Archiv der Kategorie: Kode

PHILOSOPHIE – ÜBER SICH NACHDENKEN – PROGRAMMIEREN – DIE KALTE MASCHINE – DER GEIST IM STROMKREIS

Letzte Änderung: 29.Mai 2014, 19:20h (Musikstück hinzugefügt)

SOUNDEREIGNIS

Zur Einstimmung der folgenden Reflexionen über das Programmieren aus philosophischer Sicht hier eine Sound-Komposition vollständig erstellt mit mathematischen Algorithmen: Sinfonia made completely by MAX Demos. Das Stück besteht aus 6 Klangspuren, wobei jede Spur einen Klang repräsentiert, der durch Softwareinstrumente erzeugt worden ist. Für alle die, die nur ‚Mainstream-Musik‘ kennen (Klassik gehört auch zum ‚Mainstream :-)) ist vom Hören abzuraten. Dies ist ein Sound für jene, die sich vom Mainstream gelöst haben und einfach Spass haben, unbekannte Klangräume zu durchwandern. Konkret habe ich mit Demoinstrumenten aus den Tutorials der Software MAX 6.1.7 sowie ableton live 9.1 und Max4Live herumgespielt.

ZWEI JUNGE MÄNNER TRETEN AUF

1. Am 22.Mai 2014 abends, nach einem sehr anstrengenden Tag, war ich Zeuge eines besonderen Schauspiels. Zwei junge Männer, beide langjährige Programmierer im Kontext innovativer multimedialer Anwendungen, Erfinder einer dafür eigens geschaffenen Programmiersprache – nennen wir sie Lx – dachten in zwei aufeinanderfolgenden Vorträgen laut nach, über das, was sie tun, wenn sie programmieren.

2. Dies ist ungewöhnlich, da diejenigen, die programmieren, es normalerweise einfach tun; sie schreiben ‚Kode‘, wie es so schön heißt. Verschachteln if’s und ‚while’s‘ und zahllose Schlüsselwörter der vielen ‚Bibliotheken‘ der fertigen Softwaremodulen, die heutzutage Programmiersprachen begleiten.

3. In der ‚reinen Lehre‘ ist s zwar anders, da gibt es Entwurfsmodelle, abstrakte Spezifikationen, seitenlange Anforderungen, die einem Programmierer sagen sollen, was er ‚eigentlich‘ zu tun hat; doch aus der Sicht eines Programmierers verschwimmen diese ganzen Texte und Diagramme sehr schnell zu einem Nezwerk von Kodierungsanweisungen, zu Seiten voller kryptischer Befehlsausdrücken, zu einem Programmtext seiner Sprache Lx. Was immer abstrakt vorher gedacht worden ist, er, der Programmierer verwandelt sich in einen ‚Kodierer‘.

4. Nicht so an diesem Abend. Die beiden Programmierer versuchten über ihr Kodieren nachzudenken.

ZUR GESCHICHTE DER KODIERUNG

5. Im ersten Vortrag ging es mehr um die historische Dimension, wie es von ersten rechnenden Maschinen (mit schönen Videoausschnitten über Konrad Zuse und seinen pionierhaften Experimenten mit seinen ersten Rechnern) mit direkter bitweiser Kodierung zu immer abstrakteren Programmiersprachen (Bits, Hexcode, mnemonischer Assemblercode, einfache Programmiersprachen wie Fortran und C, höhere objektorientierte Sprachen, und dann visuelle Kodierung). Da endete der historische Aufriss, da die Sprache Lx der beiden Programmierer solch eine visuelle Sprache war.

6. An dieser Stelle ruckelte es schon ein bisschen. Erstens gibt es ja heute schon viele verschiedene visuelle Programmiersprachen, und zum anderen war der Überblick unvollständig. Die Programmiersprachen selbst sind nur ein Teil der Geschichte; parallel mit den Programmiersprachen hat sich unter dem Oberthema ‚Softwareengineering‘ ein Denkmuster entwickelte, das die Programmiersprache nur noch als ein – wenngleich ein wichtiges – Moment sieht im Kontext von – stark vereinfachend – Problemstellung P, Anforderungsanalyse A, logisches Entwurfsmodell M und implementiertes System S. Kodierung ist Teil des implementierten Systems S bzw. steht in gewisser Beziehung zum logischen Entwurfsmodell. Der ‚Denkraum‘ des Softwareeinsatzes hat sich also erheblich ausgeweitet, und eine Geschichte der Programmierung, die diesen Denkkontext des Programmierens nicht berücksichtigt, wirkt mindestens unvollständig.

DIAGRAMMATISCHE REFLEXE ZTUM EIGENEN KODIEREN

7. Der zweite Vortrag wurde in gewisser Weise ‚persönliches‘ bis ’sehr persönlich‘. Hier sprach der Programmierende – nennen wir ihn B – in der Tat über seine Gedanken, wenn er programmiert bzw. über seine Gedankenwelt, vorher, während und nachher, und er sprach als jemand, der eine Programmiersprache entwickelt hat, sie benutzt, sie ‚warten‘ muss und sie weiter entwickelt.

8. Er benutze dazu Folien die angefüllt waren mit Handzeichnungen, Wortskizzen, Wort und Bildskizzen – fantastisch anzuschauen, eher Kunstwerken gleich, anregend, faszinierend. Seine begleitende Rede war auch keine normale Rede, keine geschliffenen Sätze, kein zusammenhängender Text; nein, es war eine Mischung aus Stammeln, Brummeln, meist mit dem Rücken zu den Zuhörer, eine Art Zwiegespräch mit den kunstvollen Linien in dem projizierten Bild; meist kryptisch, die Zuhörer/ Zuschauer meist in Lauerstellung in Erwartung, was denn jetzt kommen würde.

9. Es klingt komisch, aber ich habe es genossen, das war Denken unplugged, das war Kreativität des sich selbst reflektierenden Kodierens ‚live‘. Es dürfte nicht allzu viele ‚Programmierer‘ geben, die dies so tun würden. Als ich den Vortragenden anschließend darauf hin ansprach, wie oft er das so schon gemacht habe, sagte er auch, dass er dies so zum ersten Mal gemacht habe. Also eine Uraufführung; wunderbar.

PHILOSOPHISCHE REFLEXION

10. Schaltet man jetzt die philosophische Reflexion ein, dann ist als erstes zu bemerken, dass es offensichtlich nicht ganz selbstverständlich, keinesfalls einfach ist, etwas, was man tut, – hier das Programmieren, das Kodieren in einer Sprache Lx – in einer anderen Sprache Lxx auszudrücken. So beeindruckend und faszinierend die bildhaften und textuellen Fragmente waren, die B in seinen Folien präsentierte (für mich wahre ‚Kunstwerke‘), so wenig ließen diese vielen Fragmente einen größeren Zusammenhang klar erkennen. Dieser Eindruck verstärkte sich auch in dem anschließenden Gespräch mit den Zuhörern. Während die meisten ‚Anwender‘ waren, die die Sprache Lx (bzw. der Vorläuferversion) selbst zum Kodieren benutzten, und der Vortragende B aber gedanklich im Netzwerk seiner Konzepte ?herumirrte?, gab es auch Fragen zum ‚Denkraum‘, innerhalb dessen man Programmiersprachen entwickelt. Fragen und Antworten fanden nicht wo wirklich zueinander.

11. Während im ersten Vortrag noch ein wenig die Idee anklang, dass das Aufkommen von visuellen Sprachen eine ‚Verbesserung‘ für den programmierenden Menschen darstellt, blieb dieser reformerische, am Menschen orientierte, Ansatz immer mehr im Dunkeln. Im Zweikampf mit seinen eigenen Gedanken wurde nicht klar, ob und wie denn eine visuelle Programmiersprache Lx (zu der es, wie gesagt, viele Parallelen gibt) dem ‚menschlichen Denken‘ besonders entgegen kommt.

12. Während die Missionare des objektorientierten Programmierens zumindest versucht haben, Formen des alltäglichen Denkens mit einer ojektorientierten Sprache Lo in Verbindung zu bringen (was beim späteren sogenannten ‚modellbasierten‘ Programmieren schon nicht mehr so gelang), wurden solche Gedanken an diesem Abend nicht vorgetragen. Der Mensch in seinem Denken – hier der programmierende Mensch – blieb weitgehend außen vor. Schade. In diesem den Menschen und vorhandenen Programmieralternativen ausklammernden Denken blieben die Gedanken des suchenden Programmierers weitgehend ‚alleine mit sich selbst‘.

SOFTWAREENGINEERING IST NICHT GANZ NEU

13. Bemerkenswert an diesem Schauspiel ist die Tatsache, dass Software engineering (nicht ganz so gut: Softwaretechnik) nun ja keine wirklich ganz neue Disziplin mehr ist. An allen Universitäten/ Hochschulen, in denen Informatik gelehrt wird, gibt es seit mindestens 20 Jahren auch Softwareengineering. Und dennoch ist diese Art eines ‚zusammenhängenden Denkens‘ in den Köpfen der ‚aktiven Programmierenden‘ offensichtlich nicht präsent (als Vergleich: die Ideen eines Galilei haben ca. 100 Jahre gebraucht, bis sie zum Allgemeingut geworden sind).

14. Dennoch kamen man auch bei jenen, die Softwareengineering im größeren Zusammenhang denken, wissenschaftstheoretische bzw. philosophische Ansätze kaum bis gar nicht vorkommen, obgleich ein solches Denken hier eine Menge zu tun hätte.

15. Halten wir kurz fest: der Aspekt des menschlichen Denkens – nennen wir es hier das ‚kognitive Interface‘, die ‚Schnittstelle zum Denken‘; andere sprechen auch von ‚mentalen Modellen‘ – kam bei den beiden Vortragenden des Abends so gut wie nicht vor.

16. Der Einsatz einer Programmiersprache hat aber noch eine weitere Dimension, die nicht minder bedeutsam ist. Egal welche Programmiersprache Lx man benutzt, ein Programm in solch einer Sprache Lx – nennen wir es P(Lx) – muss irgendwann von einem realen Computer C ‚ausgeführt‘ werden. Dies bedeutet, was immer sich ein menschlicher Programmierer im Rahmen seines kognitiven Interfaces ‚gedacht‘ haben mag, als er P(Lx) erstellt hat, das, was ‚tatsächlich passiert‘, das entscheidet sich bei der realen Ausführung auf einem Computer C. Dies bedeutet, dass die Menge dieser Ausführungen von P(Lx) auf dem Computer C – nennen wir sie C(P(Lx)) – die ‚finale Bedeutung‘ von Lx darstellt. Man spricht auch von der ‚Semantik‘ (Bedeutung) der Sprache Lx mit Bezug auf C. Beispiel: mit den Ausdrücken von Lx will Programmierer B zwei ‚parallele Prozesse‘ a und b darstellen, gefolgt von Prozess c. Damit dieser Gedanke Sinn macht, muss sichergestellt sein, dass bei der Ausführung von a,b und dann c diese logische Struktur auch real umgesetzt wird, erst recht, wenn möglicherweise das Ergebnis von c z.B. dann wieder dem Prozess b als ein Teil seiner Eingangswerte zur Verfügung gestellt werden soll. Solche ‚Korrespondenzen‘ zwischen ‚intendierter‘ Bedeutung und ‚realisierter‘ Bedeutung herzustellen und zu ‚gewährleisten‘ ist generell nicht einfach und in genügend vielen Fällen unmöglich. Über diese ’semantischen Aspekte‘ der Programmiersprache Lx wurde gar nicht gesprochen. Auf Nachfrage kam eine Aussage, die so klang, also ob man darüber ’noch nicht nachgedacht habe‘.

17. Mir kommt es so vor, als ob das Thema ‚Semantik einer Programmiersprache‘ für viele Programmierenden das ist, was Tiefenpsychologen das ‚individuelle Unbewusste‘ nennen. Irgendwo wissen sie zwar, dass ihr Kode letztlich von einer Maschine abgearbeitet wird mit den daraus resultierenden Einschränkungen, aber tatsächlich berauschen sie sich lieber an ihren aktuellen Ideen und Fantasien und tun so, als ob das alles ja genau so auch umgesetzt wird. Wird es nicht. Hier gibt es viele zu klärende Fragen, also philosophisches Potential.

WITTGENSTEIN LÄSST GRÜSSEN

18. Vielen Programmierenden – den meisten? – ist nicht bewusst, dass der Denkweg von Ludwig Wittgenstein von seinem ‚Tractatus Logico Philosophicus‘ hin zu seinen ‚Philosophischen Untersuchungen‘ ein wunderbares Muster abgibt, innerhalb dessen man auch die Thematik der Bedeutung von Programmiersprachen reflektieren kann. Natürlich müsste man die Diktionen von Wittgenstein dem heutigen Sprach- und Denkgebrauch des Softwareengineerings etwas anpassen, aber die Grundideen (und die sich darin verbergenden kritischen Potentiale) sind weiterhin anwendbar.

19. Eine zentrale Idee Wittgensteins ist die Aufdeckung der Tatsache, dass die Ausdrücke einer Sprache L – und das gilt dann auch für Lx – ihre ‚Bedeutung‘ nur im Kontext sogenannter ‚Sprachspiele‘ haben. Im Fall der visuellen Programmiersprache Lx wäre ein solcher Kontext gegeben durch (i) die Programmierer, (ii) die Ausdrücke von Lx, (iii) die ausführenden Computer C (meistens mindestens mit Hardware und Betriebssystem) sowie (iv) die ‚Aktionen‘, die der programmierte Computer – z.B. als Roboter oder als Smartphone – beobachtbar ‚ausführt‘, sehr oft in ‚Interaktion mit einem (v) Benutzer‘, der ’seine‘ ‚Vorstellungen‘ (:= mentale Modelle) des Geschehens hat.

20. Das Softwareengineering versucht – im idealen Fall – die potentiellen Sprachspiele ‚vorweg‘ zu analysieren, zu modellieren, und entsprechend zu implementieren. Die Grenzen liegen bei der ‚Vorwegnahme‘ des potentiellen Benutzers.

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.

DAS NEUE MENSCHENBILD – ERSTE SKIZZE

MUSIK ZUR EINSTIMMUNG

Das Stück „Wenn die Worte aus der Dunkelheit aufsteigen wie Sterne“ entstand zunächst als ein reines Instrumentalstück (die erste Hälfte des aktuellen Stücks; diesen Teil hatte ich auch schon mal am 4.April im Blog benutzt). Doch inspirierte die Musik zum ‚Weitermachen‘, zunächst entstand eine Fortsetzung rein instrumental; dann habe ich ab der Mitte spontan einen Text dazu gesprochen. Im Nachhinein betrachtet passt dieser Text sehr gut zum heutigen Blogeintrag (ist kein Dogma … :-))

UNSCHULDIGER ANFANG

1. Als ich am 20.Januar 2007 – also vor 7 Jahren und 3 Monaten – meinen ersten Blogeintrag geschrieben habe, da wusste ich weder genau, was ich mit dem Blog wollte noch konnte ich ahnen, was durch das Niederschreiben von Gedanken alles an ‚kognitiven Bildern‘ von der Welt und dem Menschen entstehen konnte. Langsam schälte sich als Thema – wenngleich nicht messerscharf – ‚Neues Weltbild‘ heraus. Das konnte alles und nichts sein. Aber im gedanklichen Scheinwerferkegel von Theologie, Philosophie, Wissenschaftstheorie, Psychologie, Biologie, Linguistik, Informatik, Neurowissenschaften, Physik gab es Anhaltspunkte, Eckwerte, die den aktuellen Gedanken wie eine Billardkugel von einer Bande zur anderen schickten. Dazu die heutige, aktuelle Lebenserfahrung und die vielen Begegnungen und Gespräche mit anderen Menschen.

2. Die letzten beiden Blogeinträge zum Thema Bewusstsein – Nichtbewusstsein markieren einen Punkt in dieser Entwicklung, ab dem ‚wie von Zauberhand‘ viele einzelnen Gedanken von vorher sich zu einem Gesamtbild ‚zusammen schieben‘, ergänzen.

AUSGANGSPUNKT INDIVIDUELLES BEWUSSTSEIN

3. Akzeptieren wir den Ausgangspunkt des individuellen Bewusstseins B_i als primären Erkenntnisstandpunkt für jeden Menschen, dann besteht die Welt für jeden einzelnen zunächst mal aus dem, was er/ sie im Raume seines eigenen individuellen Bewusstseins erleben/ wahrnehmen kann.

4. Da es aber zur Natur des individuellen Bewusstseins gehört, dass es als solches für ‚andere‘ ‚unsichtbar‘ ist, kann man auch nicht so ohne weiteres über die Inhalte des eigenen Bewusstseins mit anderen reden. Was immer man mit Hilfe eines Ausdrucks A einer Sprache L einem anderen mitteilen möchte, wenn der Ausdruck A als Schallwelle den anderen erreicht, hat er zwar einen Schalleindruck (falls erhören kann), aber er/ sie weiß in dem Moment normalerweise nicht, welcher Inhalt des Bewusstseins des Sprechers damit ‚gemeint‘ sein könnte.

5. Dass wir uns trotzdem ‚unterhalten‘ können liegt daran, dass es offensichtlich einen ‚Trick‘ geben muss, mit dem wir diese unüberwindliche Kluft zwischen unseren verschiedenen Bewusstseinsräumen überwinden können.

KLUFT ZWISCHEN INDIVIDUELLEN BEWUSSTSEINSRÄUMEN ÜBERWINDEN

6. Der ‚Trick‘ beruht darauf, dass der individuelle Bewusstseinsraum einem ‚individuellen Körper‘ zugeordnet ist, dass es in diesen Körper Gehirne gibt, und dass das individuelle Bewusstsein eines Körpers k_i als Ereignis im Gehirn g_i des Körpers k_i zu verorten ist. Das Bewusstsein B_i partizipiert an den Gehirnzuständen des Gehirns, und dieses partizipiert an den Körperzuständen. Wie die Wissenschaft mühsam erarbeitet hat, können bestimmte Außenweltereignisse w über ‚Sinnesorgane‘ in ‚Körperereignisse‘ ‚übersetzt‘ werden‘, die über das Gehirn partiell auch das Bewusstsein erreichen können. Sofern es jetzt Außenweltereignisse w‘ gibt, die verschiedene Körper in ähnlicher Weise ‚erreichen‘ und in diesen Körpern via Gehirn bis zu dem jeweiligen individuellen Bewusstsein gelangen, haben diese verschiedenen individuellen Bewusstseinsräume zwar ‚rein private‘ Bewusstseinszustände, aber ‚gekoppelt‘ über Außenweltzustände w‘ haben die verschiedenen Bewusstseinszustände B_1, …, B_n alle Bewusstseinsereignisse b_i, die als solche ‚privat‘ sind, aber ‚zeitlich gekoppelt‘ sind und sich mit Änderung der Außenweltzustände w‘ auch ’synchron‘ ändern. Die gemeinsam geteilte Außenwelt wird damit zur ‚Brücke‘ zwischen den körperlich getrennten individuellen Bewusstseinsräumen. Diese ‚ gemeinsam geteilte Außenwelt‘ nennt man oft den ‚intersubjektiven‘ Bereich der Welt bzw. dies stellt den Raum der ‚empirischen Welt‘ [Wemp] dar. Aus Sicht des individuellen Bewusstseins ist die empirische Welt eine Arbeitshypothese, die dem individuellen Bewusstsein zugänglich ist über eine spezifische Teilmenge [PHemp] der Bewusstseinszustände [PH].

EMPIRISCHE WELT ALS SONDE INS NICHTBEWUSSTSEIN

7. In der Geschichte des menschlichen Wissens spielt die Entdeckung der empirischen Welt und ihre systematische Untersuchung im Rahmen der modernen empirischen Wissenschaften bislang – nach meiner Meinung – die größte geistige Entdeckung und Revolution dar, die der menschliche Geist vollbracht hat. Auf den ersten Blick wirkt die Beschränkung der empirischen Wissenschaften auf die empirischen Phänomene PHemp wie eine unnötige ‚Einschränkung‘ und ‚Verarmung‘ des Denkens, da ja die Menge der bewussten Ereignisse PH erheblich größer ist als die Menge der empirischen Ereignisse PHemp. Wie der Gang der Geschichte aber gezeigt hat, war es gerade diese bewusste methodische Beschränkung, die uns den Bereich ‚außerhalb des Bewusstseins‘, den Bereich des ‚Nichtbewusstseins‘, Schritt für Schritt ‚erforscht‘ und ‚erklärt‘ hat. Trotz individuell stark eingeschränktem Bewusstsein konnte wir auf diese Weise so viel über die ‚Rahmenbedingungen‘ unseres individuellen Bewusstseins lernen, dass wir nicht mehr wie die früheren Philosophen ‚wie die Fliegen am Licht‘ an den Phänomenen des Bewusstseins kleben müssen, sondern wir können zunehmend Hypothesen darüber entwickeln, wie die verschiedenen Bewusstseinsphänomene (inklusive ihrer Dynamik) durch die Strukturen des Gehirns und des Körpers bestimmt sind. M.a.W. wir stehen vor dem Paradox, dass das individuelle Bewusstsein den Bereich des Nichtbewusstseins dadurch ‚verkleinern‘ kann, dass es durch Ausnutzung der empirischen Phänomene mittels gezielter Experimente und Modellbildung immer mehr Eigenschaften des Nichtbewusstseins innerhalb des individuellen Bewusstseins ’nachkonstruiert‘ und damit ‚bewusst‘ macht. Bedenkt man wie eng und schwierig die Rahmenbedingungen des menschlichen Bewusstseins bis heute sind, gleicht es einem kleinen Wunder, was dieses primitive menschliche Bewusstsein bislang nachkonstruierend erkennen konnte.

8. Von diesem Punkt aus ergeben sich viele Perspektiven.

BIOLOGISCHE EVOLUTION

9. Eine Perspektive ist jene der ‚evolutionären Entwicklungsgeschichte‘: seit gut hundert Jahren sind wir mehr und mehr in der Lage, unsere aktuellen Körper und Gehirne – zusammen mit allen anderen Lebensformen – als einen Gesamtprozess zu begreifen, der mit den ersten Zellen vor ca. 3.8 Milliarden Jahren als biologische Evolution begonnen hat, ein Prozess, der bis heute noch viele Fragen bereit hält, die noch nicht befriedigend beantwortet sind. Und der vor allem auch klar macht, dass wir heute keinen ‚Endpunkt‘ darstellen, sondern ein ‚Durchgangsstadium‘, dessen potentieller Endzustand ebenfalls nicht ganz klar ist.

10. Ein wichtiger Teilaspekt der biologischen Evolution ist, dass der Vererbungsmechanismus im Wechselspiel von Genotyp (ein Molekül als ‚Informationsträger‘ (Chromosom mit Genen)) und Phänotyp (Körper) im Rahmen einer Population eine ‚Strukturentwicklung‘ beinhaltet: die Informationen eines Informationsmoleküls (Chromosom) werden innerhalb des Wachstumsprozesses (Ontogenese) als ‚Bauplan‘ interpretiert, wie man welche Körper konstruiert. Sowohl bei der Erstellung des Informationsmoleküls wie auch bei seiner Übersetzung in einen Wachstumsprozess und dem Wachstumsprozess selbst kann und kommt es zu partiellen ‚Änderungen‘, die dazu führen, dass die resultierenden Phänotypen Änderungen aufweisen können (verschiedene Arten von Sehsystemen, Verdauungssystemen, Knochengerüsten, usw.).

11. Im Gesamtkontext der biologischen Evolution sind diese kontinuierlich stattfindenden partiellen Änderungen lebensentscheidend! Da sich die Erde seit ihrer Entstehung permanent geologisch, klimatisch und im Verbund mit dem Sonnensystem verändert, würden Lebensformen, die sich von sich aus nicht auch ändern würden, schon nach kürzester Zeit aussterben. Dies bedeutet, dass diese Fähigkeit zur permanenten strukturellen Änderung ein wesentliches Merkmal des Lebens auf dieser Erde darstellt. In einer groben Einteilung könnte man sagen, von den jeweils ’neuen‘ Phänotypen einer ‚Generation‘ wird die ‚große Masse‘ mehr oder weniger ‚unverändert‘ erscheinen; ein kleiner Teil wir Veränderungen aufweisen, die es diesen individuellen Systemen ’schwerer‘ macht als anderen, ihre Lebensprozesse zu unterstützen; ein anderer kleiner Teil wird Veränderungen aufweisen, die es ‚leichter‘ machen, die Lebensprozesse zu unterstützen. Letztere werden sich vermutlich proportional ‚mehr vermehren‘ als die beiden anderen Gruppen.

12. Wichtig an dieser Stelle ist, dass zum Zeitpunkt der Änderungen ’niemand‘ weiß bzw. wissen kann, wie sich die ‚Änderung‘ – bzw. auch die Nicht-Änderung! – im weiteren Verlauf auswirken wird. Erst der weitergehende Gesamtprozess wird enthüllen, wie sich die verschiedenen Strukturen von Leben bewähren werden.

LEBENSNOTWENDIGE KREATIVITÄT: WOLLEN WIR SIE EINSPERREN?

13. Übertragen auf unsere heutige Zeit und unser Weltbild bedeutet dies, dass wir dieser Veränderlichkeit der Lebensformen immer Rechnung tragen sollten, um unsere Überlebensfähigkeit zu sichern. Zum Zeitpunkt einer Änderung – also jetzt und hier und heute – weiß niemand, welche dieser Änderungen morgen vielleicht wichtig sein werden, zumal Änderungen sich erst nach vielen Generationen auszuwirken beginnen.

14. Es wäre eine eigene große Untersuchung wert, zu schauen, wie wir heute in der Breite des Lebens mit den stattfindenden Änderungen umgehen. In der Agrarindustrie gibt es starke Tendenzen, die Vielzahl einzugrenzen und wenige Arten so zu monopolisieren, dass einzelne (ein einziger!) Konzern die Kontrolle weltweit über die genetischen Informationen bekommt (was in den USA z.T. schon zur Verödung ganzer Landstriche geführt hat, da das Unkraut sich schneller und effektiver geändert hat als die Laborprodukte dieser Firma).

STRUKTURELLES UND FUNKTIONALES LERNEN

15. Die ‚Struktur‘ des Phänotyps ist aber nur die eine Seite; genauso wenig wie die Hardware alleine einen funktionierenden Computer definiert, so reicht die Anordnung der Zellen als solche nicht aus, um eine funktionierende biologische Lebensform zu definieren. Im Computer ist es die Fähigkeit, die elektrischen Zustände der Hardware kontinuierlich zu verändern, dazu verknüpft mit einer impliziten ‚Schaltlogik‘. Die Menge dieser Veränderungen zeigt sich als ‚funktionaler Zusammenhang‘ phi_c:I —> O, der ‚Inputereignisse‘ [I] mit Outputereignissen [O] verknüpft. Ganz analog verhält es sich mit den Zellen in einem biologischen System. Auch hier gibt es eine implizite ‚Logik‘ nach der sich die Zellen verändern und Zustände ‚kommunizieren‘ können, so dass Zellgruppen, Zellverbände eine Vielzahl von funktionellen Zusammenhängen realisieren. Einige dieser funktionellen Zusammenhänge bezeichnen wir als ‚Lernen‘. Dies bedeutet, es gibt nicht nur die über Generationen laufenden Strukturveränderung, die eine Form von ’strukturellem Lernen‘ im Bereich der ganzen Population darstellen, sondern es gibt dann dieses ‚funktionelle Lernen‘, das sich im Bereich des individuellen Verhaltens innerhalb einer individuellen Lebenszeit ereignet.

WISSEN GARANTIERT KEINE WAHRHEIT

16. Dieses individuelle Lernen führt zum Aufbau ‚individueller Wissensstrukturen‘ mit unterschiedlichen Ausprägungsformen: Erlernen von motorischen Abläufen, von Objektkonzepten, Beziehungen, Sprachen, Verhaltensregeln usw. Wichtig ist dabei, dass diese individuellen Wissensstrukturen im individuellen Bewusstsein und individuellem Unterbewusstsein (ein Teil des Nichtbewusstseins, der im individuellen Körper verortet ist) verankert sind. Hier wirken sie als kontinuierliche ‚Kommentare‘ aus dem Unterbewusstsein in das Bewusstsein bei der ‚Interpretation der Bewusstseinsinhalte‘. Solange diese Kommentare ‚richtig‘ / ‚passend‘ / ‚wahr‘ … sind, solange helfen sie, sich in der unterstellten Außenwelt zurecht zu finden. Sind diese Wissensstrukturen ‚falsch‘ / ‚verzerrt‘ / ‚unangemessen‘ … bewirken sie in ihrer Dauerkommentierung, dass es zu Fehleinschätzungen und zu unangemessenen Entscheidungen kommt. Sofern man als einziger eine ‚unpassende Einschätzung‘ vertritt, fällt dies schnell auf und man hat eine Chance, diese zu ‚korrigieren‘; wird aber eine ‚Fehleinschätzung‘ von einer Mehrheit geteilt, ist es schwer bis unmöglich, diese Fehleinschätzung als einzelner zu bemerken. In einer solchen Situation, wo die Mehrheit eine Fehleinschätzung vertritt, kann ein einzelner, der die ‚richtige‘ Meinung hat (z.B. Galilei und Co. mit der neuen Ansicht zur Bewegung der Sonne; die moderne Wissenschaft und die alten Religionen; das damalige südafrikanische Apartheidsregime und der damalige ANC, der Sowjetkommunismus und die östlichen Friedensbewegungen vor dem Auseinanderfallen der Sowjetunion; die US-Geheimdienste und Snowden; …) als der ‚Fremdartige‘ erscheinen, der die bisherige ‚Ordnung‘ stört und den man deshalb ‚gesellschaftlich neutralisieren‘ muss).

17. Viele Menschen kennen das Phänomen von ‚Phobien‘ (vor Schlangen, vor Spinnen, vor …). Obwohl klar ist, dass eine einzelne Spinne keinerlei Gefahr darstellt, kann diese einen Menschen mit einer Phobie (= Kommentar des individuellen Unterbewusstseins an das Bewusstsein) zu einem Verhalten bewegen, was die meisten anderen als ‚unangemessen‘ bezeichnen würden.

18. Im Falle von psychischen Störungen (die heute statistisch stark zunehmen) kann dies eine Vielzahl von Phänomenen sein, die aus dem Raum des individuellen Unterbewusstseins in das individuelle Bewusstsein ‚hinein reden‘. Für den betroffenen Menschen ist dieses ‚Hineinreden‘ meistens nicht direkt ‚verstehbar‘; es findet einfach statt und kann vielfach kognitiv verwirren und emotional belasten. Diese Art von ‚Fehlkommentierung‘ aus dem individuellen Unterbewusstsein ist – so scheint es – für die meisten Menschen vielfach nur ‚behebbar‘ (therapierbar) mit Hilfe eines Experten und einer geeigneten Umgebung. Während Menschen mit körperlichen Einschränkungen in der Regel trotzdem ein einigermaßen ’normales‘ Leben führen können, können Menschen mit ‚psychischen Störungen‘ dies oft nicht mehr. Das geringe Verständnis einer Gesellschaft für Menschen mit psychischen Störungen ist auffällig.

SPRACHE ALS MEDIUM VON GEDANKEN

19. Seit der Entwicklung der ‚Sprache‘ kann ein individuelles Bewusstsein unter Voraussetzung einer einigermaßen ähnlichen Wahrnehmungs- und Gedächtnisstruktur in den einzelnen Mitgliedern einer Population Bewusstseinsinhalte aufgrund von Gedächtnisstrukturen mit Ausdrücken einer Sprache korrelieren. Sofern diese Korrelierung in hinreichender Abstimmung mit den anderen Sprachteilnehmern geschieht, lassen sich mittels sprachlicher Ausdrücke diese ‚Inhalte‘ (‚Bedeutungen‘) ‚indirekt‘ kommunizieren; nicht der Inhalt selbst wird kommuniziert, sondern der sprachliche Ausdruck als eine Art ‚Kode‘, der im Empfänger über die ‚gelernte Bedeutungszuordnung‘ entsprechende ‚Inhalte des Gedächtnisses‘ ‚aktiviert‘. Dass diese Kodierung überhaupt funktioniert liegt daran, dass die Bedeutungsstrukturen nicht ‚1-zu-1‘ kodiert werden, sondern immer nur über ‚verallgemeinerte Strukturen‘ (Kategorien), die eine gewisse ‚Invarianz‘ gegenüber den Variationen der konstituierenden Bedeutungselemente aufweisen. Dennoch sind die Grenzen sprachlicher Kommunikation immer dann erreicht, wenn Sprecher-Hörer über Bewusstseinstatsachen kommunizieren, die nur einen geringen oder gar keinen Bezug zur empirischen Welt aufweisen. Die Benutzung von Analogien,Metaphern, Bildern, Beispielen usw. lässt noch ‚irgendwie erahnen‘, was jemand ‚meinen könnte‘, aber eine letzte Klärung muss oft ausbleiben. Nichtsdestotrotz kann eine solche ‚andeutende‘ Kommunikation sehr hilfreich, schön, anregend usw. sein; sie ersetzt aber keine Wissenschaft.

20. Während das individuelle Wissen mit dem Tod des Individuums bislang ‚verschwindet‘, können ‚Texte‘ (und vergleichbare Darstellungen) ein individuelles Wissen bis zu einem gewissen Grade überdauern. Moderne Kommunikations- und Speichermittel haben die Sammlung und Verwertung von Wissen in bislang ungeahnte Dimensionen voran getrieben. Während allerdings die Menge dieses sprachbasierten Wissens exponentiell wächst, bleiben die individuellen Wissensverarbeitungskapazitäten annähernd konstant. Damit wächst die Kluft zwischen dem individuell verfügbaren Wissen und dem in Datennetzen verfügbaren Wissen ebenfalls exponentiell an. Es stellt sich die Frage, welchen Beitrag ein Wissen leisten kann, das sich faktisch nicht mehr verarbeiten lässt. Wenn man sieht, dass heute selbst Menschen mit einem abgeschlossenen Studium Ansichten vertreten, die im Lichte des verfügbaren Wissens gravierend falsch sein können, ja, dass das Wesen von Wissenschaft, wissenschaftlichem Wissen selbst bei Studierten (und nicht zuletzt auch bei sogenannten ‚Kulturschaffenden‘) starke Defizite aufweist, dann kann man ins Grübeln kommen, ob unsere heutige Kultur im Umgang mit wissenschaftlichem Wissen die richtigen Formen gefunden hat.

21. Hier wäre jetzt auch noch der ganze Komplex der Bedürfnisse/ Emotionen/ Gefühle/ Stimmungen anzusprechen. Doch das soll weiteren Einträgen vorbehalten bleiben.

Einen Überblick über alle bisherigen Blogeinträge nach Titeln findet sich HIER.

SUCHE NACH DEM URSPRUNG UND DER BEDEUTUNG DES LEBENS (Paul Davies). Teil 2 (Information als Grundeigenschaft alles Materiellen?)

Paul Davies, The FIFTH MIRACLE: The Search for the Origin and Meaning of Life, New York:1999, Simon & Schuster

 Fortsetzung von Suche… (Teil 1)

Start: 27.Aug.2012

Letzte Fortsetzung: 1.Sept.2012

  1. Das dritte Kapitel ist überschrieben ‚Out of the Slime‘. (SS.69-96) Es startet mit Überlegungen zur Linie der Vorfahren (Stammbaum), die alle auf ‚gemeinsame Vorfahren‘ zurückführen. Für uns Menschen zu den ersten Exemplaren des homo sapiens in Afrika vor 100.000 Jahren, zu den einige Millionen Jahre zurückliegenden gemeinsamen Vorläufern von Affen und Menschen; ca. 500 Mio Jahre früher waren die Vorläufer Fische, zwei Milliarden Jahre zurück waren es Mikroben. Und diese Rückführung betrifft alle bekannten Lebensformen, die, je weiter zurück, sich immer mehr in gemeinsamen Vorläufern vereinigen, bis hin zu den Vorläufern allen irdischen Lebens, Mikroorganismen, Bakterien, die die ersten waren.(vgl. S.69f)

  2. [Anmerkung: Die Formulierung von einem ‚einzelnen hominiden Vorfahren‘ oder gar von der ‚afrikanischen Eva‘ kann den Eindruck erwecken, als ob der erste gemeinsame Vorfahre ein einzelnes Individuum war. Das scheint mir aber irreführend. Bedenkt man, dass wir ‚Übergangsphasen‘ haben von Atomen zu Molekülen, von Molekülen zu Netzwerken von Molekülen, von Molekülnetzwerken zu Zellen, usw. dann waren diese Übergänge nur erfolgreich, weil viele Milliarden und Abermilliarden von Elementen ‚gleichzeitig‘ beteiligt waren; anders wäre ein ‚Überleben‘ unter widrigsten Umständen überhaupt nicht möglich gewesen. Und es spricht alles dafür, dass dieses ‚Prinzip der Homogenität‘ sich auch bei den ‚komplexeren‘ Entwicklungsstufen fortgesetzt hat. Ein einzelnes Exemplar einer Art, das durch irgendwelche besonderen Eigenschaften ‚aus der Reihe‘ gefallen wäre, hätte gar nicht existieren können. Es braucht immer eine Vielzahl von hinreichend ‚ähnlichen‘ Exemplaren, dass ein Zusammenwirken und Fortbestehen realisiert werden kann. Die ‚Vorgänger‘ sind also eher keine spezifischen Individuen (wenngleich in direkter Abstammung schon), sondern immer Individuen als Mitglieder einer bestimmten ‚Art‘.]

  3. Es ist überliefert, dass Darwin im Sommer 1837, nach der Rückkehr von seiner Forschungsreise mit der HMS Beagle in seinem Notizbuch erstmalig einen irregulär verzweigenden Baum gemalt hat, um die vermuteten genealogischen Zusammenhänge der verschiedenen Arten darzustellen. Der Baum kodierte die Annahme, dass letztlich alle bekannten Lebensformen auf einen gemeinsamen Ursprung zurückgehen. Ferner wird deutlich, dass viele Arten (heutige Schätzungen: 99%) irgendwann ‚ausgestorben‘ sind. Im Falle einzelliger Lebewesen gab es aber – wie wir heute zunehmend erkennen können – auch das Phänomene der Symbiose: ein Mikroorganismus ‚frißt‘ andere und ‚integriert‘ deren Leistung ‚in sich‘ (Beispiel die Mitochondrien als Teil der heute bekannten Zellen). Dies bedeutet, dass ‚Aussterben‘ auch als ‚Synthese‘ auftreten kann.(vgl. SS.70-75)

  4. Die Argumente für den Zusammenhang auf Zellebene zwischen allen bekannten und ausgestorbenen Arten mit gemeinsamen Vorläufern beruhen auf den empirischen Fakten, z.B. dass die metabolischen Verläufe der einzelnen Zellen gleich sind, dass die Art und Weise der genetischen Kodierung und Weitergabe gleich ist, dass der genetische Kode im Detail der gleiche ist, oder ein kurioses Detail wie die molekulare Ausrichtung – bekannt als Chiralität –; obgleich jedes Molekül aufgrund der geltenden Gesetze sowohl rechts- oder linkshändig sein kann, ist die DNA bei allen Zellen ‚rechtshändig‘ und ihr Spiegelbild linkshändig. (vgl.SS.71-73)

  5. Da das DNA-Molekül bei allen bekannten Lebensformen in gleicher Weise unter Benutzung von Bausteinen aus Aminosäure kodiert ist, kann man diese Moleküle mit modernen Sequenzierungstechniken Element für Element vergleichen. Unter der generellen Annahme, dass sich bei Weitergabe der Erbinformationen durch zufällige Mutationen von Generation zur Generation Änderungen ergeben können, kann man anhand der Anzahl der verschiedenen Elemente sowohl einen ‚genetischen Unterschied‘ wie auch einen ‚genealogischen Abstand‘ konstruieren. Der genetische Unterschied ist direkt ’sichtbar‘, die genaue Bestimmung des genealogischen Abstands im ‚Stammbaum‘ hängt zusätzlich ab von der ‚Veränderungsgeschwindigkeit‘. Im Jahr 1999 war die Faktenlage so, dass man annimmt, dass es gemeinsame Vorläufer für alles Leben gegeben hat, die sich vor ca. 3 Milliarden Jahren in die Art ‚Bakterien‘ und ‚Nicht-Bakterien‘ verzweigt haben. Die Nicht-Bakterien haben sich dann weiter verzweigt in ‚Eukaryoten‘ und ‚Archäen‘. (vgl. SS.75-79)

  6. Davies berichtet von bio-geologischen Funden nach denen in de Nähe von Isua (Grönland) Felsen von vor mindestens -3.85 Milliarden Jahren gefunden wurden mit Spuren von Bakterien. Ebenso gibt es Funde von Stromatolythen (Nähe Shark Bay, Australien), mit Anzeichen für Cyanobakterien aus der Zeit von ca. -3.5 Milliarden Jahren und aus der gleichen Zeit Mikrofossilien in den Warrawoona Bergen (Australien). Nach den Ergebnissen aus 1999 hatten die Cyanobakterien schon -3.5 Mrd. Jahre Mechanismen für Photosynthese, einem höchst komplexen Prozess.(vgl. SS.79-81)

  7. Die immer weitere Zurückverlagerung von Mikroorganismen in die Vergangenheit löste aber nicht das Problem der Entstehung dieser komplexen Strukturen. Entgegen der früher verbreiteten Anschauung, dass ‚Leben‘ nicht aus ‚toter Materie‘ entstehen kann, hatte schon Darwin 1871 in einem Brief die Überlegung geäußert, dass in einer geeigneten chemischen Lösung über einen hinreichend langen Zeitraum jene Moleküle und Molekülvernetzungen entstehen könnten, die dann zu den bekannten Lebensformen führen. Aber erst in den 20iger Jahren des 20.Jahrhunderts waren es Alexander Oparin (Rußland) und J.B.S.Haldane (England) die diese Überlegungen ernst nahmen. Statt einem kleinen See,  wie bei Darwin, nahm Haldane an, dass es die Ozeane waren, die den Raum für den Übergangsprozess von ‚Materie‘ zu ‚Leben‘ boten. Beiden Forschern fehlten aber in ihrer Zeit die entscheidende Werkzeuge und Erkenntnisse der Biochemie und Molekularbiologie, um ihre Hypothesen testen zu können. Es war Harold Urey (USA) vorbehalten, 1953 mit ersten Laborexperimenten beginnen zu können, um die Hypothesen zu testen. (vgl. SS.81-86)

  8. Mit Hilfe des Studenten Miller arrangierte Urey ein Experiment, bei dem im Glaskolben eine ‚Mini-Erde‘ bestehend aus etwas Wasser mit den Gasen Methan, Hydrogen und Ammonium angesetzt wurde. Laut Annahme sollte dies der Situation um ca. -4 Millarden Jahren entsprechen. Miller erzeugte dann in dem Glaskolben elektrische Funken, um den Effekt von Sonnenlicht zu simulieren. Nach einer Woche fand er dann verschiedene Amino-Säuren, die als Bausteine in allen biologischen Strukturen vorkommen, speziell auch in Proteinen.(vgl. S.86f)

  9. Die Begeisterung war groß. Nachfolgende Überlegungen machten dann aber klar, dass damit noch nicht viel erreicht war. Die Erkenntnisse der Geologen deuteten in den nachfolgenden Jahren eher dahin, dass die Erdatmosphäre, die die sich mehrfach geändert hatte, kaum Ammonium und Methan enthielt, sondern eher reaktions-neutrales Kohlendioxyd und Schwefel, Gase die keine Aminosäuren produzieren. (vgl.S.87)

  10. Darüber hinaus ist mit dem Auftreten von Aminosäuren als Bausteine für mögliche größere Moleküle noch nichts darüber gesagt, ob und wie diese größere Moleküle entstehen können. Genauso wenig wie ein Haufen Ziegelsteine einfach so ein geordnetes Haus bilden wird, genauso wenig formen einzelne Aminosäuren ‚einfach so‘ ein komplexes Molekül (ein Peptid oder Polypeptid). Dazu muss der zweite Hauptsatz überwunden werden, nach dem ’spontane‘ Prozesse nur in Richtung Energieabbau ablaufen. Will man dagegen komplexe Moleküle bauen, muss man gegen den zweiten Hauptsatz die Energie erhöhen; dies muss gezielt geschehen. In einem angenommenen Ozean ist dies extrem unwahrscheinlich, da hier Verbindungen eher aufgelöst statt synthetisiert werden.(vgl.87-90)

  11. Der Chemiker Sidney Fox erweiterte das Urey-Experiment durch Zufuhr von Wärme. In der Tat bildeten sich dann Ketten von Aminosäurebausteinen die er ‚Proteinoide‘ nannte. Diese waren eine Mischung aus links- und rechts-händigen Molekülen, während die biologisch relevanten Moleküle alle links-händig sind. Mehr noch, die biologisch relevanten Aminosäureketten sind hochspezialisiert. Aus der ungeheuren Zahl möglicher Kombinationen die ‚richtigen‘ per Zufall zu treffen grenzt mathematisch ans Unmögliche.(vgl.S.90f) Dazu kommt, dass eine Zelle viele verschiedene komplexe Moleküle benötigt (neben Proteinen auch Lipide, Nukleinsäuren, Ribosomen usw.). Nicht nur ist jedes dieser Moleküle hochkomplex, sondern sie entfalten ihre spezifische Wirkung als ‚lebendiges Ensemble‘ erst im Zusammenspiel. Jedes Molekül ‚für sich‘ weiß aber nichts von einem Zusammenhang. Wo kommen die Informationen für den Zusammenhang her? (vgl.S.91f) Rein mathematisch ist die Wahrscheinlichkeit, dass sich die ‚richtigen‘ Proteine bilden in der Größenordnung von 1:10^40000, oder, um ein eindrucksvolles Bild des Physikers Fred Hoyle zu benutzen: genauso unwahrscheinlich, wie wenn ein Wirbelsturm aus einem Schrottplatz eine voll funktionsfähige Boeing 747 erzeugen würde. (vgl.S.95)

  12. Die Versuchung, das Phänomen des Lebens angesichts dieser extremen Unwahrscheinlichkeiten als etwas ‚Besonderes‘, als einen extrem glücklichen Zufall, zu charakterisieren, ist groß. Davies plädiert für eine Erklärung als eines ’natürlichen physikalischen Prozesses‘. (S.95f)

  13. Im Kapitel 4 ‚The Message in the Machine‘ (SS.97-122) versucht Davies mögliche naturwissenschaftliche Erklärungsansätze, beginnend bei den Molekülen, vorzustellen. Die Zelle selbst ist so ungeheuerlich komplex, dass noch ein Niels Bohr die Meinung vertrat, dass Leben als ein unerklärbares Faktum hinzunehmen sei (vgl.Anmk.1,S.99). Für die Rekonstruktion erinnert Davies nochmals daran, dass diejenigen Eigenschaften, die ‚lebende‘ Systeme von ’nicht-lebenden‘ Systemen auszeichnen, Makroeigenschaften sind, die sich nicht allein durch Verweis auf die einzelnen Bestandteile erklären lassen, sondern nur und ausschließlich durch das Zusammenspiel der einzelnen Komponenten. Zentrale Eigenschaft ist hier die Reproduktion. (vgl.SS.97-99)

  14. Reproduktion ist im Kern gebunden an das Kopieren von drei-dimensional charakterisierten DNA-Molekülen. Vereinfacht besteht solch ein DNA-Molekül aus zwei komplementären Strängen, die über eine vierelementiges Alphabet von Nukleinsäurebasen miteinander so verbunden sind, dass es zu jeder Nukleinsäurebase genau ein passendes Gegenstück gibt. Fehlt ein Gegenstück, ist es bei Kenntnis des Kodes einfach, das andere Stück zu ergänzen. Ketten von den vierelementigen Basen können ‚Wörter‘ bilden, die ‚genetische Informationen‘ kodieren. Ein ‚Gen‘ wäre dann solch ein ‚Basen-Wort‘. Und das ganze Molekül wäre dann die Summe aller Gene als ‚Genom‘. Das ‚Auftrennen‘ von Doppelsträngen zum Zwecke des Kopierens wie auch das wieder ‚Zusammenfügen‘ besorgen spezialisierte andere Moleküle (Enzyme). Insgesamt kann es beim Auftrennen, Kopieren und wieder Zusammenfügen zu ‚Fehlern‘ (Mutationen) kommen. (vgl.SS.100-104)

  15. Da DNA-Moleküle als solche nicht handlungsfähig sind benötigen sie eine Umgebung, die dafür Sorge trägt, dass die genetischen Informationen gesichert und weitergegeben werden. Im einfachen Fall ist dies eine Zelle. Um eine Zelle aufzubauen benötigt man Proteine als Baumaterial und als Enzyme. Proteine werden mithilfe der genetischen Informationen in der DNA erzeugt. Dazu wird eine Kopie der DNA-Informationen in ein Molekül genannt Boten-RNA (messenger RNA, mRNA) kopiert, dieses wandert zu einem komplexen Molekülnetzwerk genannt ‚Ribosom‘. Ribosomen ‚lesen‘ ein mRNA-Molekül als ‚Bauanleitung‘ und generieren anhand dieser Informationen Proteine, die aus einem Alphabet von 20 (bisweilen 21) Aminosäuren zusammengesetzt werden. Die Aminosäuren, die mithilfe des Ribosoms Stück für Stück aneinandergereiht werden, werden von spezialisierten Transportmolekülen (transfer RNA, tRNA) ‚gebracht‘, die so gebaut sind, dass immer nur dasjenige tRNA-Molekül andocken kann, das zur jeweiligen mRNA-Information ‚passt‘. Sobald die mRNA-Information ‚abgearbeitet‘ ist, liegt eines von vielen zehntausend möglichen Proteinen vor. (vgl.SS. 104-107) Bemerkenswert ist die ‚Dualität‘ der DNA-Moleküle (wie auch der mRNA) sowohl als ‚Material/ Hardware‘ wie auch als ‚Information/ Software‘. (vgl.S.108)

  16. Diese ‚digitale‘ Perspektive vertieft Davies durch weitere Betrachtung und führt den Leser zu einem Punkt, bei dem man den Eindruck gewinnt, dass die beobachtbaren und messbaren Materialien letztlich austauschbar sind bezogen auf die ‚impliziten Strukturen‘, die damit realisiert werden. Am Beispiel eines Modellflugzeugs, das mittels Radiowellen ferngesteuert wird, baut er eine Analogie dahingehend auf, dass die Hardware (das Material) des Flugzeugs wie auch der Radiowellen selbst als solche nicht erklären, was das Flugzeug tut. Die Hardware ermöglicht zwar grundsätzlich bestimmte Flugeigenschaften, aber ob und wie diese Eigenschaften genutzt werden, das wird durch ‚Informationen‘ bestimmt, die per Radiowellen von einem Sender/ Empfänger kommuniziert werden. Im Fall einer Zelle bilden komplexe Molekülnetzwerke die Hardware mit bestimmten verfügbaren chemischen Eigenschaften, aber ihr Gesamtverhalten wird gesteuert durch Informationen, die primär im DNA-Molekül kodiert vorliegt und die als ‚dekodierte‘ Information alles steuert.(vgl. SS.113-115)

  17. [Anmerkung: Wie schon zuvor festgestellt, repräsentieren Atome und Moleküle als solche keine ‚Information‘ ‚von sich aus‘. Sie bilden mögliche ‚Ereignisse‘ E ‚für andere‘ Strukturen S, sofern diese andere Strukturen S auf irgendeine Weise von E ‚beeinflusst‘ werden können. Rein physikalisch (und chemisch) gibt es unterschiedliche Einwirkungsmöglichkeiten (z.B. elektrische Ladungen, Gravitation,…). Im Falle der ‚Information‘ sind es aber nicht nur solche primären physikalisch-chemischen Eigenschaften, die benutzt werden, sondern das ‚empfangende‘ System S befindet sich in einem Zustand, S_inf, der es dem System ermöglicht, bestimmte physikalisch-chemische Ereignisse E als ‚Elemente eines Kodes‘ zu ‚interpretieren. Ein Kode ist minimal eine Abbildungsvorschrift, die Elemente einer Menge X (die primäre Ereignismenge) in eine Bildmenge Y (irgendwelche anderen Ereignisse, die Bedeutung) ‚übersetzt‘ (kodiert), also CODE: X —> Y. Das Materiell-Stoffliche wird damit zum ‚Träger von Informationen‘, zu einem ‚Zeichen‘, das von einem Empfänger S ‚verstanden‘ wird. Im Falle der zuvor geschilderten Replikation wurden ausgehend von einem DNA-Molekül (= X, Ereignis, Zeichen) mittels mRNA, tRNA und Ribosom (= Kode, CODE) bestimmte Proteine (=Y, Bedeutung) erzeugt. Dies bedeutet, dass die erzeugten Proteine die ‚Bedeutung des DNA-Moleküls‘ sind unter Voraussetzung eines ‚existierenden Kodes‘ realisiert im Zusammenspiel eines Netzwerkes von mRNA, tRNAs und Ribosom. Das Paradoxe daran ist, das die einzelnen Bestandteile des Kodes, die Moleküle mRNA, tRNA und Ribosom (letzteres selber hochkomplex) ‚für sich genommen‘ keinen Kode darstellen, nur in dem spezifischen Zusammenspiel! Wenn also die einzelnen materiellen Bestandteile, die Atome und Moleküle ‚für sich gesehen‘ keinen komplexen Kode darstellen, woher kommt dann die Information, die alle diese materiell hochkomplexen Bestandteile auf eine Weise ‚zusammenspielen‘ lässt, die weit über das hinausgeht, was die Bestandteile einzeln ‚verkörpern‘? ]

  18. "Zelle und Turingmaschine"
    zelle_tm

    [Anmerkung: Es gibt noch eine andere interssante Perspektive. Das mit Abstand wichtigste Konzept in der (theoretischen) Informatik ist das Konzept der Berechenbarkeit, wie es zunächst von Goedel 1931, dann von Turing in seinem berühmten Artikel von 1936-7 vorgelegt worden ist. In seinem Artikel definiert Turing das mathematische (!) Konzept einer Vorrichtung, die alle denkbaren berechenbaren Prozesse beschreiben soll. Später gaben andere dieser Vorrichtung den Namen ‚Turingmaschine‘ und bis heute haben alle Beweise immer nur dies eine gezeigt, dass es kein anderes formales Konzept der intuitiven ‚Berechenbarkeit‘ gibt, das ’stärker‘ ist als das der Turingmaschine. Die Turingmaschine ist damit einer der wichtigsten – wenn nicht überhaupt der wichtigste — philosophischen Begriff(e). Viele verbinden den Begriff der Turingmaschine oft mit den heute bekannten Computern oder sehen darin die Beschreibung eines konkreten, wenngleich sehr ‚umständlichen‘ Computers. Das ist aber vollständig an der Sache vorbei. Die Turingmaschine ist weder ein konkreter Computer noch überhaupt etwas Konkretes. Genau wie der mathematische Begriff der natürlichen Zahlen ein mathematisches Konzept ist, das aufgrund der ihm innewohnenden endlichen Unendlichkeit niemals eine reale Zahlenmenge beschreibt, sondern nur das mathematische Konzept einer endlich-unendlichen Menge von abstrakten Objekten, für die die Zahlen des Alltags ‚Beispiele‘ sind, genauso ist auch das Konzept der Turingmaschine ein rein abstraktes Gebilde, für das man konkrete Beispiele angeben kann, die aber das mathematische Konzept selbst nie erschöpfen (die Turingmaschine hat z.B. ein unendliches Schreib-Lese-Band, etwas, das niemals real existieren kann).
    ]

  19. [Anmerkung: Das Interessante ist nun, dass man z.B. die Funktion des Ribosoms strukturell mit dem Konzept einer Turingmaschine beschreiben kann (vgl. Bild). Das Ribosom ist jene Funktionseinheit von Molekülen, die einen Input bestehend aus mRNA und tRNAs überführen kann in einen Output bestehend aus einem Protein. Dies ist nur möglich, weil das Ribosom die mRNA als Kette von Informationseinheiten ‚interpretiert‘ (dekodiert), die dazu führen, dass bestimmte tRNA-Einheiten zu einem Protein zusammengebaut werden. Mathematisch kann man diese funktionelle Verhalten eines Ribosoms daher als ein ‚Programm‘ beschreiben, das gleichbedeutend ist mit einer ‚Funktion‘ bzw. Abbildungsvorschrift der Art ‚RIBOSOM: mRNA x tRNA —> PROTEIN. Das Ribosom stellt somit eine chemische Variante einer Turingmaschine dar (statt digitalen Chips oder Neuronen). Bleibt die Frage, wie es zur ‚Ausbildung‘ eines Ribosoms kommen kann, das ’synchron‘ zu entsprechenden mRNA-Molekülen die richtige Abbildungsvorschrift besitzt.
    ]
  20. Eine andere Blickweise auf das Phänomen der Information ist jene des Mathematikers Chaitin, der darauf aufmerksam gemacht hat, dass man das ‚Programm‘ eines Computers (sein Algorithmus, seine Abbildungsfunktion, seine Dekodierungsfunktion…) auch als eine Zeichenkette auffassen kann, die nur aus Einsen und Nullen besteht (also ‚1101001101010..‘). Je mehr Wiederholungen solch eine Zeichenkette enthalten würde, um so mehr Redundanz würde sie enthalten. Je weniger Wiederholung, um so weniger Redundanz, um so höher die ‚Informationsdichte‘. In einer Zeichenkette ohne jegliche Redundanz wäre jedes einzelne Zeichen wichtig. Solche Zeichenketten sind formal nicht mehr von reinen zufallsbedingten Ketten unterscheidbar. Dennoch haben biologisch nicht alle zufälligen Ketten eine ’nützliche‘ Bedeutung. DNA-Moleküle ( bzw. deren Komplement die jeweiligen mRNA-Moleküle) kann man wegen ihrer Funktion als ‚Befehlssequenzen‘ als solche binär kodierten Programme auffassen. DNA-Moleküle können also durch Zufall erzeugt worden sein, aber nicht alle zufälligen Erzeugungen sind ’nützlich‘, nur ein verschwindend geringer Teil.  Dass die ‚Natur‘ es geschafft hat, aus der unendlichen Menge der nicht-nützlichen Moleküle per Zufall die herauszufischen, die ’nützlich‘ sind, geschah einmal durch das Zusammenspiel von Zufall in Gestalt von ‚Mutation‘ sowie Auswahl der ‚Nützlichen‘ durch Selektion. Es stellt sich die Frage, ob diese Randbedingungen ausreichen, um das hohe Mass an Unwahrscheinlichkeit zu überwinden. (vgl. SS. 119-122)
  21. [Anmerkung: Im Falle ‚lernender‘ Systeme S_learn haben wir den Fall, dass diese Systeme einen ‚Kode‘ ‚lernen‘ können, weil sie in der Lage sind, Ereignisse in bestimmter Weise zu ‚bearbeiten‘ und zu ’speichern‘, d.h. sie haben Speichersysteme, Gedächtnisse (Memory), die dies ermöglichen. Jedes Kind kann ‚lernen‘, welche Ereignisse welche Wirkung haben und z.B. welche Worte was bedeuten. Ein Gedächtnis ist eine Art ‚Metasystem‘, in dem sich ‚wahrnehmbare‘ Ereignisse E in einer abgeleiteten Form E^+ so speichern (= spiegeln) lassen, dass mit dieser abgeleiteten Form E^+ ‚gearbeitet‘ werden kann. Dies setzt voraus, dass es mindestens zwei verschiedene ‚Ebenen‘ (layer, level) im Gedächtnis gibt: die ‚primären Ereignisse‘ E^+ sowie die möglichen ‚Beziehungen‘ RE, innerhalb deren diese vorkommen. Ohne dieses ‚Beziehungswissen‘ gibt es nur isolierte Ereignisse. Im Falle multizellulärer Organismen wird diese Speicheraufgabe durch ein Netzwerk von neuronalen Zellen (Gehirn, Brain) realisiert. Der einzelnen Zelle kann man nicht ansehen, welche Funktion sie hat; nur im Zusammenwirken von vielen Zellen ergeben sich bestimmte Funktionen, wie z.B. die ‚Bearbeitung‘ sensorischer Signale oder das ‚Speichern‘ oder die Einordnung in eine ‚Beziehung‘. Sieht man mal von der spannenden Frage ab, wie es zur Ausbildung eines so komplexen Netzwerkes von Neuronen kommen konnte, ohne dass ein einzelnes Neuron als solches ‚irgend etwas weiß‘, dann stellt sich die Frage, auf welche Weise Netzwerke von Molekülen ‚lernen‘ können.  Eine minimale Form von Lernen wäre das ‚Bewahren‘ eines Zustandes E^+, der durch ein anderes Ereignis E ausgelöst wurde; zusätzlich müsste es ein ‚Bewahren‘ von Zuständen geben, die Relationen RE zwischen primären Zuständen E^+ ‚bewahren‘. Solange wir es mit frei beweglichen Molekülen zu tun haben, ist kaum zu sehen, wie es zu solchen ‚Bewahrungs-‚ sprich ‚Speicherereignissen‘ kommen kann. Sollte es in irgend einer Weise Raumgebiete geben, die über eine ‚hinreichend lange Zeit‘ ‚konstant bleiben, dann wäre es zumindest im Prinzip möglich, dass solche ‚Bewahrungsereignisse‘ stattfinden. Andererseits muss man aber auch sehen, dass diese ‚Bewahrungsereignisse‘ aus Sicht eines möglichen Kodes nur möglich sind, wenn die realisierenden Materialien – hier die Moleküle bzw. Vorstufen zu diesen – physikalisch-chemische Eigenschaften aufweisen, die grundsätzlich solche Prozesse nicht nur ermöglichen, sondern tendenziell auch ‚begünstigen‘, und dies unter Berücksichtigung, dass diese Prozesse ‚entgegen der Entropie‘ wirken müssen. Dies bedeutet, dass — will man keine ‚magischen Kräfte‘ annehmen —  diese Reaktionspotentiale schon in den physikalisch-chemischen Materialien ‚angelegt‘ sein müssen, damit sie überhaupt auftreten können. Weder Energie entsteht aus dem Nichts noch – wie wir hier annehmen – Information. Wenn wir also sagen müssen, dass sämtliche bekannte Materie nur eine andere Zustandsform von Energie ist, dann müssen wir vielleicht auch annehmen, dass alle bekannten ‚Kodes‘ im Universum nichts anderes sind als eine andere Form derjenigen Information, die von vornherein in der Energie ‚enthalten‘ ist. Genauso wie Atome und die subatomaren Teilchen nicht ’neutral‘ sind sondern von vornherein nur mit charakteristischen (messbaren) Eigenschaften auftreten, genauso müsste man dann annehmen, dass die komplexen Kodes, die wir in der Welt und dann vor allem am Beispiel biologischer Systeme bestaunen können, ihre Wurzeln in der grundsätzlichen ‚Informiertheit‘ aller Materie hat. Atome formieren zu Molekülen, weil die physikalischen Eigenschaften sie dazu ‚bewegen‘. Molkülnetzwerke entfalten ein spezifisches ‚Zusammenspiel‘, weil ihre physikalischen Eigenschaften das ‚Wahrnehmen‘, ‚Speichern‘ und ‚Dekodieren‘ von Ereignissen E in einem anderen System S grundsätzlich ermöglichen und begünstigen. Mit dieser Annahme verschwindet ‚dunkle Magie‘ und die Phänomene werden ‚transparent‘, ‚messbar‘, ‚manipulierbar‘, ‚reproduzierbar‘. Und noch mehr: das bisherige physikalische Universum erscheint in einem völlig neuen Licht. Die bekannte Materie verkörpert neben den bislang bekannten physikalisch-chemischen Eigenschaften auch ‚Information‘ von ungeheuerlichen Ausmaßen. Und diese Information ‚bricht sich selbst Bahn‘, sie ‚zeigt‘ sich in Gestalt des Biologischen. Das ‚Wesen‘ des Biologischen sind dann nicht die ‚Zellen als Material‘, das Blut, die Muskeln, die Energieversorgung usw., sondern die Fähigkeit, immer komplexer Informationen aus dem Universum ‚heraus zu ziehen, aufzubereiten, verfügbar zu machen, und damit das ‚innere Gesicht‘ des Universums sichtbar zu machen. Somit wird ‚Wissen‘ und ‚Wissenschaft‘ zur zentralen Eigenschaft des Universums samt den dazugehörigen Kommunikationsmechanismen.]

  22. Fortsetzung Teil 3

Einen Überblick über alle bisherigen Themen findet sich HIER

Zitierte  Literatur:

Chaitin, G.J. Information, Randomness & Incompleteness, 2nd ed.,  World Scientific, 1990

Turing, A. M. On Computable Numbers with an Application to the Entscheidungsproblem. In: Proc. London Math. Soc., Ser.2, vol.42(1936), pp.230-265; received May 25, 1936; Appendix added August 28; read November 12, 1936; corr. Ibid. vol.43(1937), pp.544-546. Turing’s paper appeared in Part 2 of vol.42 which was issued in December 1936 (Reprint in M.DAVIS 1965, pp.116-151; corr. ibid. pp.151-154).

 Interessante Links:

Ein Video in Youtube, das eine Rede von Pauls Davies dokumentiert, die thematisch zur Buchbesprechung passt und ihn als Person etwas erkennbar macht.

Teil 1:
http://www.youtube.com/watch?v=9tB1jppI3fo

Teil 2:
http://www.youtube.com/watch?v=DXXFNnmgcVs

Teil 3:
http://www.youtube.com/watch?v=Ok9APrXfIOU

Teil 4:
http://www.youtube.com/watch?v=vXqqa1_0i7E

Part 5:
http://www.youtube.com/watch?v=QVrRL3u0dF4
Es gibt noch einige andere Videos mit Paul Davies bei Youtube.