man auf eigene Faust recherchieren muss, will man die Aussagen präzisieren.
  2. Nach einigen Bemerkungen zu Einstein, der die Zusammenhänge zwischen Raum, Zeit und Gravitation revolutioniert haben soll, geht Krauss ein wenig auf die Entstehung der Position von Einstein ein, der zu Beginn von einem statischen Universum ausging. Diese Position erwies sich als nicht haltbar. Viele Ereignisse führten zu ihrer Überwindung.
  3. Aufbauend auf den Arbeiten von Henrietta Swan Leavitt mit ihren Forschungen zu Cepheiden Sternen konnte Edward Hubble 1925 Forschungsergebnisse veröffentlichen, nach denen es Cepheiden in Spiral-Nebel gab, die darauf schließen lassen, dass es jenseits unserer Galaxie, der Milchstraße, weitere Galaxien gibt.(S.7f)
  4. Hubble arbeitete weiter und kam unter Einbeziehung der Arbeiten von Vesto Slipher zur Rotverschiebung der Sterne aufgrund ihrer Bewegung zusammen mit Milton Humason zur Erkenntnis, dass es eine regelmäßige Beziehung zwischen der Rotverschiebung/ der Geschwindigkeit der Sterne und ihrer Entfernung gibt. Heute bekannt als Hubbles Gesetz führt dies 1929 zur Veröffentlichung der Hypothese über ein expandierendes Universum.(vgl. S.8 – 11)[Anmerkung: Heute werden die Entdeckungen zur Expansion eher anderen Autoren zugeschrieben, z.B. Friedmann und Lemaitre.(vgl. S.4f)].
  5. Anlässlich der Benutzung von Spektren zur Bestimmung der Geschwindigkeit von Sternen gibt Krauss einen Hinweis zur Geschichte der Entdeckung der Eigenschaften des Lichts durch Newton.(vgl. S.9)
  6. Aufgrund der Daten von Hubble 1929 war die Schätzung der Parameter zur Berechnung des Ausgangspunktes der Expansion des Universums noch zu ungenau. Nach diesen Schätzungen wäre das Universum nur 1.5 Mrd alt gewesen. Angesichts des damals schon bekannten Alters der Erde von mehr als 3 Mrd. Jahren war klar, dass die Berechnungen zum Alter des Universums noch nicht stimmen konnten.(vgl. S.15f)
  7. Es zeigte sich, dass die Berechnung der Entfernungen mit den Daten der Cepheiden Sterne zu ungenau war. (vgl. S.17)
  8. Eine verbesserte Lösung ergab sich durch Rekurs auf die Supersterne, auf die Supernovae, Eine Supernova ist ein Klasse 1b Stern, der explodiert, was durchschnittlich einmal alle 100 Jahre pro Galaxie vorkommt (bei ca. 100 Mrd Galaxien). (vgl.S.17) Bis heute sind dies ca.200 Mio Sternexplosionen.(vgl. S.19) Man benutzt den Punkt höchster Luminosität dieser Explosion, das Spektrum, und die Rotverschiebung darin.[Anmerkung: Zugleich braucht man aber auch einen Referenzpunkt, eine Standard Leuchte. Diese zu bestimmen kann aber sehr schwierig sein und ist mit Unsicherheiten behaftet.] Da alle Atome in unserem Körper nur aus solchen Sternexplosionen stammen können, stellt Krauss – leicht poetisch – fest, dass unsere Körper aus Sternenstaub entstanden sind. (vgl.S.17)
  9. Das Stichwort Supernova nimmt Krauss zum Anlass, das Werk von Tycho Brahe, Johannes Keppler und Isaak Newton zu erwähnen.(vgl.S.19f)
  10. Die Einbeziehung von Supernovae und verbesserte Messmethoden führte dazu, dass das Alter des Universums heute näher bei 13 Mrd. Jahren angenommen wird als bei 1.5 Mrd. Jahren. (vgl. S.21)
  11. Ein anderer interessanter Indikator für die Expansion des Universums aus einem Anfangspunkt ist die beobachtbare Verteilung der leichten Elementen im ganzen Universum, die mit den theoretischen Voraussagen des theoretischen Modells über die Entstehung des Universums erstaunlich gut übereinstimmen (nicht bei Lithium). Die leichten Elemente konnten schon in der Anfangszeit eines BigBang (ca. 10s – 20m) entstehen, ohne die späteren Kernfusionen. Alle beobachtbare Materie war zusammengepresst in einem dichten Plasma mit einer Temperatur von ca. 10 Mrd Grad Kelvin.(vgl. 17f)[Anmerkung: siehe auch Standard Modell oder FLRW Metrik)]

DISKUSSION

  1. Die Ausführungen von Krauss samt den ergänzenden Informationen aus den zugefügten Wikipedia Beiträgen samt einigen der darin zitierten Artikeln gibt Anlass zu vielfältigen Gedanken. Hier seien einige genannt.
  2. Unter dem Blickwinkel der Entstehung von Wissen ist die Entwicklung der modernen wissenschaftlichen Kosmologie ein beeindruckender Vorgang. Nimmt man Brahe als Bezugspunkt (wobei antike Forschungen hier auch benutzt werden könnten), dann blicken wir auf ca. 450 Jahre zurück, in denen Menschen (einzelne Menschen!) versucht haben, im Chaos der Phänomene Strukturen zu erkennen, die Erklärungsansätze liefern, wie der aktuelle Zeitpunkt in einen Zusammenhang eingeordnet werden kann, der so etwas wie eine Entstehung andeutet.
  3. Wesentlich für die wissenschaftliche Kosmologie ist die Einsicht, dass man sich auf die empirischen Phänomene beschränken muss, also jene Phänomene, die sich von allen anderen dadurch abheben, dass sie unabhängig von unserem subjektiven Wollen, Wünschen und Vorstellen sind. Das Empirische ist das ganz Andere zu unserer Subjektivität, was uns grundlegend vorgegeben ist, auch in Form unseres eigenen Körpers und damit unseres Gehirns und bestimmter grundlegender Strukturen unseres Wahrnehmens, Erinnerns und Denkens.
  4. Ein weiterer Aspekt ist die Rolle eines speziellen symbolischen Ausdruckssystems, heute als Mathematik bezeichnet. Die Mathematik hat ja selbst einen kontinuierlichen Wandel erlebt, nicht zuletzt durch die Anforderungen durch die empirischen Wissenschaften. Entscheidend im Wandel der Mathematik war die zunehmende Einsicht, dass der symbolische Raum – der virtuelle Denkraum im Gehirn – als solcher unabhängig von möglichen empirischen Interpretationen ist, seine eigene Grammatik und Logik besitzt, und von daher nach Bedarf auf beliebige andere Sachverhalte, auch empirische, angewandt werden kann. In Gestalt der modernen Algebra (etwa seit van der Waerdens Buch) hat die Mathematik ihre vorläufige Endfassung gefunden. Die Stärke der mathematischen Sprache ist aber zugleich eine kontinuierliche Quelle potentieller Fehler: mathematische Variablen sind grundsätzlich abstrakt, allgemein, kategorisch; empirische Messwerte sind grundsätzlich individuell, in Raum und Zeit punktuell. Noch so viele Messungen können die theoretische Bedeutung einer Variable niemals erschöpfen. Dennoch, trotz dieser fundamentalen Unterschiedlichkeit, hat sich die Verwendung der Mathematik bei der Deutung empirischer Phänomene bislang als unfassbar erfolgreich erwiesen. Die mathematische Sprache ist damit neben der normalen Sprache mittlerweile die wichtigste Sprache zum Verstehen der Welt geworden – was in gewissem Kontrast steht zur Unkenntnis und Missachtung dieser Sprache im Alltag, in der Ausbildung, im religiösen Leben der Menschen.
  5. Weiterhin ist beeindruckend, wie dieses moderne Wissen eine tiefliegende Struktur jenseits der Individualität der beteiligen Forscher enthüllt. Obgleich die Geschichte zeigt, dass manche Gedanken mehrfach erfunden wurden, weil man voneinander zu wenig wusste, ist es doch so, dass jeder von den beteiligten Forschern nicht im luftleeren Raum operiert hat. Jeder von ihnen war vielfältig verflochten sowohl mit Teilen der Vorgeschichte und mit gegenwärtigen Forschern und Forschungsaktivitäten. Jede neue Erkenntnis ist nur verstehbar aufgrund der Vorarbeiten anderer. Der Raum wissenschaftlicher Erkenntnis ist ein Raum von Fakten und logischen Strukturen, der sich nur verstehen lässt als eine Anfangsmenge von Wissen W0, an der viele Gehirne G mit entsprechenden Methoden M und empirischen Daten D weiter arbeiten, bis ein erweitertes Wissen W0+1 = W1 entsteht, dieses wird wiederum bearbeitet zu W2, usw. Insofern stellen die aktuellen Gehirne, Methoden und Fakten zum Zeitpunkt t <G,M,D>(t) eine Art Wissens-Operator dar, der immer wieder neu (rekursiv) auf das verfügbare Wissen angewendet wird, also Wx(t+1) = <G,M,D>(t)(Wx-1). In nicht-empirischen Bereichen könnte dies zwar auch der Fall sein, aber aufgrund der höheren Komplexität von nicht-empirischen Wissens (was das empirische Wissen als Teilmenge enthalten kann, aber meistens leider nicht enthält) ist dies viel schwieriger und nur schwer zu erkennen.
  6. Obwohl wir heute vieles über eine ideale Wissenskultur wissen können, muss man feststellen, dass die jeweiligen umgebenden Gesellschaften vieles tun, um diese Wissenskultur mindestens zu schwächen, wenn nicht gar massiv zu behindern. Die jeweiligen Forscher, ‚Kinder ihrer Zeit‘, sind von diesen gesellschaftlichen Tendenzen nicht unberührt. Der Anteil der Menschen in einer Gesellschaft, die die Natur (und die Inhalte) wissenschaftlichen Wissens nicht verstehen, ist extrem groß (selbst bei solchen, die sogar studiert haben), besonders – und leider – auch bei den politisch Verantwortlichen.
  7. Viele weitere Gedanken wären hier zu diskutieren, speziell natürlich auch zum aktuellen kosmologischen Weltmodell selbst. Dies soll bei nachfolgenden Blogeinträgen nachgeholt werden.

Eine Fortsetzung findet sich HIER.

Eine Übersicht über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.