Archiv der Kategorie: Menschenbild

Kollektive Mensch-Maschine Intelligenz im Kontext nachhaltiger Entwicklung. Brauchen wir ein neues Menschenbild? Vorlesung für AG ENIGMA im Rahmen von U3L der Goethe Universität

Entstehungszeit: 2.Nov 2023 – 6.Jan 2023

Autor: Gerd Doeben-Henisch

Email: gerd@doeben-henisch.de

KONTEXT

Der folgende Text ist die nachträgliche Verschriftlichung einer Vorlesung, die der Autor für die Internet-Arbeitsgruppe ENIGMA [3] der U3L [1,2] der Goethe-Universität Frankfurt am 10.November 2023 gehalten hat. Er stellt eine Weiterentwicklung eines Konferenzbeitrags dar, der bei de Gruyter veröffentlicht wurde: Kollektive Mensch-Maschine-Intelligenz und Text-Generierung. Eine transdisziplinäre Analyse (2023). Man kann auch alle anderen Beiträge (open access) herunterladen.

Der Ankündigungstext lautet:

Kollektive Mensch-Maschine Intelligenz im Kontext
nachhaltiger Entwicklung – Brauchen wir ein neues
Menschenbild?


Prof. Dr. Gerd Doeben-Henisch, Frankfurt University
of Applied Sciences


Die Zeichen der Zeit stehen auf ‚Digitalisierung‘. Schon ist es selbstver-
ständlich, alles, was ‚digital‘ ist, auch mit den Worten ‚smart‘ bzw.‚
intelligent‘ zu verknüpfen. ‚Künstliche Intelligenz‘, ja, natürlich, wer fragt
da noch nach … und wir Menschen, war da nicht was? Gab es nicht
solche Worte wie ‚Geist‘, ‚Rationalität‘, ‚Intelligenz‘ im Umfeld des
Menschen, ‚Wille‘ und ‚Gefühle‘? Ja, es gab eine Zeit, da sahen die
Menschen sich selbst als ‚Krone der Schöpfung‘ … Und jetzt? Eine
Sprachlosigkeit greift um sich; der ‚Schöpfer‘ des Digitalen scheint vor
seinem Werk zu erstarren …

[1] Home u3l: https://www.uni-frankfurt.de/122411224/U3L_Home?

[2] Vorlesungsverzeichnis u3l-WS2023: https://www.uni-frankfurt.de/141923421/programm-ws-2023-24.pdf

[3] Flyer der Vorlesungsreihe WS23/24: https://www.uni-frankfurt.de/144405162.pdf

Zusammenfassung

Die Vorlesung greift zunächst den Kontext der Digitalisierung auf und macht die grundlegenden Strukturen deutlich. Das Eindringen von digitalen Technologien und deren Nutzung im Alltag ist schon jetzt sehr tiefgreifend. Gesellschaftlich spielt die sprachliche Kommunikation für alle Menschen und alle Abläufe eine zentrale Rolle. Literarischen und wissenschaftlichen Kommunikationsformaten kommt hierbei eine besondere Rolle zu. Am Beispiel der neuen Algorithmen für Text-Generierung (wie z.B. chatGPT) wird mit Bezug auf wissenschaftliche Kommunikationformate gezeigt, wie deutlich begrenzt die algorithmische Text-Generierung noch ist. Für alle drängenden Zukunftsaufgaben kann sie den Menschen aufgrund prinzipieller Grenzen nicht ersetzen. Die weitere Ausgestaltung algorithmischer Technologien muss an diesen gesellschaftlichen Herausforderungen gemessen und entsprechend verbessert werden.

INHALTSVERZEICHNIS

  1. EINLEITUNG
  2. DIGITALISIERUNG
    2.1 DAS INTERNET
    2.2 DIE GESELLSCHAFT
  3. DIGITALISIERUNG – SPRACHTECHNOLOGIEN
  4. GESELLSCHAFT – SPRACHE – LITERATUR
  5. SPRACHE UND BEDEUTUNG
  6. ZÄHMUNG DER BEDEUTUNG – WISSENSCHAFT
  7. EMPIRISCHE THEORIE
  8. WAHRHEIT, PROGNOSE & TEXT-GENERATOREN
  9. Epilog

1. EINLEITUNG

Der Titel dieser Vorlesung repräsentiert letztlich das Forschungsparadigma, innerhalb dessen sich der Autor seit ca. 5-6 Jahren bewegt hat. Das Motiv war — und ist –, die üblicherweise isolierten Themen ‚Kollektives menschliches Verhalten‘, ‚Künstliche Intelligenz‘ sowie ‚Nachhaltige Entwicklung‘ zu einer kohärenten Formel zu vereinigen. Dass dies nicht ohne Folgen für das ‚Menschenbild‘ bleiben würde, so wie wir Menschen uns selbst sehen, klang unausgesprochen immer schon zwischen den Zeilen mit.

Die Integration der beiden Themen ‚kollektives menschliches Verhalten‘ sowie ’nachhaltige Entwicklung‘ konnte der Autor schon im Jahr 2022 vollziehen. Dazu musste der Begriff ‚Nachhaltige Entwicklung‘ re-analysiert werden. Was sowohl im Umfeld des Forschungsprojektes Nachhaltige Intelligenz – intelligente Nachhaltigkeit [1] stattfand wie auch in einer sich über 7 Semester erstreckende multidisziplinären Lehrveranstaltung an der Frankfurt University of Applied Sciences mit dem Titel Citizen Science für Nachhaltige Entwicklung.[2]

Die Integration des Themas Künstliche Intelligenz mit den beiden anderen Themen erwies sich als schwieriger. Dies nicht, weil das Thema künstliche Intelligenz so schwer war, sondern weil sich eine brauchbare Charakterisierung von künstlicher Intelligenz Technologie mit Blick auf die Bedürfnisse einer Gesellschaft als schwer erwies: bezogen auf welche Anforderungen einer Gesellschaft sollte man den Beitrag einer künstlichen Intelligenz gewichten?

Hier kamen zwei Ereignisse zu Hilfe: Im November 2022 stellte die US-Firma openAI eine neue Generation von Text-Generatoren vor [3], was zu einer bis dahin nie gekannten Publikations-Explosion führte: Gefühlt jeder fühlte sich angesprochen, nutzte das Werkzeug, und es gab vielstimmige Meinungsäußerung. In folge davon konnte der Autor sich bei einer Konferenz an der TU-Darmstadt beteiligen mit dem Titel Diskurse disruptiver digitaler Technologien am Beispiel von KI-Textgeneratoren (KI:Text) [4]. Hier wurde aus Sicht von 18 Perspektiven versucht, die mögliche Einsetzbarkeit von Text-Generatoren am Beispiel konkreter Text-Arten zu untersuchen. Diese Konferenz stimulierte den Plan, das Setting Text – chatGPT zu übernehmen und es durch Spezialisierung der Text-Variablen auf Literatur und insbesondere wissenschaftliche Theorien zu konkretisieren. Erste Überlegungen in diese Richtungen finden sich hier. [5]

Im Nachklang zu diesen Überlegungen bot es sich an, diese Gedanken im Vortrag für die Arbeitsgruppe ENIGMA weiter zu präzisieren. Dies ist geschehen und resultierte in diesem Vortrag.

[1] https://zevedi.de/themen/nachhaltige-intelligenz-intelligente-nachhaltigkeit/

[2] Materialien zur 6. und 7.Auflage: https://www.oksimo.org/lehre-2/

[3] Kurze Beschreibung: https://en.wikipedia.org/wiki/ChatGPT

[4] https://zevedi.de/themen/ki-text/

[5] Gerd Doeben-Henisch, 24.Aug 2023, Homo Sapiens: empirische und nachhaltig-empirische Theorien, Emotionen, und Maschinen. Eine Skizze, https://www.cognitiveagent.org/2023/08/24/homo-sapiens-empirische-und-nachhaltig-empirische-theorien-emotionen-und-maschinen-eine-skizze/

2. DIGITALISIERUNG

BILD 1: Überblick zu ‚Digitalisierung einer Gesellschaft‘

Da die ‚Digitalisierung‘ heute gefühlt schon fast alle Bereiche unserer menschlichen Gesellschaft erreicht hat, ist es nicht leicht in dieser Vielfalt einen Standpunkt zu lokalisieren, von dem aus sich sowohl über das Ganze wie auch über einzelne konkrete Themen zu sprechen. [1]

Es bot sich daher an, mit einem vereinfachten Überblick über das Ganze zu starten, so dass eine für alle gleiche Ausgangslage hergestellt werden konnte.

Im Bild 1 kann man den links gelblich-grünen Bereich sehen, der für die Gesellschaft selbst steht, und einen grauen Bereich rechts, der für jene Infrastrukturen steht, die eine Digitalisierung technisch ermöglichen. Beide Bereich sind stark schematisiert.

Die digitale Infrastruktur ist aufgeteilt in ‚Endgeräte‘ und in das eigentliche ‚Internet‘. Letzteres wird unterschieden in den ‚Adressraum‘ und jene Geräte, die über den Adressraum erreicht werden können.

2.1 DAS INTERNET

Kurz wurde auf einige wichtige Eigenschaften des Internets hingewiesen:

  1. Alle beteiligten Geräte setzen sich aus ‚Hardware‘ und ‚Software‘ zusammen. Die Hardware wiederum besteht aus einer Konfiguration von ‚Chips‘, die selbst sehr komplex sind und auch aus Hardware und Software bestehen. Bis zu ca. 80 Firmen können bei der Produktion eines einzelnen Chips beteiligt sein (unter Berücksichtigung der diversen Lieferketten). Die Möglichkeit, dass eine beteiligte Firma ’nicht-intendierte‘ Funktionen in einen Chip einbaut, ohne dass die anderen dies merken, sind prinzipiell gegeben. Die für Chips benötigten speziellen Materialien sind partiell ’selten‘ und nur über einige wenige Staaten beziehbar.
  2. Die ‚Software‘ auf einem Rechner (klein bis groß) zerfällt grob in zwei Typen: (i) jene Software, die die grundlegende Kommunikation mit einer Hardware ermöglicht — das ‚Betriebssystem‘ –, und jene Software, die bestimmte Anwendungen ermöglicht, die mit dem Betriebssystem kommunizieren muss — die Anwendungssoftware, heute auch einfach App genannt –. Betriebssysteme haben heute eine Größe, die vielen Millionen Zeilen Code umfassen. Eine solche Software angemessen auf Dauer zu managen, stellt extreme Anforderungen. Nicht weniger im Fall von Anwendungssoftware.
  3. Sobald Software aktiviert wird, d.h. ein Rechner ändert seine inneren Zustände unter dem Einfluss der Software, wird Energie verbraucht. Der Umfang dieses Energieverbrauchs ist heute noch vielfach extrem hoch.[2]
  4. Ein ‚realer Rechner‘ braucht irgendwo auf diesem Planeten einen ‚realen Ort‘ und gehört eine ‚realen Besitzer‘. Dieser Eigentümer hat prinzipiell den vollen Zugriff auf den Rechner, auf seine Software, auf seine Inhalte. Durch die ‚Gesetze‘ eines Landes, durch ‚Vereinbarungen‘ zwischen Geschäftspartnern kann man den Umgang mit dem Rechner versuchen zu regeln, aber Garantien dafür, dass dann tatsächlich die Prozesse und die Daten ‚geschützt‘ sind, gibt es nicht. Eine von vielen Untersuchungen zur Nutzung von Benutzerdaten konnte am Beispiel von Facebook aufzeigen, dass die Einführung der europäischen Datenschutzverordnung 2021 nahezu keine Wirkung im Bereich der Nutzerdaten von Facebook zeigte. [3,4,5]

[1] Phänomen: Den Wald vor lauter Bäume nicht sehen.

[2] Maximilian Sachse, Das Internet steht unter Strom. KI kann helfen, Emissionen einzusparen — verbraucht aber selbst Unmengen an Energie.FAZ, 31.Okt 2023, S.B3

[3] José González Cabañas, Ángel Cuevas, Aritz Arrate, and Rubén Cuevas. 2020. Does Facebook use sensitive data for advertising purposes? Commun. ACM 64, 1 (January 2021), 62–69. https://doi.org/10.1145/3426361

[4] Eine ausführlichere Analyse der Informationsbeschaffung von Nutzern ohne deren Wissen: Ingo Dachwitz, 08.06.2023, Wie deutsche Firmen am Geschäft mit unseren Daten verdienen. Wenn es um Firmen geht, die pausenlos Daten für Werbezwecke sammeln, denken viele an die USA. Unsere Recherche zeigt, wie tief deutsche Unternehmen inzwischen in das Netzwerk der Datenhändler verwoben sind und dass sie auch heikle Datenkategorien anboten. Beteiligt sind Konzerne wie die Deutsche Telekom und ProSieben Sat1, URL: https://netzpolitik.org/2023/adsquare_theadex_emetriq_werbetracking-wie-deutsche-firmen-am-geschaeft-mit-unseren-daten-verdienen/

[5] Ein aktuelles Beispiel mit Microsoft: Dirk Knop, Ronald Eikenberg, Stefan Wischner, 09.11.2023, Microsoft krallt sich Zugangsdaten: Achtung vor dem neuen Outlook. Das neue kostenlose Outlook ersetzt Mail in Windows, später auch das klassische Outlook. Es schickt geheime Zugangsdaten an Microsoft. c’t Magazin, Heise

2.2 DIE GESELLSCHAFT

Die Charakterisierung der Gesellschaft stellt natürlich auch eine starke Vereinfachung dar. Als wichtige Strukturmerkmale seien hier aber festgehalten:

  1. Es gibt eine Grundverfassung jeder Gesellschaft jenseits von Anarchie die zwischen den beiden Polen ‚Demokratisch‘ und ‚Autokratisch‘ liegt.
  2. Es gibt minimal ‚politische Entscheidungsstrukturen‘, die verantwortlich sind für geltende ‚Gesetze‘ und ‚Normen‘.
  3. Die Schlagader jeder lebendigen Gesellschaft ist aber die ‚Öffentlichkeit durch Kommunikation‘: wenn, dann verbindet Kommunikation die vielen Bürger zu handlungsfähigen Einheiten. Autokratien tendieren dazu, Kommunikation zu ‚instrumentalisieren‘, um die Bürger zu manipulieren. In Demokratien sollte dies nicht der Fall sein. Tatsächlich kann aber die Freiheit einer Demokratie von partikulären Interessen missbraucht werden.[1]
  4. Jeder einzelne Bürger ist als ‚menschlicher Akteur‘ eingewoben in unterschiedliche Kommunikationsbeziehungen, die vielfach durch Einsatz von ‚Medien‘ ermöglicht werden.

[1] Sehr viele interessante Ideen zur Rolle de Öffentlichkeit finden sich in dem Buch Strukturwandel der Öffentlichkeit von Jürgen Habermas, veröffentlicht 1962. Siehe dazu ausführlich den Wikipedia-Eintrag: https://de.wikipedia.org/wiki/Strukturwandel_der_%C3%96ffentlichkeit

[2] Florian Grotz, Wolfgang Schroeder, Anker der Demokratie? Der öffentlich-rechtliche Rundfunk hat einen wesentlichen Beitrag zum Erfolg der deutschen Demokratie geleistet. Derzeit steht er im Kreuzfeuer der Kritik. Wie kann er auch künftig seine Ankerfunktion im demokratischen Mediensystem erfüllen? FAZ 13.Nov 2023, S.6, Siehe auch online (beschränkt): https://www.faz.net/aktuell/politik/die-gegenwart/ard-und-zdf-noch-im-dienst-der-demokratie-19309054.html Anmerkung: Die Autoren beschreiben kenntnisreich die historische Entwicklung des öffentlich-rechtlichen Rundfunks (ÖRR) in drei Phasen. Verschiedene Schwierigkeiten und Herausforderungen heute werden hervor gehoben. Der generelle Tenor in allem ist, dass von ’notwendigen Veränderungen‘ gesprochen wird. Diese werden über die Themen ‚Finanzierung, Programm und Kontrolle‘ ein wenig ausgeführt. Dies sind alles sehr pragmatische Aspekte. Wenn es dann im Schlusssatz heißt „Es geht darum, dass der ÖRR auch in Zukunft eine wichtige Rolle im Dienst der Demokratie spielen kann.“ dann kann man sich als Leser schon fragen, warum ist der ÖRR denn für die Demokratie so wichtig? Finanzen, Programme und Kontrolle sind mögliche pragmatische Teilaspekte, aber eine eigentliche Argumentation ist nicht zu erkennen. Mit Blick auf die Gegenwart, in welcher die ‚Öffentlichkeit‘ in eine Vielzahl von ‚Medienräumen‘ zerfällt, die von unterschiedlichen ‚Narrativen‘ beherrscht werden, die sich gegenseitig auszuschließen scheinen und die ein von einer echten Mehrheit getragenes politisches Handeln unmöglich erscheinen lassen, sind Finanzen, Kontrollen, formale Programmvielfalt nicht unbedingt wichtige konstruktive Kriterien. Der zusätzlich verheerende Einfluss neuer bedeutungsfreier Texte-generierende Technologien wird mit den genannten pragmatischen Kriterien nicht einmal ansatzweise erfasst.

3. DIGITALISIERUNG – SPRACHTECHNOLOGIEN

BILD 2 : Das Enstehen von Sprachtechnologien zur Unterstützung im Umgang mit Sprache

Dem ‚Weltereignis‘ Text-Generatoren im November 2022 gingen viele andere Sprachtechnologien voraus. So unterscheidet man grob:

  1. TTS, T2S , Text-to-Speech, Speechsynthesis: Erste Systeme, die geschriebenen Text in gesprochene Sprache umsetzen konnten. Ab 1968 [1]
  2. S2T, STT , Speech-to-Text: Spracherkennungssysteme, die gesprochene Sprache in geschriebenen Text verwandelt konnten. Ab 1952 [2]
  3. TRANSL , Maschineller Übersetzer: Programme, die von einer Ausgangssprache in eine Zielsprache übersetzen können. Ab 1975. [3]
  4. DIAL , Dialogsysteme: Programme, die mit Menschen Dialoge führen können, um bestimmte Aufgaben zu unterstützen. Ab 1960iger Jahre. [4]
  5. C2T , Command-to-Text: Programme, die anhand von Aufforderungen Texte mit bestimmten Eigenschaften generieren können. Prominent ab November 2022. [5]

Mittlerweile gibt es noch eine Vielzahl anderer Werkzeuge, die im Rahmen der Computerlinguistik zur Arbeit mit Texten angeboten werden.[6]

Diese Beispiele zeigen, dass die Digitalisierung unserer Welt sich auch immer mehr unserer sprachlichen Kommunikation bemächtigt. Vielfach werden diese Werkzeuge als Hilfe, als Unterstützung wahrgenommen, um die menschliche Sprachproduktion besser verstehen und im Vollzug besser unterstützen zu können.

Im Fall der neuen befehlsorientierten Text-Generatoren, die aufgrund interner Datenbanken komplexe Texte generieren können, die für einen Leser ‚wie normale Texte von Menschen‘ daher kommen, wird der Raum der sprachlichen Kommunikation erstmalig von ’nicht-menschlichen‘ Akteuren durchdrungen, die eine stillschweigende Voraussetzung außer Kraft setzen, die bislang immer galt: es gibt plötzlich Autoren, die keine Menschen mehr sind. Dies führt zunehmend zu ernsthaften Irritationen im sprachlichen Diskursraum. Menschliche Autoren geraten in eine ernsthafte Krise: sind wir noch wichtig? Werden wir noch gebraucht? Ist ‚Menschsein‘ mit einem Schlag ‚entwertet‘?

[1] Erste Einführung hier: https://en.wikipedia.org/wiki/Speech_synthesis

[2] Erste Einführung hier: https://en.wikipedia.org/wiki/Speech_recognition

[3] Erste Einführung hier: https://en.wikipedia.org/wiki/Machine_translation

[4] Erste Einführung hier: https://en.wikipedia.org/wiki/Dialogue_system

[5] Erste Einführung hier: https://en.wikipedia.org/wiki/ChatGPT

[6] Für eine erste Einführung siehe hier: https://de.wikipedia.org/wiki/Computerlinguistik

4. GESELLSCHAFT – SPRACHE – LITERATUR

BILD 3 : Sprachtechnologien und Literatur

Das Auftreten der neuen Werkzeuge zur Text-Generierung stiftet eine anhaltende Unruhe im Lager der Schriftsteller, der Autoren und der Literaturwissenschaftler.

Ein beeindruckendes Beispiel ist die Analyse von Hannes Bajohr (2022).[1] Er spielt die Varianten durch, was passiert, wenn … Was passiert, wenn sich die Produktion von literarischen Texten mit Text-Generatoren durchsetzt? Wenn es zum Standard wird, dass immer mehr Texte, ganze Romane mit Text-Generatoren erzeugt werden? Und dies sind keine bloßen Träume, sondern solche Texte werden schon produziert; Bajohr selbst hat einen Roman unter Zuhilfenahme eines Text-Generators verfasst.[2]

Eine andere junge Autorin und Kulturwissenschaftlerin, die sich intensiv mit dem neuen Wechselverhältnis von Literatur, digitaler Welt und Text-Generatoren auseinander setzt ist Jenifer Becker.[3] Ihr Debüt-Roman ist aber noch ein Roman ohne Einsatz von künstlichen Texterzeugern. In ihrem Roman spricht sie noch ’selbst‘ als ‚menschliche Autorin‘ und wir damit potentiell zu einer Gesprächspartnerin für ihre Leser: der Andere als potentielles Ich, wobei das ‚eigentliche Ich‘ sich Spiegel des Textes in spannungsvoller Differenz erleben kann.

Angesichts einer digitalisierten Welt, die mehr und mehr zu einer ‚Ereigniswelt‘ wird, in der das ‚Verweilen‘, das ‚Verstehen‘ sich immer mehr abschwächt, verstummt, verliert auch das Individuum seine eigene Kraft und beginnt sich ‚hohl‘ anzufühlen, wo es doch gar nicht hohl ist, nicht hohl sein muss.

Hier setzt die Rede zur Nobelpreisverleihung 2018 für Literatur der polnischen Laureatin Olga Tokarczuk ein. Sie beschreibt als das Wunderbare von Literatur gerade diese einzigartige Fähigkeit von uns Menschen, dass wir mittels Sprache von unserem Innern berichten können, von unserer individuellen Art des Erlebens von Welt, von Zusammenhängen, die wir in dem Vielerlei des Alltags entdecken können, von Prozessen, Gefühlen, von Sinn und Unsinn. [4]

In dieser Eigenschaft ist Literatur durch nichts ersetzbar, bildet Literatur den ‚inneren Herzschlag‘ des Menschlichen auf diesem Planeten.

Aber, und dies sollte uns aufhorchen lassen, dieser wunderbarer Schatz von literarischen Texten wird bedroht durch den Virus der vollständigen Nivellierung, ja geradezu eine vollständigen Auslöschung. Text-Generatoren haben zwar keinerlei Wahrheit, keinerlei realen Bindungen an eine reale Welt, an reale Menschen, keinerlei wirkliche Bedeutung, aber in der Produktion von Texten (und gesprochener Rede) ohne Wahrheit sind sie vollständig frei. Durch ihre hohe Geschwindigkeit der Produktion können sie alle ‚menschliche Literatur‘ in der Masse des Bedeutungslosen aufsaugen, unsichtbar machen, nihilieren.

[1] Hannes Bajohr, 2022, Artifizielle und postartifizielle Texte. Über Literatur und Künstliche Intelligenz. Walter-Höllerer-Vorlesung 2022, 8.Dez. 2022, Technische Universität Berlin , URL: https://hannesbajohr.de/wp-content/uploads/2022/12/Hoellerer-Vorlesung-2022.pdf, Den Hinweis auf diesen Artikel erhielt ich von Jennifer Becker.

[2] Siehe dazu Bajohr selbst: https://hannesbajohr.de/

[3] Jenifer Becker, Zeiten der Langeweile, Hanser, Berlin, 2023. Dazu Besprechung in der Frankfurter Rundschau, 30.8.23, Lisa Berins, Die große Offline-Lüge, https://www.fr.de/kultur/literatur/zeiten-der-langeweile-von-jenifer-beckerdie-grosse-offline-luege-92490183.html

[4] Olga Tokarczuk, 2018, The Tender Narrator, in: Nobel Lecture by Olga Tokarczuk, 2018, Svenska Akademien, URL: https://www.nobelprize.org/uploads/2019/12/tokarczuk-lecture-english-2.pdf

5. SPRACHE UND BEDEUTUNG

BILD 4 : Sprache und Bedeutung

Am Beispiel der ‚menschlichen Literatur‘ klang eben schon an, welch fundamentale Rolle die ‚Bedeutung von Sprache‘ spielt und dass wir Menschen über solch eine Fähigkeit verfügen. Im Schaubild 4 wird veranschaulicht, was es bedeutet, dass Menschen im Alltag scheinbar mühelos Aussagen erzeugen können, die als ‚aktuell zutreffend’/ ‚wahr‘ untereinander akzeptiert werden oder als ‚aktuell nicht zutreffend’/ ‚falsch‘ oder als ‚aktuell unbestimmt‘. Wenn ein konkreter empirischer Sachverhalt gegeben ist (der Hund von Ani, das rote Auto vom Nachbarn Müller, die Butter auf dem Frühstückstisch, …), dann ist eine Einigung zwischen Menschen mit der gleichen Sprache immer möglich.

Was man sich dabei selten bewusst macht ist, welch starke Voraussetzung ‚in einem Menschen‘ gegeben sein müssen, damit er über diese Fähigkeit so leicht verfügen kann.

Die ‚Box‘ im rechten Teil des Diagramms repräsentiert auf einem starken Abstraktionsniveau die wichtigsten Komponenten, über die ein Mensch in seinen inneren Verarbeitungsstrukturen verfügen können muss, damit er mit anderen so sprechen kann. Die Grundannahmen sind folgende:

  1. Eine Außenwahrnehmung der umgebenden (empirischen) Welt.
  2. Alles was wahrgenommen werden kann kann auch in ‚Elemente des Wissens‘ verwandelt werden.
  3. Eine Sonderrolle nimmt die Repräsentation von Elementen der Sprachstruktur ein.
  4. Zwischen den Elementen des Wissens und den Ausdruckselementen kann ein Mensch eine dynamische Abbildungsbeziehung (Bedeutungsbeziehung) aufbauen (Lernen), so dass Wissenselemente auf Ausdruckselemente verweisen und Ausdruckselemente auf Wissenselemente.
  5. Aus Sicht der Ausdruckselemente bildet jenes Wissen, das über eine Abbildung verbunden wird, die ‚Bedeutung‘ der Ausdruckselemente.
  6. Innerhalb des Wissens gibt es zahlreiche unterschiedliche Formen von Wissen: aktuelles Wissen, erinnerbares Wissen, Veränderungswissen, Ziele, und prognostisches Wissen.
  7. Und vieles mehr

Neben Aussagen, die ‚aktuell wahr‘ sein können, verfügt der Mensch aber auch über die Möglichkeit, vielfache Wiederholungen als ‚wahr‘ anzusehen, wenn sie sich immer wider als ‚aktuell wahr‘ erweisen. Dies verweist auf mögliche weitere Formen von möglichen abgeleiteten Wahrheiten, die man vielleicht unter dem Oberbegriff ’strukturelle Wahrheit‘ versammeln könnte.

6. ZÄHMUNG DER BEDEUTUNG – WISSENSCHAFT

BILD 5 : Wissenschaft als Ergänzung von Literatur

Die Ur-Funktion von Literatur, das Gespräch zwischen dem Inneren der Menschen über ihre Welt- und Selbsterfahrung sprechen zu können, indem nicht nur die ‚Oberfläche der Dinge‘, sondern auch die ‚Tiefenstruktur der Phänomene‘ ins Wort kommen können, ist unersetzbar, aber sie leidet im Alltag an der strukturellen Schwäche des möglichen ‚Nicht-Verstehens‘ oder ‚Falsch-Verstehens‘. Während sich über die Dinge des alltäglichen Lebens leicht Einigkeit erzielen lässt, was jeweils gemeint ist, ist das ‚Innere‘ des Menschen eine echte ‚Terra Incognita‘, ein ‚unbekanntes Land‘. In dem Maße, wie wir Menschen im Innern ‚ähnlich‘ erleben und empfinden, kann das Verstehen von ‚Bedeutungen‘ noch ansatzweise gelingen, da wir Menschen aufgrund unserer Körperstrukturen in vielen Dingen ähnliche Erleben, Fühlen, Erinnern und Denken. Aber je spezifischer etwas in unserem Inneren ist, je ‚abstrakter‘ eine Bedeutung wird, umso schwieriger wird die Erfassung einer Rede durch andere. Dies führt dann unabwendbar zum Falsch- oder gar Nicht-Verstehen.

In dem Maße wie wir Menschen aber auf eine ‚tragfähige Erklärung von Welt‘ angewiesen sind, um ‚gemeinsam‘ das ‚Richtige‘ zu tun, in dem Maße wird unsere normale sprachliche Kommunikation, wird Literatur überfordert. Sie will vielleicht, aber sie kann aus sich heraus eine solche Eindeutigkeit nicht ohne weiteres herstellen. Ihre Stärke kann und wird in diesen Bereich zu einer Schwäche.

Vor dem Hintergrund des ‚Überlebens auf dem Planeten‘, des ‚Überlebens im Alltag‘ bildet die Notwendigkeit von ‚wahren Texten‘, die zudem ‚belastbare Prognosen‘ erlauben, eine Kernforderung, die möglicherweise nur eine Teilmenge jener Bedeutungsräume erlaubt, über die Literatur verfügen kann. Aber diese ‚wahren und belastbaren Teilräume‘ bilden jenen ‚harten Boden‘, auf denen sich Menschen quer über alle Kontinente und im Bereich aller Sprachen gründen können.

Diese Art von Texten, deren Existenz von gemeinsamen nachprüfbaren ‚wahren Sachverhalten und Prognosen‘ abhängt, entstand in der Geschichte der Menschheit unter dem Namen ‚empirische Wissenschaft‘ sehr spät.[1] Nach anfänglichen Mühen entwickelte sie sich dann rasant weiter und ist heute zum Standard für nachweisbar wahre und prognosefähige Texte geworden.

Die heutige weltweite Verbreitung von ‚Wissenschaft‘ ist ihr selbst aber mittlerweile zum Problem geworden. Der klare Kern dieser Textform erscheint in der öffentlichen Verwendung der Charakterisierung von ‚Wissenschaft‘ seltsam vage. Der Begriff einer ‚empirischen Theorie‘ ist geradezu verschwunden. Die großen Enzyklopädien dieser Welt kennen diesen Begriff nicht mehr.

Dazu kommt die ‚Altlast‘ der modernen Wissenschaft, dass sie sich schnell zu einer Veranstaltung von ‚Spezialisten‘ entwickelt hat, die ihre ‚eigene Fachsprache‘ sprechen, die zudem vielfach teilweise oder ganz mit ‚mathematischer Sprache‘ arbeiten. Diese führt zunehmend zu einer Ausgrenzung aller anderen Bürger; das ‚Verstehen von Wissenschaft‘ wird für die meisten Menschen zu einer ‚Glaubenssache‘, wo doch Wissenschaft gerade angetreten war, um die ‚Autorität des bloßen Glaubens‘ zu überwinden.

Desweiteren haben wir in den letzten Jahrzehnten mehr und mehr gelernt, was es heißt, den Aspekt ‚Nachhaltiger Entwicklung‘ zu berücksichtigen. Eine Grundbotschaft besteht darin, dass alle Menschen einbezogen werden müssen, um die Entwicklung nicht von einzelnen, kleinen — meist mächtigen — Gruppen dominieren zu lassen. Und von de Entwicklung des Lebens auf diesem Planeten [3] wissen wir, dass das Leben — von dem wir als Menschen ein kleiner Teil sind — in den zurück liegenden ca. 3.5 Milliarden Jahren nur überleben konnten, weil es nicht nur das ‚Alte, Bekannte‘ einfach wiederholt hat, sondern auch immer ‚aus sich echtes Neues‘ heraus gesetzt hat, Neues, von dem man zum Zeitpunkt des Hervorbringens nicht wusste, ob es für die Zukunft brauchbar sein wird.[3,4]

Dies regt dazu an, den Begriff der ‚empirischen Theorie‘ zu aktualisieren und ihn sogar zum Begriff einer ’nachhaltigen empirischen Theorie‘ zu erweitern.

[1] Wenn man als Orientierungspunkt für den Beginn der neuzeitlichen wahrheitsfähigen und prognosefähigen Texte Galileo Galilei (1564 – 1641) und Johannes Kepler ()1571 – 1630) nimmt , dann beginnt der Auftritt dieser Textform im 17./18. Jahrhundert. Siehe hier: https://de.wikipedia.org/wiki/Galileo_Galilei und hier: https://de.wikipedia.org/wiki/Johannes_Kepler

[2] UN. Secretary-General; World Commission on Environment and Development, 1987, Report of the World Commission on Environment and Development : note / by the Secretary General., https://digitallibrary.un.org/record/139811 (accessed: July 20, 2022) (In einem besser lesbaren Format: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf) Anmerkung: Gro Harlem Brundtland (ehemalige Ministerpräsidentin von Norwegen) war die Koordinatorin von diesem Report. 1983 erhielt sie den Auftrag vom Generalsekretär der UN einen solchen Report zu erstellen, 1986 wurde er übergeben und 1987 veröffentlicht. Dieser Text enthält die grundlegenden Ideen für alle weiteren UN-Texte.

Zitat aus dem Vorwort: The fact that we all became wiser, learnt to look across cultural and historical barriers, was essential. There were moments of deep concern and potential crisis, moments of gratitude and achievement, moments of success in building a common analysis and perspective. The result is clearly more global, more realistic, more forward looking than any one of us alone could have created. We joined the Commission with different views and perspectives, different values and beliefs, and very different experiences and insights. After these three years of working together, travelling, listening, and discussing, we present a unanimous report.“ und „Unless we are able to translate our words into a language that can reach the minds and hearts of people young and old, we shall not be able to undertake the extensive social changes needed to correct the course of development.

[3] Gerd Doeben-Henisch, 2016, Sind Visionen nutzlos?, URL: https://www.cognitiveagent.org/2016/10/22/sind-visionen-nutzlos/

[4] Zum Begriff der Evolution siehe hier: https://de.wikipedia.org/wiki/Evolution und hier: https://en.wikipedia.org/wiki/Evolution

7. EMPIRISCHE UND NACHHALTIG EMPIRISCHE THEORIE

BILD 6 : Aktualisierter Begriff von ‚Empirischer Theorie (ET)‘ und ‚Nachhaltiger Empirischer Theorie (NET)‘

Zum ‚aktualisierten Begriff‘ einer empirischen und einer nachhaltig empirischen Theorie gehören die folgenden Elemente:

  1. Die Gruppe der ‚Theorie-Autoren‘ besteht prinzipiell aus allen Menschen, die in ihrer Alltagssprache kommunizieren. Dies ermöglicht von Anfang an maximale Diversität.
  2. Der engere Begriff der ‚Empirischen Theorie‘ umfasst die Elemente ‚IST-Zustand‘, ‚Veränderungs-Wissen‘ sowie einen ‚Folgerungsbegriff‘ in Form eines Wissens, wie man Veränderungswissen auf einen gegebenen Zustand anwendet.
  3. Das ‚Ergebnis einer Folgerung‘ ist ein ’neuer Folge-Zustand‘.
  4. Lässt sich eine Folgerung mehrfach vollziehen dann ensteht eine ‚Folge von Folgezuständen‘, die man heute auch als ‚Simulation‘ bezeichnen kann.

Der IST-Zustand umfasst eine Menge von Ausdrücken einer gewählten Alltagssprache, die so beschaffen sind, dass alle beteiligten Theorie-Autoren sich darüber einigen können, dass diese Ausdrücke unter den angenommenen Bedingungen ‚zutreffen‘, d.h. ‚wahr‘ sind.

Das Veränderungs-Wissen umfasst eine Menge von Ausdrücken, die Veränderungsprozesse beschreiben, die sich ebenfalls unter angegebenen Bedingungen von jedem überprüfen lassen.

Der Folgerungsbegriff ist ein Text, der eine Handlungsbeschreibung umfasst, die beschreibt, wie man eine Veränderungsbeschreibung auf eine gegebene IST-Beschreibung so anwendet, dass daraus ein neuer Text entsteht, der die Veränderung im Text enthält.

Eine empirische Theorie ermöglicht die Erzeugung von Texten, die mögliche Zustände in einer möglichen Zukunft beschreiben. Dies kann mehr als eine Option umfassen.

Im Alltag der Menschen reicht ein bloßes Wissen um ‚Optionen‘ aber nicht aus. Im Alltag müssen wir uns beständig Entscheiden, was wir tun wollen. Für diese Entscheidungen gibt es keine zusätzliche Theorie: für einen menschlichen Entscheidungsprozess ist es bis heute mehr oder weniger ungeklärt, wie er zustande kommt. Es gibt allerdings viele ‚Teil-Theorien‘ und noch mehr ‚Vermutungen‘.

Damit diese ’nicht-rationale Komponente‘ unseres alltäglichen Lebens nicht ‚unsichtbar‘ bleibt, wird hier der Begriff einer nachhaltigen empirischen Theorie vorgeschlagen, in dem zusätzlich zur empirischen Theorie eine Liste von Zielen angenommen wird, die von allen Beteiligten aufgestellt wird. Ob diese Ziele ‚gute‘ Ziele sind, kann man erst wissen, wenn sie sich ‚im weiteren Verlauf‘ ‚bewähren‘ oder eben nicht. Explizite Ziele ermöglichen daher einen ‚gerichteten Lernprozess‘. Explitit formulierte Ziele ermöglichen darüber hinaus eine kontinuierliche Kontrolle, wie sich der aktuelle Handlungsprozess mit Blick auf ein Ziel verhält.

Für die Umsetzung einer nachhaltigen Entwicklung sind nachhaltige empirische Theorien eine unverzichtbare Voraussetzung.

8. WAHRHEIT, PROGNOSE & TEXT-GENERATOREN

BILD 7 : Die potentielle Rolle von Text-Generatoren der Machart 2023 innerhalb eines wissenschaftlichen Diskurses

Für die Bewertung, welche Rolle Textgeneratoren aus dem Jahr 2023 innerhalb eines wissenschaftlichen Diskurses spielen können, kann man ein Gedankenexperiment (und dann natürlich auch real) durchführen, welche der Anforderungen eines wissenschaftlichen Diskurses, die zuvor erläutert worden sind, von einem Text-Generator erfüllt werden können. Das Bild Nr.7 ist eigentlich selbst-erklärend.

Das zentrale Argument besteht darin, dass Text-Generatoren des Jahrgangs 2023 über keinerlei Wissen verfügen, wie es der Mensch besitzt, nahezu keine Wahrnehmung (außer Texteingaben oder Spracheingaben) haben, und dementsprechend auch über keine Bedeutungsfunktion verfügen. Die Unfähigkeit zu ‚wahren Aussagen‘ oder auch der Fähigkeit, entscheiden zu können, ob etwas ‚wahr‘ ist oder nicht, fehlt ebenfalls vollständig.[1]

[1] Ron Brachman, Hector Levesque, Dieser KI können wir nicht trauen, Es gibt ein grundlegendes Problem in der Entwicklung der gegenwärtig angesagten KI-Systeme. Hier kommt ein Vorschlag, wie es besser geht. FAZ, Mo 13.Nov 2023, S.19 . Online (beschränkt) auch hier: https://www.faz.net/aktuell/wirtschaft/unternehmen/chatgpt-co-dieser-ki-koennen-wir-nicht-trauen-19308979.html, Anmerkung 1: Die beiden Autoren nehmen den Boom um chatGPT zum Anlass, vor der gesamten Künstlichen Intelligenz (KI) zu warnen. Sie fokussieren ihre Kritik auf einen Punkt: „Der aktuellen KI-Technologie kann man nicht trauen. … Obwohl sie auf der Grundlage riesiger Datenmengen trainiert werden … machen moderne KI-Systeme bizarre, dumme Fehler. Unvorhersehbare, unmenschliche Fehler.“ Und weiter: „Wir wissen nicht, wann diese Systeme das Richtige tun und wann sie versagen.“ Sie führen im weiteren Verlauf noch aus, dass die aktuelle Architektur dieser Systeme es nicht zulässt, heraus zu finden, was genau die Gründe sind, warum sie entweder richtig oder falsch urteilen. Mit Blick auf den Alltag diagnostizieren sie bei uns Menschen einen ‚gesunden Menschenverstand‘, ein Prototyp von ‚Rationalität‘, und diesen sehen sie bei den KI-Systemen nicht. Sie beschreiben viele Eigenschaften, wie Menschen im Alltag lernen (z.B. mit ‚Überzeugungen‘, ‚Zielen‘ arbeiten, mit ‚Konzepten‘ und ‚Regeln‘, mit ‚echten Fakten‘, …), und stellen fest, dass KI-Systeme für uns erst wirklich nützlich werden, wenn sie über diese Fähigkeiten nachvollziehbar verfügen. Anmerkung 2: Die Autoren sprechen es nicht explizit aus, aber implizit ist klar, dass sie die neuen Text-Generatoren wie chatGPT & Co zu jener KI-Technologie rechnen, die sie in ihrem Beitrag charakterisieren und kritisieren. Wichtig ist, dass Sie in ihrer Kritik Kriterien benutzen, die alltäglich vage sind (‚gesunder Menschenverstand‘), allerdings angereichert mit vielen Alltagsbeispielen. Letztlich machen ihre kritischen Überlegungen aber deutlich, dass es angesichts der neuen KI-Technologien an geeigneten und erprobten Meta-Modellen (‚transdisziplinär‘, ‚wissenschaftsphilosophisch‘, …) mangelt. Man ’spürt‘ ein Ungenügen mit dieser neuen KI-Technologie, kann auch viele Alltagsbeispiele aufzählen, aber es fehlt an einem klaren theoretischen Konzept. Ein solches scheint aber momentan niemand zu haben ….

9. Epilog

Diese Kurzfassung meines Vortags vom 10.November 2023 ist gedacht als ‚Basis‘ für die Erstellung eines umfassenderen Textes, in dem alle diese Gedanken weiter ausgeführt werden, dazu auch mit viel mehr Literatur und vielen realen Beispielen.

DER AUTOR

Einen Überblick über alle Beiträge von Autor cagent nach Titeln findet sich HIER.

ZUR LAGE DER MENSCHHEIT … Ausgangspunkt im Alltag

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 2.August 2020
URL: cognitiveagent.org
Email: info@cognitiveagent.org
Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

PROLOG I: GENERVT IM ALLTAG

Sind Sie genervt von den vielen — aus ihrer Sicht — Halbwahrheiten, Unsinnigkeiten, Lügen, die ihren Alltag durchtränken? Von all den Leuten, die scheinbar nur sich selbst sehen, sich als erstes, und die versuchen, ‚ihr Ding‘ zu machen, egal zu welchem Preis? Haben Sie nicht auch schon diese Gefühle gehabt, diese Verzweiflung über das — in ihren Augen — Versagen anderer Menschen, über den Betrug einzelner an der Gemeinschaft, die vielen ‚Deals im Hintergrund‘, die manchmal bekannt werden und breites Entsetzen auslösen? Sind sie auch manchmal unangenehm berührt, enttäuscht, wenn Sie erfahren wie — in ihren Augen — unsinnig manche Behörden gehandelt haben, wie wenig Durchblick und Weitblick in Verwaltungen herrscht, wie berühmte Firmen plötzlich ins Schleudern geraten, weil ihre Manager ‚die Zeichen der Zeit‘ nicht rechtzeitig erkannt haben?

Wenn Sie diese Enttäuschungen nicht für sich behalten, sondern sie aussprechen, laut, bei anderen, mit anderen, werden sie feststellen, dass Sie nicht alleine sind. Da sind sehr viele Menschen um sie herum, die solche Enttäuschungen teilen. Fast scheint es so zu sein, als ob diese Enttäuschungen zum Alltag gehören, gleichsam wie eine untergründige Melodie, wie ein musikalisches Thema, das alles irgendwie zu durchziehen scheint. … es beschleicht Sie das Gefühl, dass es ja alles noch viel schlimmer ist, als sie gedacht haben. Ihre Ohnmacht, ihre Angst, ihr Ärger erscheinen übermächtig.

Und dann entdecken Sie vielleicht andere, einen Text, ein Video, einen Podcast, eine Veranstaltung, eine Bewegung, die das alles genau so ausspricht, wie sie es ständig empfinden. Da gibt es diese Menschen, die Antworten auf ihre Enttäuschungen haben, die die Ereignisse mit ihren Worten in Zusammenhänge einordnen, die ihnen plausibel erscheinen. Mit einem Mal bekommen ihre diffusen Ängste Namen von Menschen und Gruppen, die die Verursacher sind. Mit einem Mal bekommen Sie Worte angeboten, Slogans, Texte, die ihnen alles ‚erklären‘, ganz einfach, und sie beginnen, sich ‚zu Hause‘ zu fühlen. Da sind welche, die sie ‚verstehen‘. Menschen wie Sie selbst, persönlich, konkret, ganz nah, nicht in den Tiefen des Netzes, nicht verdeckt hinter den Fassaden der Macht….

Sie glauben, jetzt beginnt für Sie etwas Neues, neben den Enttäuschungen glimmt Hoffnung auf. Sie sind nicht alleine. Da sind andere mit ihnen….

PROLOG II: ALLTAG AUFBRECHEN

Wenn wir in unseren Alltag eingetaucht sind, dann können wir die Welt um uns herum, unsere Welt, unseren Alltag, genauso erleben, wie eingangs beschrieben, und es ist tatsächlich so, dass sehr viele Menschen heute es genau so erleben.

Wir kennen aber auch die Metapher, von dem Wald, den man vor lauter Bäumen nicht sieht. Wenn wir uns im Wald befinden, sehen wir nur viele Bäume, aber nicht den Wald als Ganzes. So ist es vielfach auch mit unserem Alltag: wir sind eingebettet in viele Abläufe, Verpflichtungen, Gewohnheiten, wen wir treffen, was wir arbeiten, was wir bei verschiedenen Gelegenheiten so sagen, mit wem wir was besprechen, welchen Informationsquellen wir folgen, was wir so essen und dementsprechend einkaufen …. ein Außenstehender könnte uns vielleicht sogar ziemlich gut beschreiben in allem, was wir tun. Google-Algorithmen, Handy-Algorithmen, und viele andere, tun dies rund um die Uhr, Woche um Woche. Deswegen können sie auch vieles sehr gut vorhersagen, oder Auftraggeber können wissen, was sie tun müssen, um uns zu bestimmten Verhaltensweisen anzuregen …

Wenn wir dies alles so tun, jeden Tag, Woche um Woche, heißt dies nicht unbedingt, dass wir selber genau wissen, was wir da tun; ja, wir tun es, aber warum genau? Welchen Zweck befolgen wir? Haben wir ein Ziel, was uns wie ein Licht vorausleuchtet über das Jetzt hinweg, für einen Punkt in der Zukunft, wo wir hinwollen? Oder treiben wir eher so dahin, fühlen wir uns gezwungen und dirigiert von den Umständen, die uns übermächtig erscheinen? Sind wir täglich von unserer Arbeit so ausgelaugt, dass uns schlicht die Kraft fehlt, am Abend, zwischendurch, an Alternativen zu denken, an irgendetwas anderes, an Freundschaften, an eine andere Form zu leben? Nehmen wir es also einfach so hin, was passiert, wie es passiert, ohne wirklich zu verstehen, warum dies geschieht, wer da im Hintergrund die Fäden spinnt?

MIT ANDEREN AUGEN

Manchmal gibt es sie dann doch, diese seltenen Momente, wo Sie irgendwie zur Ruhe kommen, wo Sie ein Buch lesen, dessen Worte sie gefangen nehmen, einen Film sehen, der Sie anspricht, einen Song hören, der sie berührt, oder mit einem anderen Menschen reden, der Ihnen zuhört, und der Ihnen dann Worte sagt, die ihnen helfen, sich selbst mal mit anderen Augen zu sehen, ihr Leben, ihr Tun; eine Freundin, ein Freund, oder jemand Fremdes,….

Jeder von uns hat seinen eigenen Blick, den wir uns in vielen Jahren angeeignet haben, die eigene Sprache, die eigenen Vorlieben, und dann sehen wir andere Menschen, die es anders machen, und irgendwie haben wir das Gefühl, das fühlt sich gut an… oder unser Gegenüber hört uns zu und fragt dann zurück, warum wir dies und jenes überhaupt so machen. Warum machen wir ständig A, warum nicht auch einmal B? Und im Moment, wo wir gefragt werden, schrecken wir vielleicht zurück und fangen sofort an, uns zu verteidigen, oder, wir zögern einen Moment, merken vielleicht, da wird ein Punkt berührt, der einen schon lange irgendwie beschäftigt, aber man hatte noch nie die Muße, den Mut, ihn ernsthaft ins Auge zu fassen, ihn wirklich an sich heran kommen zu lassen…

Entscheidend ist, dass es meistens irgendwelche Ereignisse braucht, die uns dazu bringen, im gewöhnlichen Ablauf inne zu halten, etwas zu merken, aufmerksam zu werden auf etwas in unserem Leben, an uns, von dem wir spüren, das könnte auch anders sein. Hier können sehr viele Emotionen im Spiel sein, Ängste wie auch Hoffnungen, Schmerzen wie auch Lustgefühle, Erinnerungen, die uns lähmen und solche, die uns ermutigen…

Die Gefühle, die Emotionen alleine sind es aber nicht, auch wenn sie uns vielleicht lähmen, fesseln können. Es braucht schon auch ein Bild, eine Vision, eine Vorstellung, eine Idee die uns Zusammenhänge sichtbar macht, mögliche alternative Zustände, die so sind, dass wir daraus mögliche Handlungen ableiten können, eine mögliche neue Richtung, was man mit anderen konkret tun könnte: andere Menschen, andere Orte, andere Bewegungsformen, anderes sehen, anderes ….

Mit dem neuen Tun ändert sich die eigene Wahrnehmung, ändert sich die eigene Erfahrung, kann sich das Bild von der Welt, von den anderen, von sich selbst ändern; dadurch können sich Gefühle ändern. Was vorher so aussichtslos, fern erschien, erscheint plötzlich vielleicht erreichbar… so ein bisschen kann man dann erahnen, dass man selbst vielleicht mehr ist als nur ein Bündel von Gewohnheiten, die feststehen …. dass man irgendetwas in sich hat, was die Abläufe ändern kann, etwas, das das ganze Gefüge in Bewegung setzt. Ich muss nicht immer das Gleiche machen, ich kann anders … die Welt ist mehr als ds Bild, was ich gerade noch im Kopf hatte, mein Bild, das mich eingesperrt hat in mich selbst …

EREIGNIS BEI MIR: Vor 33 Jahren …

Ereignisse, die einem helfen können, für einen Moment inne zu halten, aufzumerken, zu ahnen, zu spüren, dass da etwas ist, was anders ist, sind vielfältiger Art. Jeder kann davon bestimmt mindestens eine Geschichte erzählen. Bei mir war es die Tage ein Gespräch mit Freunden, bei dem einer (MF) das Wort autopoiesis erwähnte, ein Wort, das einem ja nicht alle Tage über den Weg läuft. Und ja, dieses Wort spiel eine zentrale Rolle in einem Buch, das den vielsagenden Titel trägt Baum der Erkenntnis. Dies ruft gleich Assoziationen an esoterisches Gedankengut wach, an Mythen und Sagen, oder auch an den berühmten Sündenfall von Eva und Adam, als sie im Paradies vom ‚Baum der Erkenntnis‘ aßen und daraufhin aus dem Paradies vertrieben wurden. Wer versteht die Botschaft in dieser Geschichte nicht: Wehe, wenn Du Dich zu sehr mit Erkenntnis beschäftigst, dann verlierst Du deine Unschuld und es wird Dir Zeit deines Lebens schlecht ergehen.

Ja, und vielleicht stimmt diese Mahnung auch, wird so mancher denken, denn das Buch, um das es hier geht, erschien 1987 erstmals und wurde von zwei Wissenschaftlern verfasst, die aufgrund ihrer jahrzehntelangen Arbeit in der Erforschung der Natur, insbesondere des biologischen Lebens, ein Bild von der Welt und uns als Menschen erarbeitet hatten, das die Geschichten aus der Bibel — und viele anderen — nicht besonders gut aussehen lassen.

Das Besondere an diesem Ereignis ist, dass ich dieses Buch noch in meinem Bücherregal hatte, ich hatte es sogar vor 33 Jahren gelesen, wovon viele Markierungen im Text Zeugnis geben, aber ich bin mir nicht sicher, ob ich es damals tatsächlich in seiner Tragweite verstanden hatte. Jetzt, 33 Jahre später, als ich als erstes das Schlusskapitel nochmals las, hatte ich das Gefühl, dass ich fast jeden Satz mehrfach unterstreichen konnte. Ich merkte, dass meine ganzen Arbeiten der letzten 33 Jahre (!) letztlich dazu gedient haben, die Vision in diesem Buch — ohne mir dessen vielleicht immer bewusst gewesen zu sein — durch eigenes Forschen, Experimentieren, Probieren, Schreiben, Verwerfen usw. für mich neu zu erarbeiten. Während man sicher viele Details aus dem Buch von Maturana und Varela aktualisieren muss, erscheint mir die Grundperspektive weiterhin voll gültig zu sein und es könnte uns heute, uns allen, die wir von unseren alltäglichen Abläufen oft wie ‚Gefangen genommen‘ erscheinen, vielleicht eine deutliche Hilfe sein, aus unseren — tendenziell unfertigen und falschen — Bildern auszubrechen.

AUFTRAG, NICHT SCHICKSAL

Wie eingangs angedeutet, leidet unser Alltag stark an der Unvollständigkeit unserer Bilder von uns selbst, von den anderen, von der Gesellschaft, der Welt. Und ja, man kann dadurch entmutigt werden, vielleicht sogar daran verzweifeln. Aber vielleicht hilft es, wenn man weiß, dass der fragmentarische Charakter unseres Welterlebens und Weltwissens eigentlich unsere Versicherung ist, dass wir als Menschen, als Leben auf der Erde nicht zwangsläufig zugrunde gehen müssen! Wären wir als Lebewesen von Anfang an mit einem kompletten Bild ausgestattet, dann kämen wir vielleicht eine gewisse Zeit klar mit den Gegebenheiten; da aber die Erde hochdynamisch ist, sich permanent verändert, z.T. dramatisch (Vulkane, Erdbeben, Verschiebung der Erdplatten, Klima mit vielen Eiszeiten…), würden wir bald scheitern, weil wir auf diese Veränderungen nicht vorbereitet wären. Überleben auf einer hochdynamischen Erde heißt, sein Bild von der Erde ständig weiter entwickeln, ständig korrigieren, ständig erneuern. Wichtig ist also nicht, wie viel Wissen man zu Beginn hat, sondern, ob man das Wissen verändern, weiter entwickeln kann. Wissen ist ganz klar ein Werkzeug zum Überleben! Und — was man in diesem Zusammenhang vielleicht schnell verstehen kann — Wissensfragmente benötigen zum Verändern jede Menge Kooperationen.

Die ersten Lebensformen auf der Erde waren Zellen, die unterschiedlich spezialisiert waren. Eine Zelle alleine war nicht überlebensfähig, aber alle Zellen zusammen haben u.a. die gesamte Atmosphäre der Erde verändert, sie haben unfassbar komplexe hoch organiserte Zellverbände entstehen lassen, die wir als Pflanzen, Tiere und Menschen — Wir! — kennen. Diese Winzlinge, diese Mikroben, haben dies geschafft, weil sie ihr minimales Wissen im großen Stile nicht nur immer wieder verändert haben, sondern weil sie es auch beständig ausgetauscht haben. Die Anzahl dieser Mikroben auf der Erde übersteigt die Anzahl der heute bekannten Sterne im bekannten Universum um ein Mehrfaches. Zugleich bilden sie zusammen einen Superrechner — ich nenne ihn BIOM I –, der alle heutigen Superrechner einfach nur schlecht aussehen lässt. Denn der BIOM I Supercomputer ist so, dass jedes Element von ihm beständig eigenständig dazu lernt und alle Elemente ihr Erlerntes untereinander austauschen. Davon können heutige Supercomputer nur träumen, falls sie träumen könnten.

Also, der fragmentarische Charakter unseres Wissens ist gerade kein negatives Schicksal, sondern gibt uns die Chance, unser Wissen gemeinsam weiter zu entwickeln, um so den jeweils neuen Herausforderungen gerecht werden zu können.

Anmerkung: In dem Maße, wie biologische Lebensformen die Erde bevölkern — nicht zuletzt auch der Mensch selbst — erzeugen diese aufgrund ihrer Freiheitsgrade auch Veränderungen, und zwar schwer vorausberechenbare Veränderungen. Um diesen gerecht zu werden, bedarf es um so mehr der Fähigkeit, sich dynamisch ein Bild möglicher Prozesse zu machen. Die Tendenz von Regierungen zu allen Zeiten, diese implizite Dynamik des Lebens durch autoritäre Regelsysteme einzugrenzen, zu ‚zähmen‘, hat noch nie wirklich funktioniert und wird auch niemals funktionieren, will man nicht das Leben selbst zerstören.

MONADE + MONADE = ?

Jahrtausende lang haben Menschen darum gerungen, zu verstehen, wie sie ihr Verstehen, ihr Wissen bewerten sollen: Was ist wahr? Wann denken wir richtig? Wo kommt unser Wissen her? Wie entsteht unser Wissen? Wieweit können wir unserem Wissen vertrauen? Und so ähnlich.

Aber, selbst die besten Philosophen und Wissenschaftler blieben immer im Gestrüpp ihres Selbstbewusstseins hängen. Im Nachhinein betrachtet glichen die Philosophen den berühmten Mücken, die immer um das Licht kreisen, an dem sie dann verbrennen. Und war nicht Eva auch so eine ‚Mücke‘, die um das ‚Licht der Erkenntnis‘ kreiste, um dann daran zu zerschellen?

Es ist schwer zu sagen, wann genau wer jetzt diese Form der Selbstbezüglichkeit durchbrach. Vermutlich war es wie immer, dass es die vielen Versuche einzelner waren, von denen man sich dann untereinander erzählt hatte, die so langsam eine Atmosphäre, ein Ahnen, einen Sack voller Experimente mit sich brachten, die dann zu einem Durchbruch geführt haben, der — so erscheint es von heute aus — in vielen Disziplinen gleichzeitig stattgefunden hat, jeweils speziell und anders, aber dann doch so, dass sich mit den vielen Puzzlesteinen langsam ein Gesamtbild andeutete, das zu einem bisher nie dagewesenen Durchbruch im Verstehen unserer selbst als Teil der Natur, des Universums geführt hat.

Fairerweise muss man sagen, dass frühere Generationen tatsächlich auch keine reale Chance hatten, diesen Durchbruch vorweg zu nehmen, da wir Menschen einige Jahrtausende und dann speziell die letzten Jahrhunderte gebraucht haben, unser Wissen über die Welt, die Natur, das Leben so weit auszudehnen, dass wir letztlich verstehen konnten, dass und wie unser Körper aus einer großen Anzahl von Galaxien an Zellen besteht, dass diese Zellen, jede für sich, autonom sind, dass sie es aber schaffen, so miteinander zu kooperieren, dass es eine Vielzahl von Organen in unserem Körper gibt, die die unglaublichsten Dinge vollbringen, ohne dass wir bis heute dieses Geschehen vollständig verstehen. Speziell das Gehirn versetzt uns mehr und mehr in Erstaunen, wenn wir langsam begreifen, was es alles leistet. Ein zentraler Punkt — wie vielfach schon in diesem Blog dargelegt — ist der, dass das Gehirn im Körper aus all den verfügbaren Körpersignalen ein Bild von der Welt errechnet, das für den ganzen Organismus zur Orientierung dient. Konkret, alles, was wir von der Welt sehen ist nicht die Welt selbst, sondern das, wie sich unser Gehirn die Welt vorstellt!

Vieles, was Leibniz damals 1714 unter der Idee einer Monadologie beschrieben hatte, könnte man auf das Gehirn anwenden, das vollständig auf sich selbst bezogen damit beschäftigt ist, ein Bild von sich selbst und der Umgebung zu entwickeln mit dem wichtigen Zweck, zu überleben. Entscheidend dabei ist der dynamische Charakter des Gehirns und seiner Berechnungen. Es kann zwar einerseits Strukturen bilden, die ihm zur Orientierung dienen, es kann aber auch, diese Strukturen ständig wieder abändern, um sie den veränderten Erfahrungen anzupassen.

Im Unterschied zu einer reinen Monade haben Gehirne die Fähigkeit ausgebildet, viele ihrer inneren Zustände mit beliebigen sprachlichen Ausdrücken zu assoziieren, zu korrelieren, so dass Manifestationen von sprachlichen Ausdrücken außerhalb des Körpers von anderen Gehirnen wahrgenommen werden können. Wie immer die Gehirne dies irgendwie und irgendwo geschafft haben, sie haben es geschafft, mit Hilfe solcher Manifestationen gemeinsame Bedeutungen zu vereinbaren und dann auch gemeinsam, synchron zu nutzen. Damit war symbolische Kommunikation grundgelegt.

Während zwei Monaden nach dem Modell von Leibniz strikt Monaden bleiben, können zwei biologische Monaden, die über ein Gehirn mit Sprache verfügen, durch Kommunikation zu Kooperationen zusammen finden, aus denen eine nahezu unendliche Menge neuer Zustände entstehen kann. Letztlich können biologische Monaden das gesamte Universum umbauen!

VERTRAUEN ALS NATURGEWALT ? !

Wenn wir von Naturgewalten sprechen, denken wir sicher erst mal an Unwetter, Erdbeben, Vulkane und dergleichen. In den Wissenschaften hat man Worte wie z.B. die Gravitation, um eine Eigenschaft zu beschreiben, die wir überall im heute bekannten Universum beobachten können als eine Kraft, die sich indirekt zeigt: auf der Erde fallen alle Gegenstände ’nach unten‘ und alle Körper haben ein ‚Gewicht‘.

Das biologische Leben gehört aber auch zur Natur, es ist Natur durch und durch. Allerdings, biologische Strukturen haben eine Komplexität angenommen, die weit über alles hinausgeht, was wir aus dem physikalisch erforschten Universum kennen. Und so wie es die Gravitation als eine Kraft gibt, die die Strukturbildung im physikalischen Universum stark prägt, so gibt es im Bereich biologischer Systeme die Kraft der Kooperation, die schier Unvorstellbares möglich macht (wer kann sich bei Betrachtung einfacher Zellen von vor 3.5 Milliarden Jahren ernsthaft vorstellen, wie sich von diesem Ausgangspunkt aus Zellformationen bilden können, die zusammen ca. 240 Billionen (10^12) Zellen umfassen, und dann als homo sapiens auftreten?) Aber nicht nur das. Je größer der Grad der Komplexität wird, um so mehr zeigt sich in diesen biologischen Lebensformen ein immer höherer Grad an Freiheitsgraden! Verglichen mit den anderen Lebensformen hat der Homo sapiens eine bislang besonders hohes Ausmaß an Freiheitsgraden erreicht. Dies eröffnet eine schier unendliche Menge an Möglichkeiten, stellt aber den Akteur auch vor entsprechend große Herausforderungen. Alleine hat er nahezu keine Chance. Zusammen mit anderen erhöht sich die Chance. Allerdings — und dies zeigt unser Alltag nahezu stündlich — Kooperationen verlangen einen ‚Grundstoff‘, ohne den überhaupt nichts geht: Vertrauen! Da wir uns permanent in unvollständigen Situationen bewegen, die unsere Gehirne durch geeignetes Wissen partiell ‚ausfüllen‘ können, können wir Unbekanntheiten partiell überbrücken, partiell mit Möglichkeiten ausfüllen, aber wir brauchen als ‚Vorschuss‘ jede Menge Vertrauen, um uns überhaupt gemeinsam in diese Richtung zu bewegen. Es ist eine qualitative Besonderheit des Homo sapiens, dass er über diese seltene Gabe als eine besondere Kraft der Natur verfügt.

Vertrauen ist lebensnotwendig, Voraussetzung für jede Form von Zukunftsgestaltung.

WISSEN ALS ZUKUNFTSTECHNOLOGIE

Das Verhältnis von uns Menschen zum Wissen ist durchwachsen. Einerseits wissen wir es zu schätzen, weil es uns vielfach hilft, unsere Lebensbedingungen zu verbessern. Andererseits wird es aber gerade auch von denen, die primär an Macht und monadischen Selbstinteressen orientiert sind, vielfach missbraucht zum Schaden vieler anderer. Und als einzelner, als Kind, als Jugendlicher wird das Abenteuer des Wissens vielfach schlecht oder — in vielen Ländern dieser Welt — so gut wie gar nicht vermittelt. Damit schaden wir uns selbst in hohem Maße!

Man kann über die uns verfügbaren Freiheitsgrade schimpfen, über sie lamentieren, sie verleugnen … aber es ist eine Eigenschaft, die wir als Homo sapiens jetzt haben und die uns prinzipiell die Möglichkeit gibt, in vertrauensvoller Kooperation mit allen anderen Wissen zu erarbeiten, das helfen kann, den fragmentarischen Charakter unserer einzelnen partiellen Bilder zu ergänzen und dadurch zu überwinden. Unser Ziel kann es nicht sein, den beschämenden gegenwärtigen Zustand der Weltbevölkerung fest zu schreiben. Was wir als Menschen zur Zeit veranstalten, das ist in hohem Maße dumm, grausam, lebensverachtend, zukunftsunwillig, welt-zerstörerisch.

Wissen ist kein Luxus! Wissen ist neben Kooperation und Vertrauen der wichtigste Rohstoff, die wichtigste Technologie, um uns ein Minimum an Zukunft zu sichern, einer Zukunft, die das ganze Universum in den Blick nehmen muss, nicht nur unsere eigene Haustür!

WAS IST DER MENSCH?

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062 20.Juli 2020
URL: cognitiveagent.org
Email: info@cognitiveagent.org
Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

AKTUALISIERUNGEN: Letzte Aktualisierung 21.7.2020 (Korrekturen; neue Links)

KONTEXT

In den vielen vorausgehenden Beiträgen in diesem Blog wurde die Frage nach dem Menschen, was das angemessene Bild vom Menschen sein könnte, schon oft gestellt. Möglicherweise wird diese Frage auch in der Zukunft sich immer wieder neu stellen, weil wir immer wieder auf neue Aspekte unseres Menschseins stoßen. Ich bin diese Tage auf einen Zusammenhang gestoßen, der mir persönlich in dieser Konkretheit neu ist (was nicht ausschließt, dass andere dies schon ganz lange so sehen). Hier einige weitere Gedanken dazu.

DER MENSCH IN FRAGMENTEN

In der evolutionsbiologischen Perspektive taucht der homo sapiens — also wir — sehr, sehr spät auf. Vom Jahr 2020 aus betrachtet, bilden wir den aktuellen Endpunkt der bisherigen Entwicklung wohl wissend, dass es nur ein Durchgangspunkt ist in einem Prozess, dessen Logik und mögliche Zielrichtung wir bislang nur bedingt verstehen.

Während man bei der Betrachtung der letzten Jahrtausende Menschheitsgeschichte bisweilen den Eindruck haben könnte, dass die Menschen sich als Menschen als etwas irgendwie Besonderes angesehen haben (was die Menschen aber nicht davon abgehalten hat, sich gegenseitig zu bekämpfen, sich zu bekriegen, sich regelrecht abzuschlachten), könnte man bei der Betrachtung der letzten 100 Jahre den Eindruck gewinnen, als ob die Wissenschaft die Besonderheit des Menschen — so es sie überhaupt gab — weitgehend aufgelöst hat: einmal durch die Einbettung in das größere Ganze der Evolution, dann durch einen vertieften Blick in die Details der Anatomie, des Gehirns, der Organe, der Mikro- und Zellbiologie, der Genetik, und schließlich heute durch das Aufkommen digitaler Technologien, der Computer, der sogenannten künstlichen Intelligenz (KI); dies alles lässt den Menschen auf den ersten Blick nicht mehr als etwas Besonders erscheinen.

Diese fortschreitende Fragmentierung des Menschen, des homo sapiens, findet aber nicht nur speziell beim Menschen statt. Die ganze Betrachtungsweise der Erde, des Universums, der realen Welt, ist stark durch die empirischen Wissenschaften der Gegenwart geprägt. In diesen empirischen Wissenschaften gibt es — schon von ihrem methodischen Ansatz her — keine Geheimnisse. Wenn ich nach vereinbarten Messmethoden Daten sammle, diese in ein — idealerweise — mathematisches Modell einbaue, um Zusammenhänge sichtbar zu machen, dann kann ich möglicherweise Ausschnitte der realen Welt als abgeschlossene Systeme beschreiben, bei denen der beschreibende Wissenschaftler außen vor bleibt. Diese partiellen Modelle bleiben notgedrungen Fragmente. Selbst die Physik, die für sich in Anspruch nimmt, das Ganze des Universums zu betrachten, fragmentiert die reale Welt, da sich die Wissenschaftler selbst, auch nicht die Besonderheiten biologischen Lebens generell, in die Analyse einbeziehen. Bislang interessiert das die meisten wenig. Je nach Betrachtungsweise kann dies aber ein fataler Fehler sein.

DER BEOBACHTER ALS BLINDE FLECK

Die Ausklammerung des Beobachters aus der Beschreibung des Beobachtungsgegenstands ist in den empirischen Wissenschaften Standard, da ja das Messverfahren idealerweise invariant sein soll bezüglich demjenigen, der misst. Bei Beobachtungen, in denen der Beobachter selbst das Messinstrument ist, geht dies natürlich nicht, da die Eigenschaften des Beobachters in den Messprozess eingehen (z.B. überall dort, wo wir Menschen unser eigenes Verhalten verstehen wollen, unser Fühlen und Denken, unser Verstehen, unser Entscheiden, usw.). Während es lange Zeit eine strenge Trennung gab zwischen echten (= harten) Wissenschaften, die strikt mit dem empirischen Messideal arbeiten, und jenen quasi (=weichen) Wissenschaften, bei denen irgendwie der Beobachter selbst Teil des Messprozesses ist und demzufolge das Messen mehr oder weniger intransparent erscheint, können wir in den letzten Jahrzehnten den Trend beobachten, dass die harten empirischen Messmethoden immer mehr ausgedehnt werden auch auf Untersuchungen des Verhaltens von Menschen, allerdings nur als Einbahnstraße: man macht Menschen zwar zu Beobachtungsgegenständen partieller empirischer Methoden, die untersuchenden Wissenschaftler bleiben aber weiterhin außen vor. Dieses Vorgehen ist per se nicht schlecht, liefert es doch partiell neue, interessante Einsichten. Aber es ist gefährlich in dem Moment, wo man von diesem — immer noch radikal fragmentiertem — Vorgehen auf das Ganze extrapoliert. Es entstehen dann beispielsweise Bücher mit vielen hundert Seiten zu einzelnen Aspekten der Zelle, der Organe, des Gehirns, aber diese Bücher versammeln nur Details, Fragmente, eine irgendwie geartete Zusammenschau bleibt aus.

Für diese anhaltende Fragmentierung gibt es sicher mehr als einen Grund. Einer liegt aber an der Wurzel des Theoriebegriffs, der Theoriebildung selbst. Im Gegensatz zu einer weit verbreiteten Anschauung entstehen Theorien, Modelle, also jene begrifflichen Gebilde, mit denen wir einzelne Daten deuten, nicht aus einem Automatismus, sondern sie beruhen auf gedanklichen Entscheidungen in den Köpfen der Wissenschaftler selbst: grundsätzlich gibt es immer mehr als eine Option, wie ich etwas angehen will. Jede Option verlangt also eine Entscheidung, eine Wahl aus einem großen Bereich von Möglichkeiten. Die Generierung einer Theorie ist von daher immer ein komplexer Prozess. Interessanterweise gibt es in kaum einer der heutigen empirischen Disziplinen das Thema Wie generieren wir eine Theorie? als eigene Themenstellung. Obwohl hier viele Grundentscheidungen fallen, obwohl hier viel Komplexität rational aufgehellt werden müsste, betreiben die sogenannten harten Wissenschaften hier ein weitgehend irrationales Geschäft. Das Harte an den empirischen Wissenschaften gründet sich in diesem Sinne nicht einmal in einer weichen Reflexion; es gibt schlicht gar keine offizielle Reflexion. Die empirischen Wissenschaften sind in dieser Hinsicht fundamental irrational. Dass sie trotz ihrer fundamentalen Irrationalität interessante Detailergebnisse liefern kann diesen fundamentalen Fehler in der Wurzel nur bedingt ausgleichen. Die interessante Frage ist doch, was könnten die empirischen Wissenschaften noch viel mehr leisten, wenn sie ihre grundlegende Irrationalität an der Wurzel der Theoriebildung schrittweise mit Rationalität auffüllen würden?

HOMO SAPIENS – DER TRANSFORMER

(Ein kleiner Versuch, zu zeigen, was man sehen kann, wenn man die Grenzen der Disziplinen versuchsweise (und skizzenhaft) überschreitet)

Trotz ihrer Irrationalität an der Wurzel hat die Evolutionsbiologie viele interessante Tatbestände zum homo sapiens sichtbar gemacht, und andere Wissenschaften wie z.B. Psychologie, Sprachwissenschaften, und Gehirnwissenschaft haben weitere Details beigesteuert, die quasi ‚auf der Straße‘ herumliegen; jeder produziert für sich fleißig partielle Modelle, aber niemand ist zuständig dafür, diese zusammen zu bauen, sie versuchsweise zu integrieren, mutig und kreativ eine Synthese zu versuchen, die vielleicht neue Aspekte liefern kann, mittels deren wir viele andere Details auch neu deuten könnten. Was Not tut ist eine Wissenschaft der Wissenschaften, nicht als Privatvergnügen eines einzelnen Forschers, sondern als verpflichtender Standard für alle. In einer Wissenschaft der Wissenschaften wäre der Beobachter, der Forscher, die Forschergruppe, selbst Teil des Untersuchungsgegenstandes und damit in der zugehörigen Meta-Theorie aufzuhellen.

Anmerkung: Im Rahmen der Theorie des Engineering gibt es solche Ansätze schon länger, da das Scheitern eines Engineeringprozesses ziemlich direkt auf die Ingenieure zurück schlägt; von daher sind sie äußerst interessiert daran, auf welche Weise der Faktor Mensch — also auch sie selbst — zum Scheitern beigetragen hat. Hier könnte die Wissenschaft eine Menge von den Ingenieuren lernen.

Neben den vielen Eigenschaften, die man am homo sapiens entdecken kann, erscheinen mir drei von herausragender Bedeutung zu sein, was sich allerdings erst so richtig zeigt, wenn man sie im Zusammenspiel betrachtet.

Faktor 1: Dass ein homo sapiens einen Körper [B, body] mit eingebautem Gehirn [b, brain] hat, unterscheidet ihn nicht unbedingt von anderen Lebensformen, da es viele Lebensformen im Format Körper mit eingebautem Gehirn gibt. Dennoch ist schon mal festzuhalten, dass der Gehirn-Körper [b_B] eines homo sapiens einen Teil der Eigenschaften seiner Realwelt-Umgebung [RW] — und der eigene Körper gehört aus Sicht des Gehirns auch zu dieser Realwelt-Umgebung — ausnahmslos in neuronale Zustände [NN] im Gehirn verwandelt/ transformiert/ konvertiert und diese neuronale Zustände auf vielfältige Weise Prozesshaft bearbeitet (Wahrnehmen, Speichern, Erinnern, Abstrahieren, Assoziieren, bewerten, …). In dieser Hinsicht kann man den Gehirn-Körper als eine Abbildung, eine Funktion verstehen, die u.a. dieses leistet: b_B : RW —–> RW_NN. Will man berücksichtigen, dass diese Abbildung durch aktuell verfügbare Erfahrungen aus der Vergangenheit modifiziert werden kann, dann könnte man schreiben: b_B : RW x RW_NN —–> RW_NN. Dies trägt dem Sachverhalt Rechnung, dass wir das, was wir aktuell neu erleben, automatisch mit schon vorhandenen Erfahrungen abgleichen und automatisch interpretieren und bewerten.

Faktor 2: Allein schon dieser Transformationsprozess ist hochinteressant, und er funktioniert bis zu einem gewissen Grad auch ganz ohne Sprache (was alle Kinder demonstrieren, wenn sie sich in der Welt bewegen, bevor sie sprechen können). Ein homo sapiens ohne Sprache ist aber letztlich nicht überlebensfähig. Zum Überleben braucht ein homo sapiens das Zusammenwirken mit anderen; dies verlangt ein Minimum an Kommunikation, an sprachlicher Kommunikation, und dies verlangt die Verfügbarkeit einer Sprache [L].

Wir wir heute wissen, ist die konkrete Form einer Sprache nicht angeboren, wohl aber die Fähigkeit, eine auszubilden. Davon zeugen die vielen tausend Sprachen, die auf dieser Erde gesprochen werden und das Phänomen, dass alle Kinder irgendwann anfangen, Sprachen zu lernen, aus sich heraus.

Was viele als unangenehm empfinden, das ist, wenn man als einzelner als Fremder, als Tourist in eine Situation gerät, wo alle Menschen um einen herum eine Sprache sprechen, die man selbst nicht versteht. Dem Laut der Worte oder dem Schriftzug eines Textes kann man nicht direkt entnehmen, was sie bedeuten. Dies liegt daran, dass die sogenannten natürlichen Sprachen (oft auch Alltagssprachen genannt), ihre Bedeutungszuweisungen im Gehirn bekommen, im Bereich der neuronalen Korrelate der realen Welt RW_NN. Dies ist auch der Grund, warum Kinder nicht von Geburt an eine Sprache lernen können: erst wenn sie minimale Strukturen in ihren neuronalen Korrelaten der Außenwelt ausbilden konnten, können die Ausdrücke der Sprache ihrer Umgebung solchen Strukturen zugeordnet werden. Und so beginnt dann ein paralleler Prozess der Ausdifferenzierung der nicht-sprachlichen Strukturen, die auf unterschiedliche Weise mit den sprachlichen Strukturen verknüpft werden. Vereinfachend kann man sagen, dass die Bedeutungsfunktion [M] eine Abbildung herstellt zwischen diesen beiden Bereichen: M : L <–?–> RW_NN, wobei die sprachlichen Ausdrücke letztlich ja auch Teil der neuronalen Korrelate der Außenwelt RW_NN sind, also eher M: RW_NN_L <–?–>RW_NN.

Während die grundsätzliche Fähigkeit zur Ausbildung einer bedeutungshaltigen Sprache [L_M] (L :_ Ausrucksseite, M := Bedeutungsanteil) nach heutigem Kenntnisstand angeboren zu sein scheint, muss die Bedeutungsrelation M individuell in einem langen, oft mühsamen Prozess, erlernt werden. Und das Erlernen der einen Sprache L_M hilft kaum bis gar nicht für das Erlernen einer anderen Sprache L’_M‘.

Faktor 3: Neben sehr vielen Eigenschaften im Kontext der menschlichen Sprachfähigkeit ist einer — in meiner Sicht — zusätzlich bemerkenswert. Im einfachen Fall kann man unterscheiden zwischen den sprachlichen Ausdrücken und jenen neuronalen Korrelaten, die mit Objekten der Außenwelt korrespondieren, also solche Objekte, die andere Menschen zeitgleich auch wahrnehmen können. So z.B. ‚die weiße Tasse dort auf dem Tisch‘, ‚die rote Blume neben deiner Treppe‘, ‚die Sonne am Himmel‘, usw. In diesen Beispielen haben wir auf der einen Seite sprachliche Ausdrücke, und auf der anderen Seite nicht-sprachliche Dinge. Ich kann mit meiner Sprache aber auch sagen „In dem Satz ‚die Sonne am Himmel‘ ist das zweite Wort dieses Satzes grammatisch ein Substantiv‘. In diesem Beispiel benutze ich Ausdrücke der Sprache um mich auf andere Ausdrücke einer Sprache zu beziehen. Dies bedeutet, dass ich Ausdrücke der Sprache zu Objekten für andere Ausdrücke der Sprache machen kann, die über (meta) diese Objekte sprechen. In der Wissenschaftsphilosophie spricht man hier von Objekt-Sprache und von Meta-Sprache. Letztlich sind es zwei verschiedenen Sprachebenen. Bei einer weiteren Analyse wird man feststellen können, dass eine natürliche/ normale Sprache L_M scheinbar unendlich viele Sprachebenen ausbilden kann, einfach so. Ein Wort wie Demokratie z.B. hat direkt kaum einen direkten Bezug zu einem Objekt der realen Welt, wohl aber sehr viele Beziehungen zu anderen Ausdrücken, die wiederum auf andere Ausdrücke verweisen können, bis irgendwann vielleicht ein Ausdruck dabei ist, der Objekte der realen Welt betrifft (z.B. der Stuhl, auf dem der Parlamentspräsident sitzt, oder eben dieser Parlamentspräsident, der zur Institution des Bundestages gehört, der wiederum … hier wird es schon schwierig).

Die Tatsache, dass also das Sprachvermögen eine potentiell unendlich erscheinende Hierarchie von Sprachebenen erlaubt, ist eine ungewöhnlich starke Eigenschaft, die bislang nur beim homo sapiens beobachtet werden kann. Im positiven Fall erlaubt eine solche Sprachhierarchie die Ausbildung von beliebig komplexen Strukturen, um damit beliebig viele Eigenschaften und Zusammenhänge der realen Welt sichtbar zu machen, aber nicht nur in Bezug auf die Gegenwart oder die Vergangenheit, sondern der homo sapiens kann dadurch auch Zustände in einer möglichen Zukunft andenken. Dies wiederum ermöglicht ein innovatives, gestalterisches Handeln, in dem Aspekte der gegenwärtigen Situation verändert werden. Damit kann dann real der Prozess der Evolution und des ganzen Universums verändert werden. Im negativen Fall kann der homo sapiens wilde Netzwerke von Ausdrücken produzieren, die auf den ersten Blick schön klingen, deren Bezug zur aktuellen, vergangenen oder möglichen zukünftigen realen Welt nur schwer bis gar nicht herstellbar ist.

Hat also ein entwickeltes Sprachsystem schon für das Denken selbst eine gewisse Relevanz, spielt es natürlich auch für die Kommunikation eine Rolle. Der Gehirn-Körper transformiert ja nicht nur reale Welt in neuronale Korrelate b_B : RW x RW_NN —–> RW_NN (mit der Sprache L_B_NN als Teil von RW_NN), sondern der Gehirn-Körper produziert auch sprachliche Ausdrücke nach außen b_B : RW_NN —–> L. Die sprachlichen Ausdrücke L bilden von daher die Schnittstelle zwischen den Gehirnen. Was nicht gesagt werden kann, das existiert zwischen Gehirnen nicht, obgleich es möglicherweise neuronale Korrelate gibt, die wichtig sind. Nennt man die Gesamtheit der nutzbaren neuronalen Korrelate Wissen dann benötigt es nicht nur eine angemessene Kultur des Wissens sondern auch eine angemessene Kultur der Sprache. Eine Wissenschaft, eine empirische Wissenschaft ohne eine angemessene (Meta-)Sprache ist z.B. schon im Ansatz unfähig, mit sich selbst rational umzugehen; sie ist schlicht sprachlos.

EIN NEUES UNIVERSUM ? !

Betrachtet man die kontinuierlichen Umformungen der Energie-Materie vom Big Bang über Gasnebel, Sterne, Sternenhaufen, Galaxien und vielem mehr bis hin zur Entstehung von biologischem Leben auf der Erde (ob auch woanders ist komplexitätstheoretisch extrem unwahrscheinlich, aber nicht unmöglich), dort dann die Entwicklung zu Mehrzellern, zu komplexen Organismen, bis hin zum homo sapiens, dann kommt dem homo sapiens eine einzigartig, herausragende Rolle zu, der er sich bislang offensichtlich nicht richtig bewusst ist, u.a. möglicherweise auch, weil die Wissenschaften sich weigern, sich professionell mit ihrer eigenen Irrationalität zu beschäftigen.

Der homo sapiens ist bislang das einzig bekannte System im gesamten Universum, das in er Lage ist, die Energie-Materie Struktur in symbolische Konstrukte zu transformieren, in denen sich Teile der Strukturen des Universums repräsentieren lassen, die dann wiederum in einem Raum hoher Freiheitsgrade zu neue Zuständen transformiert werden können, und diese neuen — noch nicht realen — Strukturen können zum Orientierungspunkt für ein Verhalten werden, das die reale Welt real transformiert, sprich verändert. Dies bedeutet, dass die Energie-Materie, von der der homo sapiens ein Teil ist, ihr eigenes Universum auf neue Weise modifizieren kann, möglicherweise über die aktuellen sogenannten Naturgesetze hinaus.

Hier stellen sich viele weitere Fragen, auch alleine schon deswegen, weil der Wissens- und Sprachaspekt nur einen kleinen Teil des Potentials des homo sapiens thematisiert.

BRAUCHT VIRTUALITÄT REALITÄT? Selbstvernichtung kennt viele Gesichter … Notiz

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062
URL: cognitiveagent.org
Email: info@cognitiveagent.org
Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

So 15.Dezember 2019

Änderung: 15.12.2019, 14:30h im Text.

Alte Version hier als PDF:

KONTEXT

Das Thema in diesem Beitrag kam in der einen oder anderen Weise auch in vorausgehenden Beiträgen schon mehrfach zur Sprache. In diesem Beitrag versucht der Autor dieses Textes eine thematische Zuspitzung am Beispiel der empirischen Wissenschaften, die in dieser Weise in diesem Blog so noch nicht vorkam. Zwischen den heutigen Extremen von allgemeinem Wissenschafts-Bashing auf der einen, und einer eher kritiklose Überhöhung der Wissenschaften auf der anderen Seite möchte dieser Beitrag verdeutlichen, dass der modernen empirischen Wissenschaft eine evolutionäre Schlüsselrolle zukommt. Aus dieser postulierten Notwendigkeit folgt aber kein Automatismus für eine gesellschaftlich angemessene Umsetzung von empirischer Wissenschaft.

VIRTUELLE WELTEN ALS INNOVATION

Mit der Verbreitung der Computertechnologie seit den 1950iger Jahren wurde es zunehmend möglich, mit Computern erzeugte Bilder und Sounds so gut zu berechnen, dass es für das sinnliche Wahrnehmungsvermögen des Menschen immer schwerer wird, die so künstlich erzeugten computerbasierten Ereignisse von der realen Körperwelt zu unterscheiden. Nach einem 3/4 Jahrhundert Entwicklung muss man feststellen, dass die junge Generation diese computergestützten virtuellen Ereignisse schon so ’normal‘ ansieht wie die reale Welt ihrer Körper. Es entsteht der Eindruck, dass die reale Welt der Körper und die Interaktion dieser Körper mit der ‚realen‘ Welt im heutigen Weltbild immer weniger Bedeutung einnimmt bis dahin, dass die reale Welt eher als ‚das Fremde‘ erscheint und die computergestützte ‚virtuelle Welt‘ als das primär Vertraute, und damit scheinbar zur ’neuen Realität‘ wird.

VERKEHRTE WELT

Macht man sich bewusst, dass es seit der Existenz erster biologischer Zellen vor ca. 3.5 Mrd. Jahren mindestens 2.9 Mrd. Jahre gebraucht hat, bis vielzellige Tiere aufgetreten sind, und von da ab hat es bis ca. vor 600.000 Jahren gebraucht, bis die Lebensform des homo sapiens ins Geschehen eingriff. Der homo sapiens — der moderne Mensch, wir — zeigt erstmals nicht nur Bewusstsein, sondern im weiteren Verlauf auch ein symbolisches Sprachvermögen.

Innerhalb der Entwicklung des homo sapiens ist es erst innerhalb der letzten 100 Jahre gelungen, durch moderne Evolutionsbiologie, Psychologie und Physiologie herauszufinden, dass es das Gehirn des Menschen ist, das alle Signale von den Sinnesorganen — sowohl der äußeren wie der inneren — einsammelt und daraus in Zeitintervallen von ca. 50 – 500 Millisekunden jeweils ein aktuelles Lagebild zu errechnen, das uns Menschen dann über unser Bewusstsein als ein virtuelles Bild der uns umgebenden realen Körperwelt zur Verfügung steht. Der Clou an dieser Konstruktion ist, dass wir dieses virtuelle Bild der realen Welt als ‚reales Bild‘ nehmen. Außer einige Philosophen in den letzten ca. 3000 Jahren kommt kein Mensch — nicht einmal in der Gegenwart — auf die Idee, sein vermeintlich reales Bild der Welt als ein virtuelles Bild der realen Welt anzusehen.

WISSENSCHAFT ALS EVOLUTIONÄRES EREIGNIS

Wer sich auf eine Reise in die Geschichte der Ideen begibt kann feststellen, dass die Menschen in der Vergangenheit sehr wohl einen Sinn für Realität ausprägen konnten. In allen Bereichen, in denen es ums Überleben geht (Reisen in unbekanntem Gelände, Landwirtschaft, Kriege, technische Konstruktionen, …) bildeten sich Verhaltensweisen und Anschauungen heraus, in denen der Bezug zu bestimmten Eigenschaften der realen Körperwelt charakteristisch waren: Sternbilder für die Reise, Jahreszeiten für die Planung in der Landwirtschaft, Materialeigenschaften für Waffen im Krieg und für Bauten, …

Aber erst vor ca. 400 Jahren begann mit Galileo Galilei und einigen seiner Zeitgenossen das, was wir heute moderne empirische Wissenschaft nennen. Es dauerte mehr als ca. 200 Jahre bis sich das Paradigma ‚moderne empirische Wissenschaft‘ sowohl in den Bildungseinrichtungen wie auch in der ganzen Gesellschaft einigermaßen verankern konnte. Doch ist die Verbreitung von empirischer Wissenschaft bis heute nicht umfassend und vollständig, ja, es gibt Anzeichen, die den Eindruck erwecken, als ob die moderne empirische Wissenschaft in vielen Bereichen wieder zurück gedrängt wird. Der Ausdruck ‚fake news‘ ist in der digitalisierten Welt zu einem Massenphänomen geworden, das sich immer weiter ausbreitet; eine Art mentaler Virus, der immer weiter um sich greift.

Diese Entwicklung ist bizarr und gefährlich. Es hat die gesamte bisherige Entwicklungszeit des biologischen Lebens auf der Erde gebraucht hat, bis das Leben auf dieser Erde die Fähigkeit zur empirischen Wissenschaft erreicht hat, um damit den ‚Bann‘ der körperinneren Virtualität zu durchbrechen um das Innere am Äußeren zu orientieren.

Dazu kommt die erst kürzliche Nutzung der Computertechnologie, die strukturell in jeder biologischen Zelle seit 3.5 Mrd. Jahren am Werke ist. Die mögliche Symbiose von Mensch und Computertechnologie markiert das größte und wichtigste Ereignis zum möglichen Überleben des Lebens nicht nur auf der Erde, sondern im ganzen bekannten Universum. Denn die Erde wird spätestens mit der fusionsbedingten Aufblähung der Sonne in ca. 0.9 Mrd. Jahren einen Temperaturanstieg erleben, der Leben auf der Erde schrittweise unmöglich machen wird. Nur im Zusammenwirken aller Lebensformen — und hier mit der besonderen Rolle des homo sapiens — kann das Leben im Universum eventuell überleben.

ALLTAG

Bislang hat man aber nicht den Eindruck, dass sich der homo sapiens seiner wichtigen Rolle für das gesamte Leben bewusst ist. Bislang demonstriert der homo sapiens eine große Verachtung für das Leben, verbraucht planlos wichtige Ressourcen, zerstört immer massiver das gesamte Ökosystem, dessen Funktionieren seine eigene Lebensbasis ist, und bekriegt sich untereinander. Die aktuellen politischen Systeme erwecken bislang nicht den Eindruck, als ob sie den aktuellen Herausforderungen gewachsen sind.

Die noch funktionierende Wissenschaft muss feststellen, dass politische Macht nicht automatisch wissenschaftliche Erkenntnisse übernimmt. Die politischen Systeme denken in kurzfristigen Zeiträumen, gewichten Tagesinteressen höher als langfristige Entwicklungen, und lassen weitgehend ein adäquates Verstehen vermissen. Das adäquate Verstehen ist — so scheint es — kein Automatismus.

WISSENSCHAFTS-ÖKOSYSTEM

Es braucht ein Ökosystem der besonderen Art, um gesellschaftliche Erkenntnisprozess kontinuierlich möglich zu machen. Wie lernt man dies, wenn es dafür keine Ausbilder gibt, weil der Sachverhalt neu ist?

Greifbar ist, dass die Förderung ausschließlich von Einzelwissenschaften nicht ausreichend ist, um das mögliche Zusammenwirken von mehreren Einzelwissenschaften in komplexen Problemstellungen zu fördern. Dazu bedarf es begriffliche und methodische Reflexionen in der Breite, kontinuierlich verankert in jeder Disziplin, und dennoch verknüpft in einem übergreifenden Verbund. In früheren Zeiten hatte dies die Philosophie geleistet. Neuer Ansätze wie die Wissenschaftsphilosophie haben bislang nirgends den Eingang in den alltäglichen Wissenschaftsbetrieb gefunden.

So gesehen vermehrt sich ständig die Anzahl der aufspielenden Einzelwissenschaften, aber für eine notwendige Gesamtschau fehlen die begrifflichen Dramaturgen. Wo sollen diese herkommen? Das moderne Wissenschaftssystem hat diese nicht vorgesehen und treibt damit freiwillig in eine Komplexität, die sie mehr und mehr von der sie ermöglichenden Gesellschaft abkoppelt. Eine wunderbare Zeit für ‚fake news‘, da ihnen keine öffentlich vermittelte Rationalität entgegen wirkt.

ÄUSSERES AM INNEREN MESSEN

Neben der gefährlichen Desintegration der vielen Einzelwissenschaften tragen die modernen empirischen Wissenschaften ein weiteres Defizit mit sich herum, das langfristig mindestens genauso gefährlich ist: die Ausklammerung der Innerlichkeit des Menschen. Die Erschließung der empirischen Realität für den Erkenntnisprozess war ein entscheidender Schritt als Gegengewicht zu der extrem schwer zu verstehenden inneren Erfahrung des Menschen in seinem Bewusstsein sowie deren Interaktion mit dem gesamten Gehirn und Körper. Aus der anfänglichen Schwierigkeit der empirischen Wissenschaften, das Innere des Menschen zu vermessen, folgt aber nicht notwendigerweise, dass das Innere deshalb grundsätzlich unwichtig oder unwissenschaftlich sei. Die mehr als 3000 Jahre feststellbaren spirituellen Traditionen quer in allen menschlichen Kulturen bilden starke Indikatoren, dass die vielfältigen inneren Erfahrungen für das Lebensgefühl und den Zustand eines menschlichen Lebens von großer Bedeutung sein können bzw. sind.

Unterstützt von einer neuen Querschnittwissenschaft zur Reflexion auf Wissenschaft und möglichen Integrationen von bislang getrennten einzelnen Disziplinen sollte entsprechend auch der Gegenstandsbereich der empirischen Wissenschaften in Richtung auf die inneren Zustände des Menschen radikal ausgeweitet werden. Im Rahmen der Bedeutungsfelder von Meditation, Spiritualität und Mystik gibt es viele starke Indikatoren für eine den einzelnen Menschen übersteigende Perspektive, die die Vielheit und Vielfalt des biologischen Lebens in möglicherweise in neuer Weise von innen her erschließen kann. Die bisherige Quantenmechanik erscheint in diesem Kontext nicht als ein Endpunkt sondern eher als ein Startpunkt, das Ganze nochmals von vorne neu zu denken.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

KÜNSTLICHE INTELLIGENZ (KI) – CHRISTLICHE THEOLOGIE – GOTTESGLAUBE. Ein paar Gedanken

Journal: Philosophie Jetzt – Menschenbild, ISSN 2365-5062
24.Juni 2018
URL: cognitiveagent.org
Email: info@cognitiveagent.org

Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

VORBEMERKUNG

Der folgende Text wurde im September in einer christlichen Zeitschrift veröffentlicht [*]. Es war (und ist) ein ‚experimenteller Text‘, bei dem ich versucht habe, auszuloten, was gedanklich passiert, wenn man die beiden Themenkreise ‚Glaube an Gott im   Format christlicher Theologie‘ mit dem Themenkreis ‚Künstliche Intelligenz‘ zusammen führt. Das Ergebnis kann überraschen, muss aber nicht. Dieser ganze Blog ringt von Anbeginn um das Verhältnis von Philosophie, Wissenschaft (mit Technologie) und dem Phänomen der Spiritualität als Menschheitsphänomen, und die christliche Sicht der Dinge (die in sich ja keinesfalls einheitlich ist), ist nur eine Deutung von Welt unter vielen anderen. Wer die Einträge dieses Blogs durch mustert (siehe Überblick) wird feststellen, dass es sehr viele Beiträge gibt, die um die Frage nach Gott im Lichte der verfügbaren Welterfahrung kreisen. Die aktuelle Diskussion von W.T.Stace’s Buch ‚Religion and the Modern Mind‘ (Beginn mit Teil 1 HIER) setzt sich auch wieder   mit dieser Frage auseinander.

INHALT BEITRAG

Im Alltag begegnen wir schon heute vielfältigen Formen von Künstlicher Intelligenz. Bisweilen zeigt sie sehr menschenähnliche Züge. In Filmen werden uns Szenarien vorgeführt, in denen Superintelligenzen zukünftig die Herrschaft über uns Menschen übernehmen wollen. Wie verträgt sich dies mit unserem Menschen-und Gottesbild? Macht Glauben an Gott dann noch Sinn?

I. KI IST SCHON DA …

Vielen Menschen ist gar nicht bewusst, wo sie im Alltag schon mit Programmen der Künstlichen Intelligenz (KI) zu tun haben. Schaut man sich aber um, wird man entdecken, dass Sie scheinbar schon überall am Werk ist. Hier ein paar Stichworte: Kundenanfragen werden immer mehr durch KI-Programme bestritten. In der Logistik: In Lagerhallen und ganzen Häfen arbeiten intelligente Roboter, die wiederum von anderen KI-Programmen überwacht und optimiert werden. Ähnliches in Fabriken mit Produktionsstraßen. Für die Wartung von Maschinenbenutzen Menschen Datenhelme, die über ein KI-Programm gesteuert werden und die dem Menschensagen, was er sieht, und wo er was tun soll. In der Landwirtschaft sind die beteiligten Maschinen vernetzt, haben KI-Programme entweder an Bord oder werden über Netzwerke mit KI-Programmen verbunden: diese kontrollieren den Einsatz und steuern Maßnahmen. Auf den Feldern können diese Maschinen autonom fahren. Im Bereich Luftfahrt und Schifffahrt können sich Flugzeuge und Schiffe schon heute völlig autonom bewegen, ebenso beim LKW-Verkehr und auf der Schiene. Durch das Internet der Dinge (IoT) wird gerade der Rest der Welt miteinander vernetzt und damit einer zunehmenden Kontrolle von KI-Programmen zugänglich gemacht. In der Telemedizin ist dies schon Alltag: Ferndiagnose und Fernbehandlung sind auf dem Vormarsch. Schon heute wird für die Diagnose schwieriger und seltener Krankheiten KI eingesetzt, weil sie besser ist als ganze Gruppen menschlicher Experten. Viele komplizierte Operationen – speziell im Bereich Gehirn – wären ohne Roboter und KI schon heute unmöglich. KI-Programme entschlüsseln das Erbgut von Zellen, Suchen und Finden neue chemische Verbindungen und pharmakologische Wirkstoffe.

In der Finanzwirtschaft haben KI-Programme nicht nur den Handel mit Aktien und anderen Finanzprodukten übernommen (Stichwort: Hochfrequenzhandel), sondern sie verwalten auch zunehmend das Vermögen von Privatpersonen, übernehmen den Kontakt mit den Kunden, und wickeln Schadensfälle für Versicherungen ab. Bei anwaltlichen Tätigkeiten werden Routineaufgaben von KI-Programmen übernommen. Richter in den USA lassen sich in einzelnen Bundesländern mit KI-Programmen die Wahrscheinlichkeit ausrechnen, mit der ein Angeklagter wieder rückfällig werden wird; dies wird zum Schicksal für die Angeklagten, weil die Richter diese Einschätzungen in ihr Urteil übernehmen. Das Militär setzt schon seit vielen Jahren in vielen Bereichen auf KI-Programme. Zuletzt bekannt durchfliegende Kampfroboter (Drohnen). Dazu weltweite Ausspähprogramme von Geheimdiensten, die mit Hilfe von KI-Programmen gewaltige Datenströme analysieren und bewerten.Diese Aufzählung mag beeindruckend klingen, sie ist aber nicht vollständig. In vielen anderen Bereichen wie z.B. Spielzeug, Online-Spiele, Musikproduktion,Filmproduktion, Massenmedien, Nachrichtenproduktion,… sind KI-Programme auch schon eingedrungen. So werden z.B. mehr und mehr Nachrichtentexte und ganze Artikel für Online-Portale und Zeitungen durch KI-Programme erstellt; Journalisten waren gestern. Dazu hunderttausende von sogenannten ’Bots’ (Computerprogramme, die im Internet kommunizieren, als ob sie Menschen wären), die Meinungen absondern, um andere zu beeinflussen. Was bedeuten diese Erscheinungsformen Künstlicher Intelligenz für uns?

A. Freund oder Konkurrent?

Bei einem nächtlichen Biergespräch mit einem der berühmtesten japanischen Roboterforschern erzählte er aus seinem Leben, von seinen Träumen und Visionen. Ein Thema stach hervor: seine Sicht der Roboter. Für ihn waren Roboter schon seit seiner Kindheit Freunde der Menschen, keinesfalls nur irgendwelche Maschinen. Mit diesen Roboter-Freunden soll das Leben der Menschen schöner, besser werden können. In vielen Science-Fiction Filmen tauchen Roboter in beiden Rollen auf: die einen sind die Freunde der Menschen, die anderen ihre ärgsten Feinde; sie wollen die Menschen ausrotten, weil sie überflüssig geworden sind. Bedenkt man, dass die Filme auf Drehbüchern beruhen, die Menschen geschrieben haben, spiegelt sich in diesem widersprüchlichen Bild offensichtlich die innere Zerrissenheit wieder, die wir Menschen dem Thema Roboter, intelligenten Maschinen, gegenüber empfinden. Wir projizieren auf die intelligenten Maschinen sowohl unsere Hoffnungen wie auch unsere Ängste, beides übersteigert, schnell ins Irrationale abrutschend.

B. Neue Verwundbarkeiten

Ob intelligente Maschinen eher die Freunde der Menschen oder ihre Feinde sein werden, mag momentan noch unklar sein, klar ist jedoch, dass schon jetzt der Grad der Vernetzung von allem und jedem jeden Tag einen realen Raum mit realen Bedrohungen darstellt. Global operierenden Hacker-Aktivitäten mit Datendiebstählen und Erpressungen im großen Stil sind mittlerweile an der Tagesordnung. Während die einen noch versuchen, es klein zu reden, lecken andere schon längst ihre Wunden und es gibt immer mehr Anstrengungen, diesen Angriffen mehr ’Sicherheit’ entgegen zu setzen. Doch widerspricht das Prinzip der Zugänglichkeit letztlich dem Prinzip der vollständigen Abschottung. Wenn die Vernetzung irgendeinen Sinn haben soll, dann eben den, dass es keine vollständige Abschottung gibt. Dies läuft auf die große Kunst einer ’verabredeten Abschottung’ hinaus: es gibt eine ’bestimmte Datenkonstellation, die den Zugang öffnet’. Dies aber bedeutet, jeder kann herumprobieren, bis er diese Datenkonstellation gefunden hat. Während die einen KI-Programme einsetzen, um diese Datenschlüssel zu finden, versuchen die anderen mit KI-Programmen, mögliche Angreifer bei ihren Aktivitäten zu entdecken. Wie dieses Spiel auf lange Sicht ausgehen wird, ist offen. In der Natur wissen wir, dass nach 3.8 Milliarden Jahren biologischem Leben die komplexen Organismen bis heute beständig den Angriffen von Viren und Bakterien ausgeliefert sind, die sich um Dimensionen schneller verändern können, als das biologische Abwehrsystem(das Immunsystem) lernen kann. Die bisherige Moral aus dieser Geschichte ist die, dass diese Angriffe bei komplexen Systemen offensichtlich ko-existent sind, dazu gehören. Nur ein schwacher Trost ist es, dass der beständige Abwehrkampf dazu beiträgt, die Systeme graduell besser zu machen. Mit Blick auf diese fortschreitende Vernetzung ist es wenig beruhigend, sich vorzustellen, dass es in ca. 70- 90 Jahren (wie viele vermuten) (Anmerkung: Siehe dazu eine längere Argumentation im 1.Kap. von Bostrom (2014) [Bos14]) tatsächlich eine echte technische Superintelligenz geben wird, die allen Menschen gegenüber überlegen ist; eine solche technische Superintelligenz könnte im Handumdrehen alle Netze erobern und uns alle zu ihren Gefangenen machen. Nichts würde mehr in unserem Sinne funktionieren: die Super-KI würde alles kontrollieren und uns vorschreiben, was wir tun dürfen. Über das Internet der Dinge und unsere Smartphones wäre jeder 24h unter vollständiger Kontrolle. Jede kleinste Lebensregung wäre sichtbar und müsste genehmigt werden. Ob und was wir essen, ob wir noch als lebenswert angesehen werden …

C. Noch ist es nicht soweit …

Zum Glück ist dieses Szenario einer menschenfeindlichen Superintelligenz bislang nur Science-Fiction. Die bisherigen sogenannten KI-Programme sind nur in einem sehr eingeschränkten Sinne lernfähig. Bislang sind sie wie abgerichtete Hunde, die nur das suchen,was ihnen ihre Auftraggeber vorgeben, zu suchen. Sie haben noch keine wirkliche Autonomie im Lernen, sie können sich noch nicht selbständig weiter entwickeln(nur unter speziellen Laborbedingungen). Allerdings sammeln sie Tag und Nacht fleißig Daten von allem und jedem und erzeugen so ihre einfachen Bilder von der Welt: z.B. dass die Männer im Alter von 21 in der Region Rhein-Main mit Wahrscheinlichkeit X folgende Gewohnheiten haben …. Herr Müller aus der Irgendwo-Straße hat speziell jene Gewohnheiten …. seine Freunde sind … Es gibt eine hohe Wahrscheinlichkeit dass er Partei Y wählen wird … dass er in drei Monaten ein neues Auto vom Typ X kaufen wird ….am liebsten klickt er folgende Adressen im Internet an …

In den Händen von globalen Firmen, anonymen Nachrichtendiensten, autoritären Regierungen oder verbrecherischen Organisationen können allerdings schon diese Daten zu einer echten Bedrohung werden, und diese Szenarien sind real. Die Rolle der bösen Superintelligenz wird hier bis auf weiteres noch von Menschen gespielt; Menschen haben in der Vergangenheit leider zur Genüge bewiesen, dass sie das Handwerk des Bösen sehr gut beherrschen können…Es stellt sich die Frage, ob sich die bisherigen einfachen künstlichen Intelligenzen weiter entwickeln können? Lernen künstliche Intelligenzen anders als Menschen? Welche Rolle spielen hier Werte? Sind Werte nicht ein altmodischer Kram, den nur Menschen brauchen (oder selbst diese eigentlich nicht)? Schließlich, wo kommt hier Gott ins Spiel? Tangieren künstliche Intelligenzen den menschlichen Glauben an Gott überhaupt?

II. WAS IST ’KÜNSTLICHE INTELLIGENZ’

Für eine Erkundungsreise in das Land der Künstlichen Intelligenz ist die Lage nicht ganz einfach, da das Gebiet der KI sich mittlerweile sehr stürmisch entwickelt. Immer mehr Konzepte stehen nebeneinander im Raum ohne dass es bislang allgemein akzeptierte Theorie- und Ordnungskonzepte gibt. (Anmerkung: Für zwei sehr unterschiedliche historische Rückblicke in das Thema sei verwiesen auf Mainzer (1995) [Mai95] und Nilsson (2010) [Nil10]. Für eine sehr populäre, wenngleich methodisch problematische, Einführung in den Stand der Disziplin siehe Russel und Norvik (2010) [RN10]).

Wir besuchen hier für einen Einstieg einen der großen Gründungsväter ganz zu Beginn 1936 – 1950 Alan Matthew Turing, und dann für die Zeit 1956 – 1976 Alan Newell und Herbert A.Simon. (Anmerkung: Simon war auch ein Nobelpreisträger im Gebiet der Wirtschaftswissenschaften 1978.) Dann schauen wir noch kurz in allerneueste Forschungen zum Thema Computer und Werte.

A. Am Anfang war der Computer

Wenn wir von künstlicher Intelligenz sprechen setzen wir bislang immer voraus, dass es sich um Programme (Algorithmen) handelt, die auf solchen Maschinen laufen, die diese Programme verstehen. Solche Maschinen gibt es seit 1937 und ihre technische Entwicklung hing weitgehend davon ab, welche Bauteile ab wann zur Verfügung standen. Das Erstaunliche an der bisherigen Vielfalt solcher Maschinen, die wir Computer nennen, ist, dass sich alle diese bis heute bekannt gewordenen Computer als Beispiele (Instanzen) eines einzigen abstrakten Konzeptes auffassen lassen. Dieses Konzept ist der Begriff des universellen Computers, wie er von Alan Matthew Turing 1936/7 in einem Artikel beschrieben wurde (siehe: [Tur 7] 4 ). In diesem Artikel benutzt Turing das gedankliche Modell einer endlichen Maschine für jene endlichen Prozesse, die Logiker und Mathematiker intuitiv als ’berechenbar’ und ’entscheidbar’ ansehen. (Anmerkung: Zum Leben Turings und den vielfältigen wissenschaftlichen Interessen und Einflüssen gibt es die ausgezeichnete Biographie von Hodges (1983) [Hod83].) Das Vorbild für Turing, nach dem er sein Konzept des universellen Computers geformt hat, war das eines Büroangestellten, der auf einem Blatt Papier mit einem Bleistift Zahlen aufschreibt und mit diesen rechnet.

B. Computer und biologische Zelle

Was Turing zur Zeit seiner kreativen Entdeckung nicht wissen konnte, ist die Tatsache, dass sein Konzept des universellen Computers offensichtlich schon seit ca. 3.5 Milliarden Jahre als ein Mechanismus in jeder biologischen Zelle existierte. Wie uns die moderne Molekularbiologie über biologische Zellen zur Erfahrung bringt(siehe [AJL + 15]), funktioniert der Mechanismus der Übersetzung von Erbinformationen in der DNA in Proteine (den Bausteinen einer Zelle) mittels eines Ribosom-Molekülkomplexes strukturell analog einem universellen Computer. Man kann dies als einen Hinweis sehen auf die implizite Intelligenz einer biologischen Zelle. Ein moderner Computer arbeitet prinzipiell nicht anders.

C. Computer und Intelligenz

Die bei Turing von Anfang an gegebene Nähe des Computers zum Menschen war möglicherweise auch die Ursache dafür, dass sehr früh die Frage aufgeworfen wurde, ob, und wenn ja, wieweit, ein Computer, der nachdem Vorbild des Menschen konzipiert wurde, auch so intelligent werden könnte wie ein Mensch?

Der erste, der diese Frage in vollem Umfang aufwarf und im einzelnen diskutierte, war wieder Turing. Am bekanntesten ist sein Artikel über Computerintelligenz von 1950 [Tur50]. Er hatte aber schon 1948 in einem internen Forschungsbericht für das nationale physikalische Labor von Großbritannien einen Bericht geschrieben über die Möglichkeiten intelligenter Maschinen. (Anmerkung: Eine Deutsche Übersetzung findet sich hier: [M.87]. Das Englische Original ’Intelligent Machinery’ von 1948 findet sich online im Turing Archiv: http://www.alanturing.net/intelligent_machinery.) In diesem Bericht analysiert er Schritt für Schritt, wie eine Maschine dadurch zu Intelligenz gelangen kann, wenn man sie, analog wie bei einem Menschen, einem Erziehungsprozess unterwirft, der mit Belohnung und Strafe arbeitet. Auch fasste er schon hier in Betracht, dass sein Konzept einer universellen Maschine das menschliche Gehirn nachbaut. Turing selbst konnte diese Fragen nicht entscheiden, da er zu dieser Zeit noch keinen Computer zur Verfügung hatte, mit dem er seine Gedankenexperimente realistisch hätte durchführen können. Aber es war klar, dass mit der Existenz seines universellen Computerkonzeptes die Frage nach einer möglichen intelligenten Maschine unwiderruflich im Raum stand. Die Fragestellung von Turing nach der möglichen Intelligenz eines Computers fand im Laufe der Jahre immer stärkeren Widerhall. Zwei prominente Vertreter der KI-Forschung, Allen Newell und Herbert A.Simon, hielten anlässlich des Empfangs des ACM Turing-Preises1975 eine Rede, in der sie den Status der KI-Forschung sowie eigene Arbeiten zum Thema machten (siehe dazu den Artikel [NS76]).

D. Eine Wissenschaft von der KI

Für Newell und Simon ist die KI-Forschung eine empirische wissenschaftliche Disziplin, die den Menschen mit seinem Verhalten als natürlichen Maßstab für ein intelligentes Verhalten voraussetzt. Relativ zu den empirischen Beobachtungen werden dann schrittweise theoretische Modelle entwickelt, die beschreiben, mit welchem Algorithmus man eine Maschine (gemeint ist der Computer) programmieren müsse, damit diese ein dem Menschen vergleichbares – und darin als intelligent unterstelltes – Verhalten zeigen könne. Im Experiment ist dann zu überprüfen, ob und wieweit diese Annahmen zutreffen.

E. Intelligenz (ohne Lernen)

Aufgrund ihrer eigenen Forschungen hatten Newell und Simon den unterstellten vagen Begriff der ’Intelligenz’ schrittweise ’eingekreist’ und dann mit jenen Verhaltensweisen in Verbindung gebracht, durch die ein Mensch (bzw. ein Computer) bei der Abarbeitung einer Aufgabe schneller sein kann, als wenn er nur rein zufällig’ handeln würde. ’Intelligenz’ wurde also in Beziehung gesetzt zu einem unterstellten ’Wissen’ (und zu unterstellten ‚Fertigkeiten‘), über das ein Mensch (bzw. ein Computer) verfügen kann, um eine bestimmte Aufgabe ’gezielt’ zu lösen. Eine so verstandene ’Intelligenz’ kann sich aus sehr vielfältigen, möglicherweise sogar heterogenen, Elementen zusammen setzen.

Dies erklärt ihre mannigfaltigen Erscheinungsweisen bei unterschiedlichen Aufgaben. ’Intelligenz’ ist dabei klar zu unterscheiden, von einem ’Lernen’. Ist die Aufgabenstellung vor dem Einsatz einer Maschine hinreichend bekannt, dann kann ein Ingenieur all das spezifische Wissen, das eine Maschine für die Ausführung der Aufgabe benötigt, von vornherein in die Maschine ’einbauen’. In diesem Sinne ist jede Maschine durch das Knowhow von Ingenieuren in einem spezifischen Sinne ’intelligent’. Bis vor wenigen Jahrzehnten war dies die Standardmethode, wie Maschinen von Ingenieuren entworfen und gebaut wurden.

F. Lernen ermöglicht Intelligenz

Im Fall von biologischen Systemen ist ein solches Vorgehen kaum möglich. Biologische Systeme entstehen (durch Zellteilung), ohne dass bei der Entstehung bekannt ist, wie die Umwelt aussehen wird, ob sie sich verändert, welche Aufgaben das biologische Systemlösen muss. Zwar haben alle biologische Systeme auch genetisch vorbestimmte Verhaltensmuster, die gleich bei der Geburt zur Verfügung stehen, aber darüber hinaus haben alle biologische Systeme einen ariablen Anteil von Verhaltensweisen, die sie erst lernen müssen. Das Lernen ist hier jene Fähigkeit eines biologischen Systems, wodurch es seine internen Verhaltensstrukturen in Abhängigkeit von der ’Erfahrung’ und von ’spezifischen Bewertungen’ ’ändern’ kann. Dies bedeutet, dass biologische Systeme durch ihre Lernfähigkeit ihr Verhalten ’anpassen’ können. Sie können damit – indirekt – ein ’spezifisches Wissen’ erwerben, das ihnen dann eine spezifische ’Intelligenz’ verleiht, wodurch das biologischen System besser als durch Zufall reagieren kann. Diese Fähigkeit eines situationsgetriebenen Wissens besaßen Maschinen bis vor kurzem nicht. Erst durch die modernen Forschungen zu einer möglichen ’künstlichen Intelligenz (KI)’ machte man mehr und mehr Entdeckungen, wie man Maschinen dazu in die Lage versetzen könnte, auch nach Bedarf neues Verhalten erlernen zu können. Innerhalb dieses Denkrahmens wäre dann eine ’künstliche Intelligenz’ eine Maschine, hier ein Computer, der über Algorithmen verfügt, die ihn in die Lage versetzen, Aufgaben- und Situationsabhängig neues Verhalten zu erlernen, falls dies für eine bessere Aufgabenbearbeitung wünschenswert wäre.

Die noch sehr ursprüngliche Idee von Turing, dass ein Computer Lernprozesse analog dem der Menschen durchlaufen könnte, inklusive Belohnung und Bestrafung, wurde seitdem auf vielfältige Weise weiter entwickelt. Eine moderne Form dieser Idee hat unter dem Namen ’Reinforcement Learning’ sehr viele Bereiche der künstlichen Intelligenzforschung erobert (vgl. Sutton und Barto (1998) [SB98]).

G. KI und Werte

Für die Aufgabenstellung einer ’lernenden Intelligenz’ spielen ’Werte’ im Sinne von ’Verhaltenspräferenzen’ eine zentrale Rolle. Ein Gebiet in der KI-Forschung, in dem diese Thematik sehr intensiv behandelt wird, ist der Bereich der ’Entwicklungs-Robotik’ (Engl.:’developmental robotics’). In diesem Bereich wurde u.a. die Thematik untersucht (vgl. Kathryn Merrick(2017) [Mer17]), wie ein Roboter ’von sich aus’, ohne direkte Befehle, seine Umgebung und sich selbst ’erforschen’ und aufgrund dieses Lernens sein Verhalten ausrichten kann. Dabei zeigt sich, dass reine Aktivierungsmechanismen, die im Prinzip nur die Neugierde für ’Neues’ unterstützen, nicht ausreichend sind. Außerdem reicht es nicht aus, einen Roboter isoliert zu betrachten, sondern man muss Teams oder ganze Populationen von Robotern betrachten, da letztlich ein ’Wert’ im Sinne einer ’Präferenz’ (eine bevorzugte Verhaltenstendenz) nur etwas nützt, wenn sich alle Mitglieder einer Population daran orientieren wollen. Dies führt zur grundlegenden Frage, was denn eine Population von Robotern gemeinschaftlich als solch einen gemeinsamen ’Wert’ erkennen und akzeptieren soll. Wirklich befriedigende Antworten auf diese grundlegenden Fragen liegen noch nicht vor. Dies hat u.a. damit zu tun, dass die Robotersysteme, die hier untersucht werden, bislang noch zu unterschiedlich sind und dass es auch hier bislang – wie bei der KI-Forschung insgesamt – ein großes Theoriedefizit gibt in der Frage, innerhalb welches theoretischen Rahmens man diese unterschiedlichen Phänomene denn diskutieren soll.

Man kann aber den Ball dieser Forschung einmal aufgreifen und unabhängig von konkreten Realisierungsprozessen die Frage stellen, wie denn überhaupt ein ’Wert’ beschaffen sein müsste, damit eine ganze Population von Robotern sich ’von sich aus’ darauf einlassen würde. Letztlich müsste auch ein Roboter entweder eine ’eingebaute Tendenz’ haben, die ihn dazu drängt, ein bestimmtes Verhalten einem anderen vor zu ziehen, oder aber es müsste eine ’nicht eingebaute Tendenz’ geben, die im Rahmen seiner ’internen Verarbeitungsprozesse’ neue Verhalten identifizieren würde, die ihm im Sinne dieser ’Tendenz’ ’wichtiger’ erscheinen würde als alles andere. Es ist bislang nicht erkennbar, wo eine ’nicht eingebaute Tendenz’ für eine Verhaltensauswahl herkommen könnte. Ein industrieller Hersteller mag zwar solche Werte aufgrund seiner Interessenlage erkennen können, die er dann einem Roboter ’zu verstehen geben würde’, aber dann wäre die Quelle für solch eine ’Initiierung einer Verhaltenstendenz’ ein Mensch.

In der aktuellen Forschungssituation ist von daher als einzige Quelle für nicht angeborene Verhaltenstendenzen bislang nur der Mensch bekannt. Über welche Werte im Falle von sogenannten künstlichen Super-Intelligenzen diese verfügen würden ist noch unklar. Dass künstliche Super-Intelligenzen von sich aus Menschen grundsätzlich ’gut’ und ’erhaltenswert’ finden werden, ist in keiner Weise abzusehen. Die künstlichen Superintelligenzen müssten sich in Wertefragen – wenn überhaupt – eher am Menschen orientieren. Da die bisherige Geschichte der Menschheit zeigt, dass der Mensch selbst zu allen Zeiten eine starke Neigung hat, andere Menschen zu unterdrücken, zu quälen, und zu töten, würde dies für alle Menschen, die nicht über künstliche Superintelligenzen verfügen, tendenziell sehr gefährlich sein. Ihr ’Opferstatus’ wäre eine sehr große Versuchung für die jeweilige technologische Macht.

III. WER SIND WIR MENSCHEN?

Wenn Menschen sich in der KI wie in einem Spiegelbetrachten, dann kann dies für den betrachtenden Menschen viele Fragen aufwerfen. Zunächst erfinden die Menschen mit dem Computer einen Typ von intelligenter Maschine, die zunehmend den Eindruck erweckt, dass sich die Menschen in solchen Maschinen vervielfältigen (und möglicherweise noch übertreffen) können. Dann benutzen sie diese Computer dazu, die Strukturen des menschlichen Körpers immer tiefer zu erforschen, bis hin zu den Zellen und dort bis in die Tiefen der molekularen Strukturen, um z.B. unsere Gene zu erforschen, unser Erbmaterial, und zwar so weitgehend, dass wir dieses Erbmaterial gezielt verändern können. Die Menschen verstehen zwar noch nicht in vollem Umfang die möglichen Wirkungen der verschiedenen Änderungen, aber es ist möglich, real Änderungen vorzunehmen, um auszuprobieren, ’was dann passiert’? Mit Hilfe des Computers beginnt der Mensch, seinen eigenen Bauplan, sein eigenes genetisches Programm, umzubauen.

Dazu kommt, dass die Menschen seit dem19.Jahrhundert mit der modernen Biologiewissen können, dass die vielfältigen Formen des biologischen Lebens zu einem bestimmten Zeitpunkt immer das Ergebnis von langen vorausgehenden Entwicklungsprozessen sind. Das Wachsen und Sterben von Organismen gründet jeweils in einer befruchteten Zelle, für die durch das Erbmaterial festgelegt ist, wie sie sich weiter vermehrt und wie sich Millionen, Milliarden und gar Billionen von Zellen zu komplexen Formen zusammen finden. Und bei der Vervielfältigung von Zellen können Änderungen, Abweichungen vom ursprünglichen Plan auftreten, die über viele Tausende  und Millionen von Jahren zu deutlichen Änderungen im Bau und Verhalten eines Organismus führen können. Die Biologen sprechen von ’Evolution’. Eine Erkenntnis aus diesem Evolutionsprozess war (und ist), dass wir Menschen, so, wie wir heute da sind, auch solche evolutionär gewordene biologische Strukturen sind, die Vorläufer hatten, die mit uns heutigen Menschen immer weniger zu tun hatten, je weiter wir in der Zeit zurückgehen. Wer sind wir also?

Die Frage, ob Computer als intelligente Maschinen genau so gut wie Menschen werden können, oder gar noch besser, läuft auf die Frage hinaus, ob der Mensch Eigenschaften besitzt, die sich generell nicht durch einen Computer realisieren lassen.

Die moderne Psychologie und die modernen Neurowissenschaften haben bislang nichts zutage fördern können, was sich einem ingenieurmäßigen Nachbau entziehen könnte. Auch wenn es sich hierbei nicht um einen ’strengen Beweise’ handelt, so kann dieser Anschein einer generellen ’maschinelle Reproduzierbarkeit’ des Menschen in Gestalt von intelligenten Maschinen das bisherige Selbstverständnis von uns Menschen stark verunsichern.

IV. GLAUBEN AN GOTT

A. In allen Himmelsrichtungen

Aus der Geschichte der letzten Jahrtausende wissen wir, dass es zu allen Zeiten und in allen Kulturen Religionen gegeben hat. Die größten sind wohl (bis heute) der Hinduismus, der Buddhismus, das Judentum mit dem Christentum, und der Islam. So verschieden diese zu verschiedenen Zeiten und in verschiedenen Regionen äußerlich erscheinen mögen, sie verbindet alle das tiefe Fühlen und Glauben von Menschen an einen über-persönlichen Sinn, der Glaube an ein höheres Wesen, das zwar unterschiedliche Namen hat (’Gott’, ’Deus’, ’Theos’, ’Jahwe’, ’Allah’ …), aber – möglicherweise – vielleicht nur ein einziges ist.

B. Jüdisch-Christlich

So verschieden die christlichen Bekenntnisse der Gegenwart auch sein mögen, was die Anfänge angeht beziehen sich noch immer alle auf die Bibel, und hier, für die Anfänge der Geschichte auf das Alte Testament.(Anmerkung: Für eine deutsche Übersetzung siehe die Katholisch-Evangelische Einheitsübersetzung [BB81]).

Wie uns die modernen Bibelwissenschaften lehren, blickt der Text des Alten Testaments auf eine vielfältige Entstehungsgeschichte zurück. (Anmerkung: Für eine Einführung siehe Zenger et.al (1998) [ZO98]). Nicht nur, dass der Übergang von der mündlichen zur schriftlichen Überlieferung sich im Zeitraum von ca. -700 bis ca.+200 abgespielt hat, auch die redaktionelle Erzeugung verweist auf sehr viele unterschiedliche Traditionen, die nebeneinander existiert und die zu unterschiedlichen Varianten geführt haben. Auch die Kanonbildung dauerte dann nochmals viele hundert Jahre mit dem Ergebnis, dass es schwer ist, von dem einen Urtext zu sprechen. Für jene Menschen, die vorzugsweise Halt an etwas Konkretem, Festen suchen, mag dieses Bild der Überlieferung der Texte des alten Testaments beunruhigend wirken. Wird hier nicht vieles relativiert? Kann man denn da noch von einem ’Wort Gottes an die Menschen’ sprechen? Diese Furcht ist unbegründet, im Gegenteil.

C. Neues Weltbild

Wenn wir Menschen heute lernen (dürfen!), wie unsere individuelle, konkrete Existenz eingebettet ist in einen geradezu atemberaubenden Prozess der Entstehung der bekannten Lebensformen über viele Milliarden Jahre, wie unser eigener Körper ein unfassbares Gesamtkunstwerk von ca. 37 Billionen (10^12 !) Körperzellen in Kooperation mit ca. 100 Bio Bakterien im Körper und ca. 220 Mrd. Zellen auf der Haut  ist, die in jedem Moment auf vielfältige Weise miteinander reden, um uns die bekannten Funktionen des Körpers zur Verfügung zu stellen, dann deutet unsere reale Existenz aus sich heraus hin auf größere Zusammenhänge, in denen wir vorkommen, durch die wir sind, was wir sind. Und zugleich ist es die Erfahrung einer Dynamik, die das Ganze des biologischen Lebens auf der Erde in einem ebenfalls sich entwickelnden Universum umfasst und antreibt. Wenn wir verstehen wollen, wer wir sind, dann müssen wir diesen ganzen Prozess verstehen lernen.

Wenn wir uns dies alles vor Augen halten, dann können uns die Texte des alten Testaments sehr nahe kommen. Denn diese Texte manifestieren durch ihre Vielfalt und ihre Entstehungsgeschichte über viele Jahrhunderte genau auch diese Dynamik, die das Leben auszeichnet.

D. Schöpfungsberichte

Claus Westermann, ein evangelischer Theologe und Pfarrer, leider schon verstorben, hat uns einen Kommentar zum Buch Genesis hinterlassen und eine Interpretation der beiden biblischen Schöpfungsberichte, der jedem, der will, aufzeigen kann, wie nah diese alten Texte uns heute noch sein können, vielleicht viel näher als je zuvor. (Anmerkung: Neben seinen beiden wissenschaftlichen Kommentaren aus den Jahren 1972 und 1975 hat er schon 1971 ein kleines Büchlein geschrieben, in dem er seine Forschungsergebnisse in einer wunderbar lesbaren Form zusammengefasst hat (siehe: [Wes76]).

Der erste der beiden Schöpfungstexte in Gen 1,1-2,4a ist der jüngere der beiden; seine Entstehung wird auf die Zeit 6.-5.Jh vor Christus angesetzt, der zweite Schöpfungstext in Gen 2,4b – 24 wird mit seiner Entstehung im 10.-9.Jh vor Christus verortet. Der jüngere wird einer Überlieferungsschicht zugeordnet, die als ’Priesterschrift’ bezeichnet wird, die einen großen Bogen spannt von der Entstehung der Welt mit vielen Stationen bis hin zu einem neuen Bund zwischen Menschen und Gott. Dieser erste Schöpfungsbericht, bekannt durch sein 7-Tage-Schema, steht im Übergang von sehr, sehr vielen Traditionen mythischer Berichte über Schöpfung in den umliegenden Kulturen, Traditionen, die selbst viele Jahrhunderte an Entstehungszeit vorweisen können. Von daher wundert es nicht, wenn sich einzelne Worte, Motive, Bilder, die auch im 7-Tage-Schema auftauchen, Parallelen haben in anderen Schöpfungsgeschichten. Interessant ist das, was die biblische Schöpfungsgeschichte der Priesterschrift anders macht als die anderen bekannten Geschichten es tun.

E. Menschen als Ebenbild

Die zentrale Aussage im neueren Schöpfungsbericht ist nicht, wie im älteren Text, wie Gott den Menschen geschaffen hat, sondern die Aussage, dass er den Menschen nach seinem Bilde geschaffen hat, und dass er dem Menschen eine Verantwortung übertragen hat. In der schon zu dieser Zeit bekannten Vielgestaltigkeit der Welt, ihrer vielen Werdeprozesse, war die zentrale Einsicht und damit verbunden der Glaube, dass der Mensch als ganzer (nicht eine einzelne Gruppe, kein bestimmter Stamm, kein bestimmtes Volk!) über die konkrete, reale Existenz hinausweisend mit Gott verbunden ist als seinem Schöpfer, der auch ansonsten alles geschaffen hat: die Gestirne sind keine Götter, wie in vielen anderen älteren Mythen. Die Menschen sind nicht dazu da, niedere Arbeiten für Gott zu machen, wie in anderen Mythen. Die Menschen werden vielmehr gesehen als in einem besonderen Status im Gesamt der Existenz in der Geschichte, mit einer Verantwortung für das Ganze.

Und diese besondere Stellung des Menschen wird nicht festgemacht an besonderen körperlichen und geistigen Eigenschaften; schon zu dieser Zeit wussten die Autoren der Priesterschrift, wie vielfältig die Lebensformen, ja der konkrete Mensch, sein kann. Wenn wir heute durch die Wissenschaften lernen können, wie der Mensch sich im größeren Ganzen eines biologischen Werdens einsortieren lässt, wie der Mensch selbst durch seine Kultur, seine Technologie in der Lage und bereit ist, sich selbst in allen Bereichen– einschließlich seines biologischen Körpers – zu verändern, dann steht dies in keiner Weise im Gegensatz zu der globalen Sicht des biblischen Schöpfungsberichts. Im Gegenteil, man kann das Gefühl bekommen, das sich in unserer Gegenwart die Weite des biblischen Texte mit den neuen Weiten der Erkenntnisse über Mensch und Universum neu begegnen können. Was allerdings heute auffällig ist, wie viele Menschen sich schwer tun, in diesen neuen primär wissenschaftlichen Weltsichten den Glauben an einen Gott, einen Schöpfer, an eine Geschichtsübergreifende Beziehung zu einem Schöpfer aufrecht zu erhalten. Ist dies heute nicht mehr möglich?

F. Frömmigkeit – Spiritualität

An dieser Stelle sollte man sich vergegenwärtigen, dass zu allen Zeiten die Menschen in ihrer Religiosität nie nur ’gedacht’ haben, nie nur ’mit Bildern’ der Welt oder Gottes umgegangen sind. Zu allen Zeiten gab es – und gibt es noch heute – auch das, was man ’Frömmigkeit’ nennt, ’Spiritualität’, jenes sehr persönliche, individuelle sich einem Gott gegenüber ’innerlich Vorfinden‘, ’Ausrichten’, ’Fühlen’, ’Erleben’. Es ist nicht leicht, dafür die richtigen Worte zu finden, da es nun einmal ’innere’ Prozesse sind, die sich nicht wie Gegenstände vorweisen lassen können.   Sie betreffen das grundsätzliche Erleben eines Menschen, ein inneres Suchen, ein Erfahren, ein Erfülltsein (oder auch Leersein), das, was viele Menschen ermöglicht, ihr Leben in einer anderen, neuen Weise zu gestalten, sich zu ändern, anders mit Gefahren und Leiden umzugehen. In den Bildern des Alltags ’mehr’ sehen zu können als ohne dieses innere Erleben, Gestimmt sein.

In einer interessanten Untersuchung hat der britische Philosoph Walter Terence Stace die spirituellen Zeugnisse von vielen Jahrtausenden in unterschiedlichen Kulturen philosophisch untersucht (vgl. [Sta60]). Er kommt zu dem Ergebnis, dass sich trotz aller Verschiedenheiten im Äußeren, auch bei bestimmten Interpretationen, im Kern des Erlebens, des Wahrnehmens, sofern man dieses überhaupt von möglichen Interpretationen trennen lässt, erstaunliche Übereinstimmungen erkennen kann. Er folgert daraus, dass diese Fähigkeit von Menschen, einen übergreifenden Sinn direkt, existentiell erfahren zu können, möglicherweise auf eine sehr grundsätzliche Eigenschaft aller Menschen verweist, die wir einfach haben, weil wir Menschen sind. (Anmerkung: Er schließt auch nicht aus, dass alles Lebendige, von dem wir Menschen ja nur ein Teil sind, an dieser grundsätzlichen Fähigkeit einen Anteil haben könnte, wenn auch möglicherweise verschieden von der Art, wie wir Menschen erleben können.)

Die Tiefe und Weite der Sicht des jüngeren Schöpfungsberichts im Buch Genesis würde einem solchen grundlegenden Sachverhalt gut entsprechen: das Bild vom Menschen als Ebenbild Gottes schließt eine besondere Verbundenheit nicht aus; das ist das, was nach Westermann dem Menschen seine besondere Würde verleiht, diese Beziehung, nicht sein aktuelles konkretes So-sein, das sich ändern kann, ist die zentrale Botschaft.

G. Mensch, KI, Glaube an Gott

Damit beginnt sich der Kreis zu schließen. Wenn die Besonderheit des Menschen, seine zeitübergreifende Würde, in dieser grundlegenden Beziehung zu einem Schöpfergott gründet, die sich vielfältig im Gesamt des Universums und Lebens manifestiert, speziell auch in einer Form von individueller Spiritualität, dann gewinnt die Frage nach der Zukunft von Mensch und intelligenten Maschinen noch eine neue Nuance.

Bislang wird von den Vertretern einer Zukunft ohne Menschen nur noch mit intelligenten Maschinen einseitig abgehoben auf die größere Rechenkraft und die größeren Speicher, die alles erklären sollen. In diesem Beitrag wurde darauf hingewiesen, dass selbst die einfachsten Formen des Lernens ohne ’Werte’ im Sinne von ’Präferenzen’, von ’Bevorzugung von Handlungsalternativen’, ins Leere laufen. Sogenannte ’angeborene’ Präferenzen (oder eingebaute) können nur einen sehr begrenzten Nutzen vermitteln, da sich die Handlungsgegebenheiten und die gesamte Welt beständig weiter verändern. Auch die teilweise sehr komplexen Wertfindungen im sozialen-kulturellen Kontext ganzer Populationen, die von den künstlichen Intelligenzen dieser Welt noch nicht mal ansatzweise beherrscht werden, sind nur von begrenztem Wert, wie die bisherige Kulturgeschichte der Menschen eindrücklich belegt. [Mai95]

Vor diesem Hintergrund ist aktuell nicht zu sehen, wie intelligente Maschinen in der Zukunft alleine zu irgendwelchen brauchbaren Präferenzen kommen können. [SB98][Mer17][Nil10][NS76][RN10][Sta60][Tur37] Ungeklärt ist aktuell allerdings, ob und wieweit der Mensch – also jeder von uns – im Wechselspiel von philosophisch-empirischer Welterkenntnis und Spiritualität jene großen Richtungen ermitteln kann, die für die kommende komplexe Zukunft gefordert wird?

Sollte die Existenz eines Schöpfergottes über Welterkenntnis und Spiritualität wichtig sein für ein weiteres erfolgreiches Fortschreiten, dann hätten intelligente Maschinen möglicherweise ein grundsätzliches Problem. Es sei denn, auch sie könnten Gott erfahren? Einfacher wäre es, wenn Mensch und Maschine ihre aktuelle Koexistenz zu einer intensiveren Symbiose ausbauen würden. Dies würde viele sehr spannende Perspektiven bieten. Der Glaube an einen Schöpfergott ist auch heute, nach allem, was wir jetzt wissen können, keineswegs unsinnig;er erweist sich sogar – rein rational – als scheinbar dringend notwendig. Andererseits ist ein lebendiger Glaube kein Automatismus, sondern erfordert von jedem Menschen sein sehr persönliches Engagement in Verbundenheit mit dem ganzen Leben in einem dynamischen Universum. Gott erscheint hier nicht als das Hindernis, eher unsere Verweigerungen, das Ganze anzuschauen und zu akzeptieren.

QUELLEN

[*] G.Doeben-Henisch, Künstliche Intelligenz und der Glaube an Gott, In: Brennpunkt Gemeinde 70 (Aug./Sept. 2017), Studienbrief R21, 14 S., Hg. AMD Arbeitsgemeinschaft Missionarische Dienste im Verbund der Diakonie, Neukirchener Verlagsgesellschaft mbH, 47497 Neukirchen-Vluyn

[AJL + 15] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff,
K. Roberts, and P. Walter. Molecular Biology of the Cell.
Garland Science, Taylor & Francis Group, LLC, Abington
(UK) – New York, 6 edition, 2015.
[BB81] Katholisches Bibelwerk and Deutsche Bibelgesellschaft. Die
Heilige Schrift. Einheitsübersetzung. Verlag Katholisches
Bibelwerk & Deutsche Bibelgesellschaft, Stuttgart, 1 edition, 1981.
[Bos14] Nick Bostrom. Superintelligence. Paths, Dangers, Strategies.
Oxford University Press, Oxford (UK), 1 edition, 2014.
[Hod83] Andrew Hodges. Alan Turing, Enigma. Springer Verlag, Wien
– New York, 1 edition, 1983.
[M.87] Turing Alan M. Intelligente maschinen. In Bernhard Dotzler
and Friedrich Kittler, editors, Alan M. Turing. Intelligence
Service, pages 81 – 113. Brinkmann & Bose, Berlin, 1987.

[Mai95] Klaus Mainzer. Computer – Neue Flügel des Geistes? Die
Evolution computergestützter Technik, Wissenschaft, Kultur
und Philosophie. Walter de Gruyter, Berlin – New York, 1th edition, 1995.
[Mer17] Kathrin Merrick. Value systems for developmental cognitive
robotics: A survey. Cognitive Systems Research, 41:38–55, 2017.
[Nil10] Nils J. Nilsson, editor. The Quest for Artificial Intelligence. A
History of Idesas and Achievements. Cambridge University
Press, New York, 2010.
[NS76] Allen Newell and Herbert A. Simon. Computer science as
empirical inquiry: Symbols and search. Communications of
the ACM, 19(3):113–126, 1976.
[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, Inc., Upper Saddle River, 2010.
[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning. An Introduction. The MIT Press, Ambridge (MA) –
London, 1 edition, 1998.
[Sta60]W.T. Stace. Mysticism and Philosophy. Jeremy P.Tarcher,
Inc., Los Angeles, 1 edition, 1960. (Eine Diskussion hier im Blog findet sich HIER).
[Tur37] Alan M. Turing. Corrections to: On computable numbers, with
an application to the entscheidungsproblem. Proceedings of
the London Mathematical Society, 43:544–546, 1937.
[Tur50] Alan Turing. Computing machinery and intelligence. Mind,
59:433–460, 1950.
[Tur 7] Alan M. Turing. On computable numbers, with an application
to the entscheidungsproblem. Proceedings of the London
Mathematical Society, 42(2):230–265, 1936-7.
[Wes76] Claus Westermann. Schöpfung. Kreuz-Verlag, Stuttgart –
Berlin, 2 edition, 1976.
[ZO98] Erich Zenger and Others. Einleitung in das Alte Testament.
W.Kohlhammer, Stuttgart, 3rd edition, 1998

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Ballungsraum 2117 und technische Superintelligenz. Welche Rolle verbleibt uns Menschen?

Journal: Philosophie Jetzt – Menschenbild, ISSN 2365-5062
14.April 2018
URL: cognitiveagent.org
Email: info@cognitiveagent.org

Autor: Gerd Doeben-Henisch, Frankfurt University of Applied Sciences
Email: doeben@fb2.fra-uas.de
Email: gerd@doeben-henisch.de

PDF

INHALT

I VISION RESILIENZ
II VIELE AKTEURE
III PROBLEMLÖSUNGSSTRATEGIEN
IV MENSCH UND KOMPLEXITÄT
V INGENIEURE ALS VORBILD
VI CLUB OF ROME – NUR GESTERN?
VII DER UMFASSEND DIGITALISIERTE MENSCH ENTSTEHT HEUTE
VIII SIMULATIONEN BEHERZTER NUTZEN?
IX TECHNISCHE SUPERINTELLIGENZ
X WAS KANN EIN COMPUTER?
XI DAS EI DES COLUMBUS
XII EINE NEUE MENSCH-MASCHINE SUPER-INTELLIGENZ FÜR DEN BALLUNGSRAUM?
IX QUELLEN

ÜBERBLICK

Dieser Text wurde ursprünglich als Vorbereitung für das Programmheft der Konferenz ’Der Resiliente Ballungsraum’ des Frankfurter Forschungsinstituts FFin am 13.April 2018 geschrieben. Die aktuelle Version stellt eine leicht überarbeitete Version im Anschluss an die Konferenz dar, ergänzt um Literaturangaben. Ausgehend von der Komplexität heutiger Ballungsräume wird die Frage gestellt, ob und wie wir Menschen die neuen digitalen Technologien, insbesondere auch künstliche Intelligenz, nutzen könnten, um mit dieser Komplexität besser umzugehen. Durch die langsam wachsende Erkenntnis, dass der resiliente Charakter vieler komplexer Systeme zudem ein Denken verlangt, das weit hinter die Oberfläche der Phänomene schaut, wird die Frage nach einer möglichen Unterstützung durch die neuen digitalen Technologien umso dringlicher. Im Text schält sich eine ungewöhnliche mögliche Antwort heraus, die auf eine ganz neue Perspektive in der Planungsdiskussion hinauslaufen könnte.

I. VISION RESILIENZ

Mit der Leitidee der ’Resilienz’ (1) zielt das Denken im Kern ab auf die Dimension der Überlebensfähigkeit von Ballungsräumen, die sich als dynamische Gebilde zeigen, ständigen Veränderungen unterworfen sind, ein dicht  verwobenes Knäuel von Faktoren, die alle gleichzeitig miteinander in Wechselwirkung stehen. Und, ja, natürlich, wer ist nicht daran interessiert, dass diese Gebilde als konkrete Lebensräume für konkrete Menschen möglichst lange funktionsfähig bleiben. Doch, was als sinnvoller Wunsch einer breiten Zustimmung sicher sein kann, kann sehr schnell zur Last, oder gar zum Alptraum werden, wenn man auf die eine oder andere Weise zum ’realen Akteur’ werden muss.(2)

(Anmk: 1: Dieser Artikel benutzt den Resilienzbegriff, wie er in dem grundlegenden Artikel von Holling 1973 [Hol73] vorgestellt worden ist)

(Anmk: 2: Eine Auseinandersetzung mit dem neuen Lieblingswort der ’Resilienz’ im Kontext der Städteplanung findet in einem Folgeartikel in diesem Blog statt. Mit Blick auf den Städtebau siehe auch Jakubowski (2013) [Jak13] )

II. VIELE AKTEURE

Ein polyzentrischer Ballungsraum wie das Rhein-Main Gebiet zählt schon heute an die 5 Mio. Bürger, die in tausenden von unterschiedlichen Rollen Akteure sind, die den Ballungsraum nutzen, ihn auf unterschiedliche Weise gestalten, und die alle ihre Ansprüche haben, die sie befriedigt sehen wollen. (3) Jeder dieser Akteure hat ’sein Bild’ von diesem Ballungsraum. Der eigene Wohnbereich, die täglichen Wege zur und von der Arbeit, Einkäufe, Kinder zum Kindergarten oder zur Schule, vielfältige Freizeit, Großereignisse, Unwetter, Krankheiten . . . irgendwie muss alles irgendwie stimmen, muss es lebbar sein, bezahlbar…. Leiter von Firmen haben weitere spezielle Anforderungen, nicht zuletzt die Verfügbarkeit geeigneter Mitarbeiter, Planungssicherheit, möglichst geringe Kosten, Verkehrs- und Telekommunikationsanbindungen, und vieles mehr . . . Die Ämter und Fachreferate in den Kommunen stehen im Kreuzfeuer vielfältigster politischer Interessen, von Alltagsanforderungen, mangelnder Kommunikation zwischen allen Abteilungen, Bergen von Vorschriften, Mangel an Geld, Personalproblemen, einer Vielzahl von komplexen und disparaten Plänen, ungelösten Altlasten aus der Vergangenheit… Polyzentrisch heißt auch, es gibt nicht nur viele Zentren, sondern auch entsprechend viele Kapitäne, die ihre eigenen Routen haben. Wie soll dies alles koordiniert werden?

(Anmk: 3:   Siehe dazu Peterek/ Bürklin (2014) [PB13], Buerklin/ Peterek (2016) [BP16] )

III. PROBLEMLÖSUNGSSTRATEGIEN

Aus der Nähe betrachtet mutiert die Vision eines resilienten Planungsraumes schnell zum bekannten Muster des ’Lösens eines Problems’: es gibt einen Ausgangspunkt, die jeweilige Gegenwart, es gibt eine Gruppe von Akteuren, die selbst ernannten Problemlöser, und es gibt verschiedene Strategien, wie man versucht, ausgehend von einer – meist nur partiell bekannten – Gegenwart brauchbare Erkenntnisse für eine unbekannte Zukunft zu gewinnen; dazu soll die Lösung – entsprechend der Vision – ’resilient’ sein.

Schaut man sich konkrete Beispiele von Planungstätigkeiten aus den letzten Monaten im Rhein-Main Gebiet an, dann findet man sehr viele unterschiedliche Formen von Problemlösungsverhalten. Zwischen einer rein ’inner-behördlichen’ Vorgehensweisen mit sehr eingeschränkten Ist-Erfassungen und Lösungsfindungen bis hin zu einer sehr umfassenden Einbeziehungen von vielen Bevölkerungsgruppen über viele Kommunikationsstufen hinweg mit unterschiedlichen kreativen Ideen-Findungen. (4)

Diese letzteren, möglichst viele unterschiedliche Akteure einbeziehenden Vorgehensweisen, wirken auf den ersten Blick vertrauenerweckender, da grundsätzlich mehr Perspektiven zu Wort kommen und damit sowohl ein größerer Erfahrungsraum aus der Gegenwart wie auch eine größere Farbigkeit für eine mögliche Zukunft. Wäre solch eine Strategie die Strategie der Stunde?

(Anmk: 4: Dazu war das Referat von Dr.Gwechenberger vom Dezernat Planen und Wohnen der Stadt Frankfurt, sehr aufschlussreich. Neben der in der Sache gründenden Komplexität spielen die vielfältigen rechtlichen Vorgaben eine große Rolle, dazu die unterschiedlichen Mentalitäten aller Beteiligten, insbesondere die vielfältigen individuellen Interessen und Motivlagen. Das ganze eingebettet in unterschiedliche Zeitfenster, wann welche Aktion möglich, sinnvoll oder notwendig ist. Demokratie ist so gesehen auf jeden Fall zeitaufwendig, dann aber– hoffentlich – resilienter und nachhaltiger)

IV. MENSCH UND KOMPLEXITÄT

Schaut man sich an, was der Mensch als Lebensform des Homo sapiens in den vielen tausend Jahren seit seiner Besiedlung aller Erdteile geleistet hat, dann kann man sich eigentlich nur vor Ehrfurcht verneigen. Quasi aus dem Nichts kommend hat er es im Laufe von ca. 70.000 Jahren geschafft, aufgrund seiner Intelligenz und Sprachfähigkeit immer komplexere Tätigkeiten auszubilden, Handwerkszeug, Technologien, Regeln des Zusammenlebens, Großansiedlungen, komplexe Handelsbeziehungen. Er zeigte sich fähig, komplexe Staaten zu bilden, Großreiche, fantastische Architektur, immer komplexere Maschinen, empirische Forschungen bis in die Tiefen des Universums, in die Tiefen der Materie, in die verschlungenen Wege der Mikrobiologie von den Molekülen zu einfachen, dann komplexen Zellen bis hin zu komplexen Lebewesen, vielfältigste Formen von Klängen, Musik, Sounds, Bildwelten.

Schließlich erfand er auch die Computertechnologie, mit der man unvorstellbar viele Daten in unvorstellbar schneller Zeit verarbeiten kann. Würden heute auf einen Schlag alle Computer und Netzwerke weltweit still stehen, die Welt bräche völlig in sich zusammen. Ein beispielloses Chaos und Elend wäre die Folge.

Dies deutet indirekt auf einen Sachverhalt, den wir als Menschen im Alltag gerne übersehen, um nicht zu sagen, den wir geradezu verdrängen. Dies hat zu tun mit den realen Grenzen unserer kognitiven Fähigkeiten.

Trotz eines fantastischen Körpers mit einem fantastischen Gehirn hat jeder Mensch nur eine sehr begrenzte kognitive Aufnahmefähigkeit von ca. 5-9 Informationseinheiten pro Sekunde, was jeder Mensch in einfachen Selbstversuchen an sich überprüfen kann. (5) Und die Verarbeitung dieser Informationseinheiten mit Hilfe des vorher erworbenen Wissens verläuft unbewusst nach weitgehend relativ festen Schemata, die es einem Menschen schwer machen, Neues zu erfassen bzw. in sein bisheriges Bild von der Welt einzubauen. (6) Noch schwerer tut sich jeder Mensch, wenn es darum geht, Zusammenhänge zu erfassen, die vielerlei Faktoren umfassen, Faktoren, die oft zudem ’verdeckt’, auf den ersten Blick ’unsichtbar’ sind. Ganz schwer wird es, wenn sich komplexe Faktorenbündel zusätzlich in der Zeit ändern können, womöglich noch mit Rückkopplungen.

Gilt schon die Voraussage des Verhaltens eines einzelnen Menschen für nur ein Jahr mathematisch als unmöglich, so erscheint die Voraussage des Verhaltens von 5 Mio. Bewohner des Rhein-Main Gebietes entsprechend undurchführbar, zumal die Ab- und Zuwanderung hier sehr hoch ist. (7) Dazu kommen Veränderungen von Bedürfnislagen, Veränderungen von Technologien, Veränderungen von konkurrierenden Wirtschaftsregionen, und vieles mehr. Die bislang bekannten und praktizierten Planungsverfahren wirken angesichts dieser zu bewältigenden Komplexität nicht sehr überzeugend. Sie wirken eher hilflos, uninformiert. Scheitern wir mit unseren begrenzten individuellen kognitiven Fähigkeiten an der heutigen Komplexität?

(Anmk: 5: Die erste bahnbrechende Untersuchung zu der ’magischen Zahl 7+/-2’ stammt von George A.Miller (1956) [Mil56]. Dazu gibt es zahllose weitere Studien, die das Thema weiter auffächern, aber nicht diese grundsätzliche Kapazitätsbegrenzung.)

(Anmk: 6: Bekannte Texte zum Zusammenspiel zwischen Kurz- und Langzeitgedächtnis sind Baddeley/Logie (1999) [BL99], Baddeley (2003) [Bad03], und Repovs/Baddeley (2006) [RB06]. Allerdings ist das Thema Gedächtnis mit diesen Artikeln nicht abgeschlossen sondern wird in vielen hundert weiteren Artikeln weiter untersucht.)

(Anmk: 7: Hinweis von Dr. Gwechenberger zur Migration der Stadt Frankfurt: rein statistisch wird innerhalb von 12 Jahren die gesamte Bevölkerung von Frankfurt einmal komplett ausgetauscht.)

V. INGENIEURE ALS VORBILD

Vergessen wir für einen Moment das Problem des komplexen Ballungsraumes und schauen, was denn die Ingenieure dieser Welt machen, wenn sie seit Jahrzehnten komplexe Systeme entwickeln, bauen und in Betrieb halten, die die kognitiven Fähigkeiten eines einzelnen Ingenieurs um viele Dimensionen übersteigen.

Moderne Ingenieurleistungen verlangen das Zusammenspiel von oft mehr als 10.000 einzelnen Experten aus sehr vielen unterschiedlichen Gebieten, nicht nur über Monate, sondern oft über Jahre hin. Wie kann dies funktionieren?

Ingenieure haben sehr früh gelernt, ihr Vorgehen zu systematisieren. Sie haben komplexe Regelwerke entwickelt, die unter dem Stichwort ’Systems Engineering’ beschreiben, wie man beliebige Probleme von der Aufgabenstellung in eine funktionierende Lösung überführt, einschließlich umfassender Tests in allen Phasen. Und selbst der spätere Einsatz des entwickelten Produktes oder der entwickelten Dienstleistung ist nochmals spezifiziert. Dies führt dazu, dass z.B. Flugzeuge, Atomkraftwerke, landesweite Energienetzwerke, Raumfahrtprojekte, im Vergleich die sichersten Systeme sind, die wir kennen.

Neben ausgeklügelten Dokumentationstechniken spielen im Engineeringprozess mathematische Modelle eine zentrale Rolle und, seit vielen Jahren unverzichtbar, computergestützte Simulationen. Schon seit vielen Jahren gibt es kein einziges anspruchsvolles Produkt mehr, das zuvor nicht vollständig als Computersimulation ausprobiert und getestet wurde. Dazu gehören z.B. auch Computerchips, speziell jene Prozessoren, die das Herz eines Computers bilden. Schon vor 30 Jahren waren diese so komplex, dass deren Entwicklung und die Tests auf ihre Funktionstüchtigkeit ohne Computer nicht möglich war. Anders gesagt, wir können Computer und all die anderen komplexen Produkte schon seit Jahren nur entwickeln, weil wir dazu Computer einsetzen. Kein menschliches Gehirn ist in der Lage, die schon heute benötigten Komplexitäten noch irgendwie praktisch zu meistern, auch viele tausende Gehirne zusammen nicht.

Angesichts dieser Erfolgsgeschichten im Bereich des Engineerings kann man sich fragen, ob man von diesen Erfahrungen für den Bereich der Planung von Ballungsräumen nicht irgend etwas lernen könnte?

VI. CLUB OF ROME – NUR GESTERN?

Manche von Ihnen erinnern sich vielleicht noch an die zu ihrer Zeit provozierende erste Studie ”The Limits to Growth” des Club of Rome von 1972. (8) Dies war der erste Versuch, die Dynamik der Erde unter der Herrschaft der Menschen mit einem umfassenden Computermodell abzubilden und mit Hilfe des Modells mögliche Hinweise zu bekommen, wie sich die Dinge bei Veränderung der bekannten Faktoren in der Zukunft auswirken.

Seit dieser Veröffentlichung sind mehr als 40 Jahre vergangen. (9) Es gab auf der einen Seite heftigste Kritik, aber zugleich auch viele evaluierende Studien, die immer wieder bekräftigten, dass die Kernaussagen dieses Modells – das vergleichsweise einfach war und ist – sich im Laufe der Jahrzehnte für die Variante ’normaler Verlauf’ weitgehend bestätigt hat. (10)

Es ist hier nicht die Stelle, ein abschließendes Urteil über dieses Computermodell zu fällen (ein Student von mir hatte es mal vollständig nach-programmiert). Man kann aber sagen, dass solche Modelle den bislang einzig bekannte Weg markieren, wie wir Menschen mit unserer sehr begrenzten Fähigkeit zum Denken von Komplexität uns behelfen können, diese Grenzen ansatzweise zu überwinden. Man muss sich die Frage stellen, warum wir diese Anstöße nicht in der Gegenwart systematisch aufgreifen und für unsere Zukunft nutzen?

(Anmk: 8: Meadows et.al (1972) [MLRBI72]. Die Studie des Club of Rome war die Weiterentwicklung eines Computermodells, das zurück geht auf ein Systemmodell (und Programm), das Jay W. Forrester im Laufe von 15 Jahren entwickelt hatte. Thema von Forrester war die Erforschung der Dynamik von sozialen Systemen, speziell auch von Ballungsräumen (’urban areas’). Bemerkenswert ist bei Forresters Modellbildung, dass er auch den individuellen Menschen sieht, der mit seinem jeweiligen Weltbild (er nennt es ’mentales Modell’ bzw. dann einfach ’Modell’) die Welt wahrnimmt, interpretiert und danach handelt. Will man das Verhalten ändern, dann muss man das individuelle Weltbild ändern, das in enger Wechselbeziehung zur aktuellen Gesellschaft steht.(siehe Foorester (1971) [For71]))

(Anmk:9: Da der Club of Rome 1968 gegründet wurde, feiert er 2018 sein 50-jähriges Jubiläum … und er ist immer noch aktiv.)

(Anmk: 10: Ein erster Überblick über die verschiedenen Argumente für und gegen die Analysen des Club of Rome finden sich in dem einschlägigen Wikipedia-Artikel https://en.wikipedia.org/wiki/Club of Rome. Im deutschen Wikipedia-Eintrag finden sich keine Hinweise auf kritische Einwände!)

VII. DER UMFASSEND DIGITALISIERTE MENSCH ENTSTEHT HEUTE

Im Jahre 1972 war der Computer noch keine Maschine des Alltags. Dies begann erst ab dem Jahr 1977 mit dem Auftreten von Kleincomputern für den privaten Gebrauch. Die Entwicklung seitdem war und ist explosiv.

Die Situation heute ist so, dass der Mensch mit seinem realen Körper zwar noch weiterhin in einer realen Körperwelt verankert ist, dass er aber über die vielen elektronischen Geräte, speziell durch Smartphones, Wearables, Tabletts, Notebooks, Laptops und PCs mit immer größeren Zeitanteilen seine Tages über Datennetze mit einer globalen Datenwelt verbunden ist, die rund um die Uhr Raum und Zeit vergessen lässt. Definierte sich ein Mensch früher über seine realen Aktivitäten, wird dies zunehmend ergänzt durch digitale Aktivitäten und Ereignisse. Das Selbstbild, der ganze persönliche Erlebnisraum wird zunehmend durch solche nicht-realweltlichen Strukturen ersetzt. Empirische Realität und digitale Realität beginnen im virtuellen Raum des individuellen Bewusstseins zu verschwimmen. Müsste der Mensch nicht noch seine elementaren körperlichen Bedürfnisse befriedigen, er könnte subjektiv ausschließlich im digitalen Raum arbeiten, kommunizieren, soziale Erfüllung finden, Spielen und . . . . die Grenzen dieser neuen digital erweiterten Lebensform sind bislang noch schwer zu fassen.

Während der professionelle Planungsalltag der Kommunen und Regionen Computer noch sehr verhalten einsetzt, zeigen uns die vielen Mio. Computerspieler weltweit, dass die Menschen sehr wohl Gefallen daran finden können, mit den Mitteln der Computersimulation die Gegenwart hinter sich zu lassen. Allein für Online-Computerspiele hat sich der Markt von 2011 bis 2016 von 21 Mrd. auf 31 Mrd. US-Dollar vergrößert. (11) Für das Jahr 2017 notieren die sechs Länder mit dem höchsten Umsatz bei Onlinespielen (China, USA, Japan, Deutschland, England, Südkorea) zusammen 84.7 Mrd.US-Dollar. (12) Dazu kommen nochmals 8 Mrd. US-Dollar für PC- und Spielkonsolenspiele. (13)

Computerspiele sind komplexe Simulationen in denen eine Ausgangslage mit Hilfe von Regeln in beliebig viele Nachfolgesituationen transformiert werden können. Dies geschieht mittlerweile in 3D, berücksichtigt realistische Geländeformationen mit Vegetation, komplexe Gebäude, viele Tausend Mitspieler, erlaubt gemeinsame Aktionen und macht so eine dynamische digitale Welt virtuell erlebbar.

Diese theoretische Beschreibung lässt das gewaltige Potential erahnen, das Computerspiele prinzipiell für Lernprozesse und für gemeinsame Zukunftsforschung haben könnten. In der Realität bleiben diese aber weit hinter ihren Möglichkeiten zurück, da die Betreiber bislang wenig Interesse zeigen, das Lern- und Forschungspotential dieser neuen ’Technologie ernsthaft zu nutzen. Die Computerspiele sind bislang eher Erlebnis-, nicht Wissens- getrieben.

(Anmk: 11: Quelle: https://www.statista.com/statistics/292516/pc-online-game-market-value-worldwide/.)

(Anmk: 12: Quelle: https://www.statista.com/statistics/308454/gaming-revenue-countries/.)

(Anmk: 13: Quelle: https://www.statista.com/statistics/237187/global-pc-console-games-revenue-by-type/. )

VIII. SIMULATIONEN BEHERZTER NUTZEN?

An dieser Stelle kann man sich die Frage stellen, warum man das Komplexitätsproblem am Beispiel von Ballungsräumen nicht mit diesen neuen Simulationstechniken angehen sollte?

Verteilte Simulationen würden beliebigen Bürgern die reale Möglichkeit bieten, sich zu beteiligen. Das unterschiedliche Wissen in den unterschiedlichen Köpfen könnte man schrittweise aufsammeln und als Regelwissen in den Simulationen zur Verfügung stellen. Im Unterschied zu kommerziellen Spielen könnte man diese Regeln offenlegen für alle und sie zum Gegenstand von Fachgesprächen machen. In realen Simulationsabläufen könnte man jeweils austesten, wie sich bestimmte Regeln auswirken: sind sie realistisch? Wo führen sie uns hin? Welche Wechselwirkungen mit anderen Regeln tun sich auf? Dieses Werkzeug könnten den Fachabteilungen in den Behörden genauso offen stehen wie den Schulen und Universitäten; Firmen könnten ihre eigenen Szenarien ausprobieren. Alle könnten sich immer wieder auch zu gemeinsamen Experimenten verabreden; man könnte gar Wettbewerbe starten, eine Art kommunales eGaming. In diesem Fall würde es dann wirklich um etwas gehen, nämlich um die eigene Welt und ihre mögliche Zukunft. Mit einem solchen verteilten dynamischen Planungswerkzeug könnte man den Ballungsraum 2117 schon ziemlich gut erforschen, zumindest soweit es uns heute, im Jahr 2018 überhaupt möglich ist. (14)

(Anmk: 14: Im Rahmen der abschließenden Podiumsdiskussion zur Tagung stieß die Idee des Einsatzes von mehr Computersimulationen im Gewand von Computerspielen für die Stadtplanung auf unterschiedliche Reaktionen. Der meiste Widerstand ging aus von der Vorstellung, dass Computerprogramme abgeschlossene Einheiten sind, die aus sich heraus niemals die Vielfalt und Dynamik der Wirklichkeit abbilden könnten. Dem hielt der Autor entgegen, dass man primär vom Kommunikationsprozess zwischen Menschen her denken müsse, dem Austausch von Weltbildern, verbunden mit einem möglichen ’Um-Lernen’ dieser Weltbilder. Innerhalb dieser Kommunikationsprozesse kann eine Computerspielumgebung sehr wohl helfen, komplexe Sachverhalte besser zu nutzen. Außerdem können die Regeln, nach denen hier die Welt gesteuert wird, von allen Teilnehmern eingesehen und auf Wunsch geändert werden.)

IX. TECHNISCHE SUPERINTELLIGENZ

An dieser Stelle könnte dieser Vortrag unter normalen Umständen enden. Schon jetzt enthält er eine Reihe von Anregungen, die über den aktuellen Status Quo weit hinausgehen. Aber wir leben in einer Zeit, in der die Welt – spätestens seit der Cebit 2016 – zu fast allen passenden und auch unpassenden Gelegenheiten mit dem Begriff ’Künstliche Intelligenz’ beschallt wird. Kaum noch ein Produkt oder eine Dienstleistung, die nicht irgendwie den Anspruch erhebt, entweder schon über ’künstliche Intelligenz’ zu verfügen oder demnächst mit so etwas ausgestattet zu werden. Und neben den Evangelisten der künstlichen Intelligenz treten auch die Propheten des Untergangs der Menschheit auf, für die die aktuelle ’Künstliche Intelligenz’ nur der Vorläufer einer ganz neuen, noch mächtigeren ’Künstlichen Intelligenz’ sei, die als ’Singularity’ alles übertreffen wird, was der Mensch als künstliche Intelligenz kennt und beherrscht. (15) Diese neue Super-Intelligenz soll dem Menschen in Geschwindigkeit, Datenvolumen und Denkfähigkeit so weit voraus und darin überlegen sein, dass diese technische Superintelligenz vom Menschen nicht mehr ernsthaft kontrolliert werden kann. Sie ist gegenüber dem Menschen so überlegen, dass sie den Menschen locker als überflüssiges Etwas abschaffen kann. Wie immer, gehen die Schätzungen, wann dies der Fall sein wird, deutlich auseinander, aber das Jahr 2117 ist ein guter Kandidat, wann es soweit sein könnte. (16) Was soll man von dieser nicht gerade beruhigenden Vision halten?

Dass Menschen alles, was ihnen neu und unbekannt ist, und ihnen Angst macht, in Form von überirdische Fabelwesen packen, ist so alt, wie die Aufzeichnungen der Menschheit reichen. In den vielen Sagen gibt es dann irgendwann einen Menschen, einen besonderen Menschen, einen Helden, der dann irgendwann eine Schwachstelle findet, durch deren Ausnutzung der Held dann das Fabelwesen zur Strecke bringen kann. Im Fall des neuen Mythos von der technischen Superintelligenz muss man allerdings nicht sehr weit suchen, um zu sehen, dass die Dinge vielleicht doch ganz anders liegen, als die Marketingmaschinerien uns glauben lassen wollen. Und ja, doch, es könnte sogar sein, dass sich hinter dem abschreckenden Mythos von der menschenfeindlichen technischen Superintelligenz eine sehr konkrete Technologie verbirgt, die uns Menschen bei unserem Komplexitätsproblem ernsthaft helfen könnte. Gehen wir zurück zu dem Mann, mit dem das seriöse Reden über die Computer-Maschine angefangen hat.

(Anmk: 15: Ein wichtiger Text zu Beginn der Diskussion um die ’technische Singularität’ ist ein Beitrag von Vinge 1993 zu einer Nasa-Konferenz [Vin93]. Ein sehr guter Einstieg in die Thematik der technischen Singularität findet sich in dem Wikipedia-Artikel zur ’Technological Singularity’, URL: https://en.wikipedia.org/wiki/Technological singularity)

(Anmk: 16: Für eine Diskussion, wann man mit welcher Art von ’Super-Human-Level’ maschineller Intelligenz rechnen sollte, finden sich im Kap.1 von Bostrom 2014 [Bos14]:SS.18-21 einige Argumente. Klar ist, dass es nicht ganz klar ist; es gibt zu viele Unbekannte und wichtige Begriffe sind unscharf. So gesehen ist die Zahl ’2117’ (geschrieben im Jahr 2017) eine fast ’satirische’ Schätzung unter Berücksichtigung der Argumente bei Bostrum.)

X. WAS KANN EIN COMPUTER?

Während die modernen Naturwissenschaften ihren Untersuchungsgegenstand, die reale Natur, von vornherein nicht kennen, sondern sich mühsam, über viele kleine Schritte, ein Bild erarbeiten müssen, wie es vielleicht sein könnte, hat die Computerwissenschaft es einfacher. Sie beginnt dort, wo es überhaupt noch keine Computer gab, sondern nur ein mathematisches Konzept über eine ideale Maschine, deren einzige Fähigkeit darin besteht, in völlig transparenter Weise eine endliche Liste von primitiven Befehlen auszuführen. (17) Im Unterschied zu einer normalen Maschine, die keine Befehle ausführt, kann eine Computer-Maschine Befehle ausführen. Dies erscheint noch nicht besonders aufregend. Ein klein wenig aufregender wird es dadurch, dass die Computermaschine mit einem Schreib-Lese-Band verknüpft ist, auf dem beliebige Zeichen stehen können. Man kann die Computer-Maschine so auslegen, dass sie diese Zeichen auf dem Schreib-Lese-Band als ihre neuen Anweisungen interpretiert. Dies klingt auch noch nicht aufregend. Aufregend wird es, wenn man sich klar macht, dass die Computer-Maschine diese Anweisungen auf dem Schreib-Lese-Band in eigener Regie verändern kann. Sie kann sozusagen das Programm, das sie steuert, selber abändern und damit die Kontrolle über ihre eigene Steuerung übernehmen. Damit verfügt die Computer-Maschine über eine wichtige Voraussetzung, um im Prinzip voll lernfähig zu sein.

Der soeben erwähnte Turing (18) war auch einer der ersten, der in drei Artikeln 1948, 1950 sowie 1953 ganz offen die Frage diskutierte, ob Computer-Maschinen, falls es diese irgendwann einmal als reale Maschinen geben würde, auch eine Intelligenz haben könnten, wie wir sie von Menschen kennen. (19) Turing selbst sah die Möglichkeit eher positiv. Er machte allerdings schon damals darauf aufmerksam, dass Computer-Maschinen aus seiner Sicht nur dann eine reelle Chance haben würden, mit dem Menschen im Lernen gleich zu ziehen, wenn sie ähnlich wie Kindern selbständig durch die Welt streifen könnten und – ausgestattet mit Kameras, Mikrophonen und weiteren Sensoren – die Welt wie sie ist wahrnehmen könnten.

Mittlerweile schreiben wir das Jahr 2018, das sind mehr als 65 Jahre nach Turings Spekulationen zu intelligenten, lernfähigen Computern. Wie viele Computer streifen durch die Welt wie Kinder? Nicht all zu viele, muss man feststellen; eigentlich kein einziger. Die bisherigen Roboter, die bekannt sind, haben eine sehr eingeschränkte Bewegungsfähigkeit und keiner von diesen lernt bislang in einer unbeschränkten Weise, wie Kinder es tun.

Der Bereich, in dem über lebenslang frei lernende Roboter geforscht wird, nennt sich ’Developmental Robotics’ oder – noch radikaler – ’Evolutionary Developmental Robotics’. (20) In einer Forschungsübersicht aus dem Jahr 2017 (21) gibt es eine zentrale Einsicht, die uns an dieser Stelle helfen kann. (22) Zwar weiß man eigentlich schon von den Anfängen in der Künstlichen Intelligenzforschung in den 1960iger Jahren, dass jegliche Art von Lernen minimale Formen von Rückmeldung benötigt, aber die Tragweite dieses Momentes wurde vielen Forschern erst in den letzten Jahren, und speziell in der ’Erforschung des offenen‘ Lernens so richtig klar. Wenn eine Computer-Maschinen selbständig offen lernen können soll, dann braucht sie minimale Präferenzen, um im allgemeinen Rauschen der Ereignisse Ansätze möglicher Muster zu finden. Im Fall von biologischen Systemen gibt es eine Mischung von sogenannten angeborenen Präferenzen, die sich letztlich von der Überlebenserfahrung herleiten, und eben das schlichte Überleben selbst. Nur wer überlebt besitzt offenbar brauchbare Informationen. Im Fall von Computer- Maschinen gibt es keine Überlebenserfahrungen. Eine Computer-Maschine beginnt am absoluten Nullpunkt. Bis vor wenigen Jahren haben Ingenieure das Problem dadurch gelöst, dass sie ihre eigenen Präferenzen in die Computer-Maschinen eingebaut haben. Dies hat so lange funktioniert, wie die Computer-Maschinen nur sehr spezielle Aufgaben lösen mussten, z.B. als Industrieroboter. In dem Maße aber, wie Computer-Maschinen beliebige Aufgaben lernen können sollen, funktioniert diese Strategie nicht mehr. Was nun? Woher sollen solche allgemeinen Präferenzen kommen?(23)

Die Frage mit den Präferenzen (andere sprechen von Werten) hat eine zusätzliche pikante Note, da der Homo sapiens das erste Lebewesen auf der Erde ist, das nicht mehr ausschließlich durch die nackte Überlebensnotwendigkeit getrieben ist. Der Homo sapiens, also wir Menschen, haben es durch unsere geistigen und kommunikativen Möglichkeiten geschafft, das nackte Überleben z.T. sehr weit in den Hintergrund zu drängen. Damit stellt sich für die Lebensform des Homo sapiens erstmals seit 4 Milliarden Jahren biologischen Lebens die Frage, welche möglichen Präferenzen es möglicherweise neben oder sogar vor dem nackten Überleben geben könnte. Dummerweise enthält der genetische Code keine direkte Antwort auf die Frage nach zusätzlichen Präferenzen.

(Anmk: 17:  Der Text, in dem diese Art der Beschreibung eines idealen Computers erstmals vorkommt, ist ein Text, in dem Alan Matthew Turing einen metamathematischen Beweis geführt hat, in dem es um eine andere Version des Unentscheidbarkeitsbeweises von Kurt Gödel 1931 ging. Siehe [Tur 7]. Zu Ehren von Turing wurde diese Version der Definition eines Computers ’Turingmaschine’ genannt. )

(Anmk: 18: Eine sehr gute Biographie zu Turing ist Hodges (1983) [Hod83])

(Anmk: 19: Siehe Turing 1948 [M.87], 1950 [Tur50], sowie 1953 [Tur63] 20 Erste gute Überblicke bieten die beiden Wikipediaeinträge zu ’developmental robotics’ https://en.wikipedia.org/wiki/Developmental robotics sowie zu ’evolutionary developmental robotics’ https://en.wikipedia.org/wiki/Evolutionary developmental robotics)

(Anmk: 21: Siehe Merrick (2017) [Mer17])

(Anmk: 22: Ergänzend auch Singh et.al. (2010) [SLBS10] und Ryan/Deci (2000) [RD00] )

(Anmk: 23: Eine der verbreitetsten Lernformen im Bereich Künstliche Intelligenz ist das sogenannte ’Reinforcement Learning (RL)’. Dieses setzt explizit ’Belohnungssignale’ (’reward’) aus der Umgebung voraus. Siehe zur Einführung Russell/ Norvig 2010 [RN10]:Kap.21 und Sutton/Barto 1998 [SB98])

XI. DAS EI DES COLUMBUS

Das Ei des Columbus gilt als Metapher für Probleme, die als unlösbar gelten, für die es dann aber doch eine Lösung gibt.

In unserem Fall ist das Problem die begrenzte kognitive Ausstattung des Menschen für komplexe Situationen sowie die Präferenzfreiheit technischer Systeme. Die bisherigen Lösungsansätze einer cloud-basierten allgemeinen Intelligenz führt letztlich zu einer Entmachtung des einzelnen ohne dass eine cloud-basierte Intelligenz eine wirklich Überlebensfähigkeit besitzt. Sie gleicht eher einem Vampir, der so lange lebt, als viele einzelne sie mit Details aus ihrem Alltag füttern. Ohne diese Details ist solch eine cloud-basierte Intelligenz ziemlich dumm und kann einem einzelnen kein wirklicher persönlicher Assistent sein.

Die Lösung könnte tatsächlich ein reales Ei sein, ein Ei gefüllt mit einer Computer-Maschine, deren Rechenkraft vor Ort genau einem Menschen zur Verfügung steht und genau diesem einem Menschen rund um die Uhr hilft, seine kognitiven Begrenzungen auszugleichen und zu überwinden. Dieses Computer-Maschinen Ei (natürlich könnte es auch jede andere Form haben, z.B. als Ohrring, Halskette, Armband usw.) kann mit dem Internet Verbindung aufnehmen, mit jeder denkbaren Cloud, aber nur dann, wann und wie dieses Ei es selber will, und es würde keinerlei privates Wissen einfach so preisgeben. So, wie die Gehirne der Menschen anatomisch alle ähnlich sind und doch sehr individuelle Persönlichkeiten ermöglichen, so kann ein Computer-Maschinen Ei die individuellen Erfahrungen und das individuelle Wissen eines Menschen passgenau erkennen und fördern. Es entsteht eine Symbiose von Mensch und Maschine, die deutlich mehr sein kann als jede Komponenten für sich alleine.

XII. EINE NEUE MENSCH-MASCHINE SUPER-INTELLIGENZ FÜR DEN BALLUNGSRAUM?

Greift man an dieser Stelle nochmals die Vision einer verteilten, flexiblen Simulationsumgebung für die Bürger in einer Region auf, dann kann eine zusätzliche Ausstattung aller Bürger mit ihren persönlichen intelligenten Assistenten dem ganzen Projekt einen zusätzlichen messbaren Schub geben. Die persönlichen Assistenten können auch dann arbeiten, wenn der einzelne mal müde ist, sich entspannen will oder mal mit familiären Aufgaben beschäftigt ist. Und der persönliche Assistent kann auch viele Tausend oder Millionen Faktoren gleichzeitig in Rechnung stellen und in ihren Auswirkungen verfolgen. Im Zusammenwirken dieser vielen natürlichen und technischen Intelligenzen könnte eine Mensch-Maschine Superintelligenz entstehen, die den einzelnen voll mit nimmt, und als Gesamtphänomen erheblich leistungsfähiger sein wird, als alles, was wir heute kennen.

Allerdings, wir sollten uns nicht der Illusion hingeben, dass damit dann alle Probleme gelöst wären. Das Problem der geeigneten Präferenzen, sprich der Werte, wird bleiben; es wird sich vermutlich eher verschärfen. Auch die Verantwortung für uns Menschen wird weiter wachsen, auch wenn sich diese Verantwortung qualitativ neu immer auf ganz viele verteilen wird.

IX QUELLEN

[Bad03] Alan Baddeley. Working memory and language: an overwiew. Journal of Communication Disorders, 36:236–242190–208, 2003.

[BL99] A. Baddeley and R.H. Logie. Working memory: The multiple-component model. In A. Myake and P. Shah, editors, Models of working memory, chapter 2, pages 28–61. Cambridge University Press, New York, 1999.

[Bos14] Nick Bostrom. Superintelligence. Paths, Dangers, Strategies. Oxford University Press, Oxford (UK), 1 edition, 2014.

[BP16] Thorsten Bürklin and Michael Peterek. Thecycloregion. city-regional development in frankfurt rhine-main – die zykloregion. stadtentwicklung in frankfurtrheinmain. Journal of Comparative ’Cultural Studies in Architecture, 9:41–51, 2016.

[For71] Jay W. Forrester. World Dynamics. Wright-Allen Press, Inc., Cambridge (MA) 02142, 2 edition, 1971.

[Hod83] Andrew Hodges. Alan Turing, Enigma. Springer Verlag, Wien – New York, 1 edition, 1983.

[Hol73] C.S. Holling. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1):1–23, 1973.

[Jak13] Peter Jakubowski. Resilienz – eine zusätzliche denkfigur für gute stadtentwicklung. Informationen zur Raumentwicklung, 4:371–378, 2013.

[M.87] Turing Alan M. Intelligente maschinen. In Bernhard Dotzler and Friedrich Kittler, editors, Alan M. Turing. Intelligence Service, pages 81 – 113. Brinkmann & Bose, Berlin, 1987.

[Mer17] Kathryn Merrick. Value systems for developmental cognitive robotics: A survey. Cognitive Systems Research, 41:38 – 55, 2017.

[Mil56] Geroge A. Miller. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63:81–97, 1956.

[MLRBI72] Donella H. Meadows, Meadows Dennis L., Jørgen Randers, and William W. Behrens III. The Limits to Growth. A Report for the Club of Rome’s Project on the Predicament of Mankind. Universe Books, New York, 1 edition, 1972.

[PB13] Michael Peterek and Thorsten Bürklin. Potentials and challenges of polycentric city-regions: A case-study of frankfurt rhine-main. Technical Transactions Architecture – Czasopismo Techniczne Architektura, 1-A:179–189, 2013.

[RB06] G. Repovs and A. Baddeley. The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience, 139:5–21, 2006.

[RD00] Richard M. Ryan and Edward L. Deci. Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1):54 – 67, 2000.

[RN10] Stuart Russel and Peter Norvig. Artificial Intelligence. A Modern Approach. Universe Books, 3 edition, 2010.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. An Introduction. The MIT Press, Ambridge (MA) – London, 1 edition, 1998.

[SLBS10] S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg. Intrinsically motivated reinforcement learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental Development, 2(2):70–82, June 2010.

[Tur50] Alan Turing. Computing machinery and intelligence. Mind, 59:433–460, 1950.

[Tur63] Alan Matthew Turing. Digital computers applied to games. In B.V. Bowden, editor, Faster Than Thought. Pitman Publishing, London, 1963.

[Tur 7] Alan M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, 42(2):230–265, 1936-7.

[Vin93] Vernor Vinge. The coming technological singularity: How to survive in the post-human era. In G.A. Landis, editor, Vision-21: Interdisciplinary Science and Engineering in the Era of Cyberspace, pages 11–22. 1993.

PROJEKTGRÜNDUNG

Im Anschluss an dieses Konferenz kam es zur Gründung eines Projektes, das versucht, den ‚Spirit des Kongresses‘ aufzugreifen und konkret umzusetzen. Siehe dazu HIER.

KONTEXT BLOG

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER

INFORMELLE KOSMOLOGIE – Und die Mensch-Maschine Frage

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 11.Februar 2018
URL: cognitiveagent.org
Email: info@cognitiveagent.org

Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

(Letzte Korrekturen: 12.Febr.2018)

PDF

INHALT

I Einleitung 2
II (Intelligente) Maschine 2
III Mensch 2
IV Informelle Kosmologie 3
V Philosophischer Ausklang 4

THEMA

Die Frage nach der Zukunft von Menschen in einer Welt voller intelligenter Maschinen tritt immer mehr in das Zentrum der globalen Aufmerksamkeit. Während lange Zeit positive Visionen einer besseren Zukunft des Menschen mittels (intelligenter) Maschinen die Aufmerksamkeit auf sich zogen, kommen aktuell aber auch eher negative Aspekt zum Vorschein: werden die intelligenten Maschinen die Menschen ersetzen? Was wird aus einer Menschheit, deren primärer gesellschaftlicher Wert sich bislang über die erbrachte Arbeit definiert hat? Hängt der Wert eines Menschen
nur ab von der Form seiner entlohnten Arbeit? Ist der Mensch als Mensch nicht letztlich ’minderwertiger’ als eine intelligente Maschine als Teil des Produktionsprozesses? Was ist überhaupt der Mensch? Der Text hier geht ein paar neue Wege…

I. EINLEITUNG

Die Frage nach der Zukunft von Menschen in
einer Welt voller intelligenter Maschinen tritt immer
mehr in das Zentrum der globalen Aufmerksamkeit.
Während lange Zeit positive Visionen einer besseren
Zukunft des Menschen mittels (intelligenter) Maschinen
die Schlagzeilen beherrscht haben, kommen aktuell
immer mehr auch negative Aspekt zum Vorschein:
werden die intelligenten Maschinen die Menschen
ersetzen? Was wird aus einer Menschheit, deren
primärer gesellschaftlicher Wert sich bislang über die
erbrachte Arbeit definiert hat? Hängt der Wert eines
Menschen nur ab von der Form seiner entlohnten
Arbeit? Ist der Mensch als Mensch nicht letztlich
’minderwertiger’ als eine intelligente Maschine als Teil
des Produktionsprozesses? Was ist überhaupt der
Mensch?

Die Perspektiven der Diskussion um den Wert
des Menschen, um das rechte Menschenbild, sind
vielfältig und einiges davon wurde in vorausgehenden
Blogeinträgen schon angesprochen. Ein letzter Beitrag
nahm sich das Menschenbild der Psychoanalyse als
Aufhänger, um die Frage nach dem Menschenbild mal
von dieser Seite aus zu diskutieren.

Wie immer man aber die Diskussion beginnen will,
von welchem Standpunkt aus man auf das Problem
drauf schauen möchte, man kommt nicht umhin sich
Klarheit darüber zu verschaffen, was einerseits mit dem
Begriff ’Mensch’ gemeint ist und andererseits mit dem
Begriff ’intelligente Maschine’.

 

II. (INTELLIGENTE ) MASCHINE

Während es im Fall von ’intelligenten Maschinen’
zumindest für die ’potentiell intelligenten Maschinen’
fertige mathematische Definitionen gibt, dazu
viele theoretische Abhandlungen mit ausführlichen
mathematischen Beweisen, welche Eigenschaften denn
eine so mathematisch definierte Maschine grundsätzlich
haben kann bzw. nicht haben kann, wird es bei der
’Realisierung’ der mathematischen Konzepte als ’reale
Maschinen’ schon schwieriger. Die ’reale (empirische)
Welt’ ist keine Formel sondern ein Konglomerat von mehr
oder weniger verstanden Eigenschaften und Dynamiken,
deren Beschreibung in den empirischen Wissenschaften
– allen voran die Physik – bislang nur teilweise gelungen
ist. Aber selbst das, was bislang beschrieben wurde
repräsentiert keine ’absoluten’ Wahrheiten sondern
eine Menge von mehr oder weniger gut begründeten
’Hypothesen’, wie die beobachtbare und messbare Welt
vielleicht ’zu sehen ist’.

III. MENSCH

Im Falle des Menschen ist die Ausgangslage eine
andere. Hier steht am Anfang keine klare mathematischeDefinition, sondern wir stoßen beim Menschen zunächst auf eine Fülle empirischer Phänomene,
deren Komplexität – das beginnt die Wissenschaft
langsam zu ahnen – alles übersteigt, was bislang im
beobachtbaren Universum entdeckt werden konnte.

Es ist daher nicht verwunderlich, dass die Menschen
in der bisherigen Geschichte – soweit sie rekonstruiert
werden konnte – mit Bildern von ’sich selbst’ hantiert
haben, die schlicht und einfach zu primitiv waren
(und sind), viel zu einfach, irreführend, und in diesem
Sinne möglicherweise lebensbedrohend sind für die
Menschheit als Ganzes. Denn, solange die Menschen in
ihrer Gesamtheit sich selbst nicht verstehen und von
sich in einer Weise denken, die wichtige Eigenschaften
verdeckt, überdeckt, entstellt, so lange kann der Mensch
seine eigene Zukunft kaum sinnvoll in die Hand nehmen.
Solange klare Leitbilder fehlen, solange ist die Gefahr
real und groß, sich selbst von einer in die nächste
Katastrophe zu steuern. Wie lange die Menschheit
als Ganze diesen Schlingerkurs des selbst gewählten
Wahnsinns überlebt, weiß keiner. Eine starke Hoffnung,
dass die Menschheit es irgendwie schaffen kann,
gründet darin, dass das gesamte biologische Leben
in seiner bis heute nicht verstandenen Komplexität
ja nicht stattfindet, weil irgendwelche Menschen sich
dies ausgedacht haben, sondern weil das biologische
Leben Teil eines komplexen dynamischen Prozesses
ist, der seinen ’eigenen Regeln’ folgt, Regeln, die dem
menschlichen Wahrnehmen, Fühlen und Denken ’voraus
liegen’!

Unsere Hoffnung ruht also darin, dass wir als
Menschen – bevor wir überhaupt irgendetwas selbst tun,
schon weitgehend ’getan wurden und werden’.

Allerdings – und darin liegt eine eigentümliche
Paradoxie – der bisherige Prozess der biologischen
Lebenswerdung ist so gestaltet, dass der Prozess
des gesamten bekannten Universums mehr und
mehr über das ’Erkennen der Welt’ und im darin
gründenden ’Gestalten der Welt’ in eine immer größere
Abhängigkeit von genau diesem biologischen Leben
gerät. Der gesamte Prozess der Entstehung des
biologischen Lebens – so kann man es sehen, wenn
man entsprechend hinschaut – zeichnet sich dadurch
aus, dass die materiellen Strukturen und die damit
verknüpften Dynamiken immer mehr in der Lage
sind, die Gegenwart von Ereignissen im künstlich
geschaffenen ’Inneren’ zu ’erinnern’, zu ’denken’, damit
’gedanklich (= virtuell) zu spielen’ und auf diese Weise
Schritt für Schritt den Ablauf des gesamten Universums
nicht nur zu ’rekonstruieren’, sondern auch zunehmend
’aktiv zu verändern’.

 

IV. INFORMELLE KOSMOLOGIE

Will man die Rolle des Menschen als Teil des
biologischen Lebens, dieses wiederum als Teil der
gesamten Erdgeschichte, der Geschichte unseres
Sonnensystems, und letztlich des gesamten bekannten
Universums verstehen, stößt man ziemlich schnell auf
das Problem einer zerklüfteten Wissenslandschaft, in der
sich täglich ’Datengebirge’ in immer größerem Ausmaßes
auftürmen, gesammelt aus einer unüberschaubaren
Menge von Blickwinkeln (bisweilen organisiert als
wissenschaftliche Disziplinen). Und da es keine
einheitliche Sprache für alle diese Sichten gibt, ist man
schon im Ansatz buchstäblich ’sprachlos’. Ohne Sprache
aber funktioniert unser Denken kaum bis gar nicht,
zumindest nicht, wenn es um klare kommunizierbare
Einsichten gehen soll.

Grundsätzlich ist dieses Phänomen der ’Sprachlosigkeit’ in den Wissenschaften nicht neu, im Gegenteil. Die Geschichte der Wissenschaften ist
auch eine Geschichte des permanenten Erfindens
neuer Sprache, um neue Phänomene angemessen
beschreiben zu können. Dieses ’Erfinden’ und
’Umsetzen’ ist meist ein langwieriger Prozess von
ersten Ideen, Sprechversuchen, vielen Diskursen,
Missverständnissen, Ablehnungen, Verteufelungen, und
mehr.

Bei meinem eigenen Versuch, mir einen ’Reim’ auf alle
die bekannten Phänomene im Umfeld des Menschen
(und der aufkommenden intelligenten Maschinen) zu
machen, habe ich schon viele Darstellungsweisen
versucht. Und auch jetzt bin ich aus diesem Zustand
des ’Suchens’ und ’Probierens’ noch nicht wirklich
heraus (wobei die Wissenschaft, wie oben angedeutet,
ja niemals ganz aus dem Suchen und Probieren heraus
kommen kann).

Mein letzter Verstehensversuch ist in dem beigefügten
Schaubild angedeutet (siehe das Bild 1).

Informelle Kosmologie unter Einbeziehung des Phänomens des biologischen Lebens
Bild 1: Informelle Kosmologie unter Einbeziehung des Phänomens des
biologischen Lebens

So ’komplex’ das Schaubild aussieht, so extrem
vereinfachend ist es mit Blick auf die Komplexität der
realen Welt ’dahinter’.

Was in diesem Schaubild nicht direkt abgebildet
ist, das ist die ’zeitliche Abfolge’ der Ereignisse im
Universum. Sie ist nur indirekt erschließbar über die
Verschachtelung der angezeigten Größen.

So gibt es eine Entsprechung zwischen der ’Energie’
einerseits und dem ’Raum’ und der darin auftretenden
’Materie’ andererseits.

Von der Materie wiederum wissen wir, dass sie
Komplexitätsebenen umfasst wie z.B. dass die ’Atome’
selbst sich wiederum aus ’sub-atomaren Teilchen’
konstituieren, die ’Moleküle’ aus Atomen, ’einfache’ und
’komplexe Zellen’ wiederum aus Molekülen, usw..

Parallel zur Struktur der Materie als sub-atomare
Teilchen, Atome, Moleküle usw. gibt es aber auch
immer ’Makrostrukturen’, die sich im allgegenwärtigen
’Raum’ ausbilden. Diese Makrostrukturen bilden sich
aus Ansammlungen von Atomen und Molekülen,
bilden ’Gaswolken/ Nebel’, darin wiederum kommt
es zur Bildung von ’Sternen’ und ’Planeten’, darüber
hinaus bilden viele Sterne zusammen ’Galaxien’, diese
wiederum ’Cluster’, und mehr.

Zwischen einer Makrostruktur und ihren materiellen
Sub-Strukture gibt es vielfältige spezifische Wechselwirkungen.

Vom ’biologischen Leben’ auf der Erde wissen wir,
dass es durch Formation von zunächst ’einfachen’,
später dann auch ’komplexen’ Zellen auf der Basis
von Molekülen immer neue, komplexe Eigenschaften
ausgebildet hat. Dies allerdings nicht isoliert, sondern
im Verbund von vielen Atomen und Molekülen in
spezifischen Makrostrukturen wie einem ’Ozean’, der
sich auf der Erde neben der ’Lithosphäre’ und der
’Atmosphäre’ herausgebildet hatte.

Biologische ’Zellen’ zeigen neben vielen Detailprozessen vornehmlich drei große Eigenschaften: (i) sie können mittels Atom- und Molekül basierter
Prozesse ’Freie Energie’ aus der ’Umgebung’ aufnehmen
und für Prozesse in der Zelle nutzen. Sie können (ii)
mittels dieser energiegetriebenen Prozesse molekulare
Strukturen ’generieren’ oder ’umformen’. Sie verfügen (iii)
über die nur sehr schwer zu erklärenden Eigenschaft, Prozesse
mittels molekularer Strukturen so zu ’kodieren’, dass
strukturbildende Prozesse die kodierten Strukturen als
’Informationen’ für solche Strukturbildende Prozesse
benutzen können. Dies ist ein einmaliger Prozess im
gesamten Universum. Die gebündelten Eigenschaften
(i) – (iii) ermöglichen es einer Zelle, sich selbst in eine
neue Zelle zu ’kopieren’, wobei dieses Kopieren keine ’1-zu-1’ Kopie ist, sondern eine ’Wiederholung mit einem gewissen Maß an Variation’. Dieser variable Anteil
basiert auf etwas, was man als ’Zufall’ bezeichnen
kann oder als eine Grundform von ’Kreativität’. Ohne
diese minimale Kreativität würde es kein biologisches
Leben geben! Es ist also nicht die ’Ordnung’ nach
vorgegebenen Regeln (= Informationen) alleine, die
’Leben’ möglich macht, sondern ’Ordnung + Kreativität’.
Eines von beiden alleine reicht nicht, aber beide
zusammen haben eine ’Chance’.

Von den komplexen Zellen zu komplexen
’Lebensformen’ wie ’Pflanzen’ (’Flora’) und Tieren
(’Fauna’) war es ein weiter und beschwerlicher Weg.
Die einzelnen Zellen mussten irgendwie lernen, durch
’Kommunikation’ miteinander zu ’Kooperieren’. Die
bislang praktizierten Kommunikations- und dann auch
Kooperationsformen sind unfassbar vielfältig.
Wenn man bedenkt, dass nach den neuesten
Erkenntnissen der Mikrobiologie ein Mensch nur
stattfinden kann, weil ca. 30 Billionen (10^12 ) Körperzellen
und ca. 220 Billionen (10^12 ) bakterielle Zellen in
jedem Moment kooperieren, dann kann man vielleicht
ganz dunkel erahnen, welche Kommunikations- und
Kooperationsleistungen im Bereich des biologischen
Lebens bislang realisiert wurden (Anmerkung: Wenn man zusätzlich bedenkt, dass unsere Heimatgalaxie, die Milchstraße, geschätzt ca. 200 – 300 Milliarden (10^9 ) Sterne umfasst, dann entspräche die Anzahl der Zellen eines menschlichen Körpers
etwa 830 Galaxien im Format der Milchstraße.)

Biologische Lebensformen treten niemals alleine,
isoliert auf, immer nur als ’Verbund von Vielen’ (=
’Population’). Nicht nur bildet also jeder einzelne Körper
eine Kommunikations- und Kooperationsgemeinschaft,
sondern alle Lebensformen folgen diesem Prinzip.
Je nach Komplexitätsgrad einer Lebensform nehmen
solche ’Verhaltensmuster’ zu, die wechselseitig die
Lebensprozesse jedes einzelnen und der Population
unterstützen können.

Bisher ist es nur einer von vielen Milliarden Lebensformen
gelungen, das eigene Verhalten durch immer komplexere
’Werkzeuge’ anzureichern, zu differenzieren, den
Wirkungsgrad zu erhöhen. Dies ist soweit gegangen,
dass mittlerweile ’Maschinen’ erfunden wurden, dann
gebaut und nun benutzt werden, die die grundlegenden
Eigenschaften jeder Zelle ’technisch kopieren’ können:
(i) Energie so zu nutzen, das (ii) Strukturänderungen
möglich werden, die durch (iii) Informationen ’gesteuert’
werden. Man nennt diese Maschinen ’Computer’
und stellt langsam fest, dass man mit diesen
Maschinen immer mehr der so genannten ’intelligenten’
Eigenschaften des Menschen ’kopieren’ kann. Was auf
den ersten Blick ’wundersam’ erscheinen mag, ist auf den
zweiten Blick aber klar: die Besonderheit des Menschen
liegt zu einem großen Teil in der Besonderheit seiner Zellen. Wenn ich die fundamentalen Eigenschaften
dieser Zellen in eine Technologie transformiere, dann
übertrage ich grundsätzlich auch diese Eigenschaften
auf diese Maschinen.

V. PHILOSOPHISCHER AUSKLANG

Aufgrund der aktuell gegebenen strukturellen
Begrenzungen des Menschen aufgrund seines aktuellen
Körperbauplans (der auf eine abwechslungsreiche
Entwicklungsgeschichte von vielen Milliarden Jahren
zurückschauen kann) beobachten wir heute, dass
die rasante Entwicklung der Gesellschaft (mit ihrer
Technologie) die Informationsverarbeitungskapazitäten
des Menschen wie auch sein emotionales Profil mehr
und mehr überfordern. Computer basierte Maschinen
können hier bis zu einem gewissen Grad helfen,
aber auch nur insoweit, als der Mensch diese Hilfe
’verarbeiten’ kann. Das Thema ’Mensch-Maschine
Interaktion’ bekommt in diesem Kontext eine ganz neue,
fundamentale Bedeutung.

Auf lange Sicht muss der Mensch es aber schaffen,
die Veränderung seines Körperbauplans schneller
und gezielter als durch die bisherige biologische
Evolution voran zu treiben. Die Visionen unter dem
Schlagwort ’Cyborgs’ sind keine Spinnerei, die man
ethisch verurteilen muss, sondern im Gegenteil absolut
notwendig, um das biologische Leben ’im Spiel zu
halten’. (Anmerkung: Möglicherweise muss all das, was bislang unter der Bezeichnung
’Ethik’ gehandelt wird, einer grundlegenden Revision unterzogen wer-
den.)

Neben vielem, was Computer basierte Maschinen
zur Ermöglichung von Leben beitragen können, muss
man klar sehen, dass eine fundamentale Frage aller
Menschen, vielleicht ’die’ fundamentale Frage, von den
Computer basierten Maschinen – auch wenn sie im
vollen Sinne lernfähig wären – bislang grundsätzlich auch
nicht beantwortet werden, und zwar aus prinzipiellen
Gründen. Gemeint ist das ’Werteproblem’ in der
Form, dass ein gezielt es Lernen und sich Entwickeln
voraussetzt, dass es geeignete Präferenzsysteme gibt
anhand dessen man irgendwie beurteilen kann, was
’besser’ oder was ’schlechter’ ist.

Vor dem Auftreten des Menschen (als ’homo sapiens’)
gab es nur das Präferenzsystem der ’gesetzten Welt’:
’Gut’ war letztlich nur das, was ein ’Weiterleben’ der
Population unter den gegebenen Bedingungen der
Erde (die sich im Laufe der Zeit mehrfach dramatisch
verändert hatte!) ermöglichte. Für große Diskussionen
war da kein Platz. Außerdem war ja auch niemand in
der Lage, hier zu ’diskutieren’.

Mit dem Auftreten des Menschen veränderte sich
die Situation grundlegend. Zwar galt es auch weiterhin,
sich unter den Bedingungen der aktuellen Erde (und
Sonnensystems und …) ’im Spiel’ zu halten, aber mit dem
Menschen entstand die Möglichkeit, sämtliche Abläufe
transparent zu machen, sie denkbar zu machen und
damit ganz neue Handlungsalternativen zu erschließen.
Damit stellt sich die Frage nach den ’Präferenzen’ aber
ganz neu. Das direkte, nackte Überleben ist durch die
modernen Gesellschaften im Prinzip so weit abgemildert,
dass man sich ’neue Ziele’ suchen kann. Menschen
können sich zwar weiterhin gegenseitig abschlachten, es
besteht dazu aber keine Notwendigkeit (allerdings kann
der Druck durch hohe Bevölkerungszahlen und endliche
Ressourcen die Bereitschaft zu einem konstruktiven
Miteinander beeinflussen). Nur, selbst wenn man will,
wo sollen die neuen Präferenzen herkommen? Bislang
kenne ich keinen einzigen Ansatz, der auch nur vage
den Eindruck erwecken würde, dass er eine interessante
Hypothese bilden könnte. Dies gilt sowohl für die
klassischen ethisch-religiösen Diskurskontexte wie auch
für das ganze Gerede um intelligente Maschinen und
Superintelligenz. Das ’Super’ im Begriff ’Superintelligenz’
bezieht sich bestenfalls auf Geschwindigkeiten und
Quantitäten von Rechenprozessen, nicht aber auf das
inhärente Werteproblem eines Lernprozesses.

Eine überraschende Fortsetzung findet sich HIER.

KONTEXT BLOG

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER

EIN HOMO SAPIENS – VIELE BILDER. Welches ist wahr?

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 28.Okt. 2017
info@cognitiveagent.org
URL: cognitiveagent.org
Autor: cagent
Email: cagent@cognitiveagent.org

Beitrag als PDF

INHALT

I Vielfalt trotz Einheit
II Wahrheit, die ich meine
III Wahrheitsmechanismen
III-A Gegenwart, Gestern, Morgen . . . . . .
III-B Eigener Lebensraum, ganz woanders . .
III-C Interpretierte Wahrnehmung . . . . . . .
III-D Erfahrung liefert Bilder . . . . . . . . . .
III-E Wie das ’Richtige’ Lernen? . . . . . . . .
III-E 1 Mengenbegrenzungen . . . . .
III-E 2 Muster erkennen . . . . . . . .
III-E 3 Spezialisierungen . . . . . . .
III-E 4 Wechselwirkungen aufdecken
III-E 5 Geeignete Wissensformen . .
III-E 6 Verloren im Fragment . . . . .
III-E 7 Fehlende Präferenzen
IV Menschenbilder
V Was Tun?

ÜBERSICHT

In der realen Welt gibt es eine Lebensform, die wir homo sapiens nennen. In der Rede über diesen homo sapiens – also in den Bildern, die wir benutzen –benutzen wir aber viele verschiedene Bilder. Desgleichen in den alltäglichen Lebensformen: es gibt nur einen homo sapiens, aber in den verschiedenen Kulturen dieser Erde gibt es viele geradezu konträre Formen, wie Menschen leben oder leben müssen. Wie ein homo sapiens genau funktioniert, verstehen wir immer noch nicht genau. Die Politik bevorzugt in der Regel plakative Schlagworte, und vermeidet wissenschaftliche Modelle. Warum?

Vielfalt trotz Einheit

Wenn in einem Brettspiel jemand sagt, „ich habe gewonnen“, und ein anderer daraufhin sagt „Nein, ich habe gewonnen“, dann weiß jeder, dass da etwas nicht stimmen kann. Brettspiele sind aufgrund ihrer Regeln eindeutig, wenn nicht, würden sie nicht funktionieren.

Wenn wir uns aber die Realität anschauen, die gemeinsam geteilte empirische Welt, dann ist es mittlerweile fast der Normalfall, dass es zu einzelnen Aspekten, Vorkommnissen, Vorgängen, von verschiedenen Personen oder Personengruppen, ganz unterschiedliche Beschreibungen/ Darstellungen/ Bilder gibt, ohne dass wir dies merkwürdig finden. Wenn Politiker in Talkshows sich äußern sollen, ist es eher die Regel, dass sie konträre Meinungen vertreten. Keiner findet dies merkwürdig. Unrecht haben immer die anderen, die eine andere Meinung haben. Der Frage, warum es zu unterschiedlichen Meinungen zu ein und demselben Thema kommen kann, wird fast nie gestellt. Lieber beschimpft man sich gegenseitig, anstatt die Frage zu stellen, warum es zu unterschiedlichen Meinungen kommen kann.

Wahrheit, die ich meine

Eine klassische Auffassung von Wahrheit geht davon aus, dass das mit ‚Wahrheit‘ Gemeinte in der Übereinstimmung von eigener Auffassung und einem davon zu unterscheidenden Sachverhalt ist. Klassisches Beispiel: Jemand sagt „Es regnet“ und in der Redesituation regnet es tatsächlich oder nicht. Im ersten Fall würde man dem Sprecher zustimmen und sagen, er spricht ‚wahr‘, im anderen Fall nicht.

Schwieriger wird es, wenn der Redner über Sachverhalte spricht, die jenseits der aktuellen Redesituation liegen: räumlich entfernt, oder zeitlich weit zurück in der Vergangenheit oder in einer noch nicht stattgefundenen Zukunft. Welche Mechanismen der Klärung des Wahrheitsgehaltes gibt es dann?

Oder der Redner glaubt Sachverhalte wahrzunehmen, die aber alle anderen nicht wahrnehmen. Wer hat dann Recht? Irrt der eine, hat er eine ‚psychische Störung‘, steht er unter ‚Drogeneinfluss‘, hat er schlicht ein ‚falsches Wissen‘, oder … ? Könnten nicht alle anderen irren und er alleine hätte Recht?

Oder es gibt Sachverhalte, auch gegenwärtige, deren Status von bestimmtem ‚Wissen‘ abhängig ist, wodurch erst die ‚Eigenschaften des Sachverhalts‘ sichtbar werden. Berühmte Beispiele sind die Bewegung der Himmelskörper, das Phänomen von Magnetismus und Elektrizität, die chemischen Reaktionen der verschiedenen chemischen Substanzen, die Entdeckung der Mikroorganismen, die Entdeckung der Vererbung durch Mitwirkung der DNA, die Entdeckung der Gehirnzellen und die Tatsache, dass sie nicht miteinander direkt verbunden sind, usw.

Schon diese kurze Betrachtung zeigt, dass wir in unserem Alltag eher mehr Situationen haben, die eine ‚direkte Wahrheitsentscheidung‘ nicht zulassen als solche, die es tun. ‚Indirekte‘ Wahrheitsentscheidungen verlangen grundsätzlich eine ‚Klärung der Umstände‘ und eine ‚Klärung der Regeln der Interpretation‘.

Wahrheitsmechanismen

Gegenwart, Gestern, Morgen

Halten wir an der Fallunterscheidung fest, dass es Aussagen über Vergangenes, Zukünftiges oder Gegenwärtiges gibt.

Eigener Lebensraum, ganz woanders

In allen drei Fällen kann man nochmals unterscheiden, ob der Sachverhalt (gegenwärtig oder vergangen oder zukünftig) mit den Teilnehmern der Situation verknüpft ist oder nicht. Ob es da regnet, wo man gerade ist, oder woanders, das macht einen großen Unterschied. Oder ob in meiner Firma in der Vergangenheit ein bestimmtes Ereignis stattgefunden haben soll oder nicht, kann ich eher einschätzen, als wenn es in der Vergangenheit irgendwo ganz anders stattgefunden haben soll. Entsprechend in der Zukunft: eine Aussage über einen zukünftigen Sachverhalt in meinem persönlichen Lebensraum fasse ich anders auf als wenn es ‚irgendwo ganz anders‘ stattfinden soll.

Interpretierte Wahrnehmung

Befinden wir uns in der Gegenwart, dann können wir diese und eigene Körperzustände ‚wahrnehmen‘. Wie wir mittlerweile durch vielfältige wissenschaftliche Untersuchungen lernen konnten, nehmen wir aber niemals die Welt (und uns selbst) ‚1-zu-1‘ wahr, sondern vielfältig selektiert, abstrahiert und ‚interpretiert‘ durch die Erfahrungen, die wir vorher schon gemacht haben. Da die visuellen, akustischen, taktilen usw. Wahrnehmungen immer unvollständig sind, muss innerhalb des Wahrnehmungsprozesses kontinuierlich ‚interpretiert‘ werden. Wir sind ‚erfahrungsbasiert‘, und diese Erfahrungen sind sehr stark ’sprachlich durchtränkt‘. Wir sehen nicht einfach nur Farben, Formen; wir riechen nicht einfach nur süßlich, beizend, ätzend, usw.; wir hören nicht einfach nur Geräusche, Klänge; diese werden sofort eingeordnet in vertraute Muster, verknüpft mit bekannten Worten. Ein Geräusch identifizieren wir als ‚knarrende Schranktür‘, ‚vorbeifahrendes Auto‘, das ‚Klackern von Schuhen auf Steinplatten‘, usw., weil wir einfach ‚trainiert‘ wurden, diese Geräusche mit solchen Worten und darüber mit bestimmten Situationen zu verknüpfen. Wie wir wissen, können solche spontanen, von unserem Gehirn aufgrund von vorliegenden Erfahrungen ‚automatisch erzeugte‘ Zuordnungen falsch sein, weil die Erfahrungen falsch sind.

Erfahrung liefert Bilder

Im Alltag liefert unsere Erfahrung also die ‚Bilder‘, mit denen wir unsere Welt anschauen.

Solange jemand noch nichts von einer bestimmten genetischen Erkrankung wusste, war für ihn die Welt in Ordnung. Als er/ sie erfuhr, dass es solch eine spezielle Krankheit gibt und dass er Symptome dafür aufweist, war die Welt plötzlich eine ganz andere.

Solange jemand nicht wusste, wie ein bestimmtes Pflanzenschutzmittel wirkt, hat er es leichthändig eingesetzt. Sobald bekannt wurde, dass es die Böden und Pflanzen nachhaltig vergiftet, ein ganzes Ökosystem zum Kippen bringen kann, sogar über die Nahrung in den menschlichen Körper gelangen kann und dort zu schweren Störungen führt, da war die Welt plötzlich eine andere.

Solange man noch nicht wusste, dass der Nachbar und Freund ein Spitzel für den Staat war, mit dem Ziel andere Meinungen auszuspähen und zu melden, solange war die Welt noch in Ordnung. Aber als man durch Zufall entdeckte, dass da etwas nicht stimmt, wollte man es zunächst nicht glauben, man wehrte sich dagegen, bis es dann irgendwann klar war…

Die Bilder, die wir haben, erklären uns die Welt für uns. Andere können ganz andere Bilder haben.

Wie das ‚Richtige‘ Lernen?

Wenn unsere Erfahrungen einen solchen massiven Einfluss auf unsere Weltsicht haben, stellt sich die Frage, was wir denn tun können, um im Rahmen unseres ‚Erlernens von Welt‘ die ‚richtige‘ Sicht zu bekommen?

Mengenbegrenzungen

Wie wir heute wissen können, ist unsere aktuelle Wahrnehmung von Welt zudem mengenmäßig sehr begrenzt. Wir können im Sekundenbereich nie mehr als ca. 5-7 Wahrnehmungsobjekte (Englisch ‚chunks‘) verarbeiten. Je nach Erfahrungsstand können dies einfache oder sehr komplexe Objekte sein.

Muster erkennen

Ein Schachgroßmeister sieht auf einem Schachbrett nicht einzelne Figuren, sondern er sieht die Figuren als Teil eines ‚Musters‘, das er in ’strategische Zusammenhänge‘ einordnen kann. So genügt ihm ein kurzer Blick und er hat eine Einschätzung des ganzen Spielstandes und weiß sofort, wo es günstig wäre, in dieser Stellung anzusetzen. Ein weniger erfahrene Spieler sieht dies Muster und diese Zusammenhänge nicht auf einen Blick. Daher muss er mühsam alle möglichen Kombinationen ‚durchdenken‘, ‚geistig durchspielen‘, um zu Einschätzungen zu kommen. Der Amateur benötigt dafür viel mehr ‚Bedenkzeit‘. In einem offiziellen Schachturnier würde de Amateur daher normalerweise allein schon durch seinen Verbrauch an Denkzeit verlieren, wenn er nicht schon vorher aufgrund der Stellung verliert.

Das, was hier am Schachspiel verdeutlicht wurde, gilt für alle Situationen: wir können immer nur sehr wenige Aspekte einer Situation tatsächlich wahrnehmen und verarbeiten. Wenn nun die Situation komplex ist, das heißt, ganz viele einzelne Elemente auf vielfältige Weise ineinander greifen, und dadurch bestimmte Zustände erzeugen, dann können wir diese Situation nicht wirklich verstehen, es sei denn, wir würden sehr viel Zeit aufwenden, um sie zu erforschen. Im Alltag haben wir diese Zeit normalerweise nicht.

Spezialisierungen

Andererseits leben wir täglich in einer Welt, die bis zum Rand angefüllt ist mit komplexen Sachverhalten: die Infrastruktur einer Stadt mit Energieversorgung, Wasserversorgung, Abfallwirtschaft, Verkehr, Schulen, …; die Wohnungssituation; die wirtschaftliche Entwicklung einer Region; das Funktionieren großer Konzerne; die jeweiligen Ökosysteme, in denen wir uns bewegen; die demographische Entwicklung und ihre Konsequenzen; usw.

Teilweise helfen wir uns durch Spezialisierungen: es gibt Verkehrsfachleute, Demographen, Betriebswirte, Abfallexperten, Managementberater, Biologen,… doch diese sind einzelne; selten arbeiten sie — wenn überhaupt — alle zusammen, um ein Problem in seinen Wechselwirkungen zu verstehen, Zusammenhänge sichtbar zu machen.

Wechselwirkungen aufdecken

Die eine Frage ist also, ob wir überhaupt genügend brauchbare Daten von den verschiedenen Prozessen unseres Alltags haben bzw. bekommen; die andere Frage ist, wie wir diese Daten so ‚aufbereiten‘, dass die ‚Wechselwirkungen‘ sichtbar werden, d.h. warum der eine Faktor den anderen Faktor beeinflusst und in welchem Ausmaß.

Geeignete Wissensformen

Die Wissenschaftsphilosophie hat erarbeitet, wie solche erklärenden Datenstrukturen aussehen müssten, damit sie Erklärungen liefern könnten. Die verschiedenen computerbasierten Simulationstechniken lassen erkennen, wie man solche komplexen Datenstrukturen so aufbereiten könnte, dass jeder damit arbeiten kann. Im Alltag findet man solche Instrumente aber nicht. Tägliche Entscheidungen müssen ohne solche Hilfen getroffen werden.

Wenn man die Lernformen in den Schulen und Hochschulen anschaut, dann gibt es nahezu nichts, was ein komplexes ‚Lernen von der Welt‘ unterstützen könnte.

Verloren im Fragment

Als Ergebnis dieser schwierigen Situation muss jeder Mensch mit mehr oder weniger kleinen bzw. großen Fragmenten eines großen Ganzen leben, die es nicht zulassen, das große Ganze zu erkennen. Notgedrungen versucht jeder auf seine Weise, ad hoc, unverstandene Reste mit Hilfskonstruktionen ‚verständlich‘ zu machen. Und ja, wenn jetzt ein anderer Mensch mit anderen Fragmenten auftritt, was tut man dann? Freut man sich, aus der Verschiedenheit zu lernen (eine echte Chance) oder fühlt man sich verunsichert, fühlt man sich angegriffen, sieht im anderen einen ‚Gegner‘, einen ‚Feind‘, der die eigene Meinung bedroht?

Wenn Menschen, und dies dürften die meisten sein, im Berufsleben eingespannt sind, dazu Familie, soziale Verpflichtungen, dann ist es sehr häufig so, dass dieses Leben so anfordernd ist, dass Zeit und Muße sich mit der komplexen Welt zu beschäftigen, mit anderen Anschauungen, kaum vorhanden ist. Ganz ’natürlich‘ wird man vieles abblocken, wird man einen ‚Tunnelblick‘ ‚kultivieren‘, wird ‚Seinesgleichen‘ suchen, sich einrichten, sich abschotten, und wenn es zum Schwur kommt, wird man genau nur das wiederholen können, was man bislang kennen gelernt hat. Wer und was kann hier helfen?

Fehlende Präferenzen

Bei der ‚Aneignung von Welt‘, die unter starken quantitativen Begrenzungen stattfinden muss, und die aufgrund von bisherigen Erfahrungen eine starke Beeinflussung aufweist, spielt noch ein weiterer Faktor hinein: Bewertungen, Präferenzen.

Das eine ist, Objekte, Eigenschaften, Beziehungen, Abfolgen zu identifizieren. Schwer genug. Ein einzelner Handelnder braucht aber auch Präferenzen der Art, dass er im Fall von Alternativen bewerten kann, ob nun A oder B für ihn besser sind. Soll er A oder B tun?

Wenn man weiß, dass viele Leistungen ein mehrjähriges gezieltes Training voraus setzen, durch das ein entsprechendes Wissen, eine entsprechende Handlungsfähigkeit schrittweise erarbeitet worden ist, das dann nach vielen Jahren so verfügbar ist, dann setzt dies voraus, dass es solche ’situationsübergreifende Ziele‘ gibt, die das einzelne Verhalten auf dieses Ziel in ‚orientieren‘.

Wenn solche Ziele aber schwer zu erkennen sind, wenn sie schlichtweg fehlen, wie kann dann ein einzelner, eine Gruppe, eine Firma ihre Ressourcen gezielt auf ein Ziel hin optimieren?

Präferenzen hängen stark von verfügbarem Wissen ab, aber sie sind nicht identisch mit Wissen! Aus der Tatsache, dass ich weiß, wie man einen Computer baut, folgt nicht, dass ich weiß, wofür man ihn einsetzen sollte. Aus der Tatsache, dass man Schulen mit Computern ausstatten will, folgt nicht, dass die Schulen, die Lehrer, die Schüler wissen, wofür sie die Computer einsetzen wollen/ sollen/ können.

Es scheint bis heute eher unklar, wo Präferenzen herkommen sollen.

Im Alltag gibt es viele sogenannte ‚praktische Zwänge‘ (Ernährung, Wohnen, Geld verdienen, Gesundheit, Verkehr, …), die zum Handeln zwingen. Dies sind aber weitgehend unhinterfragte Automatismen, die selbst in einen größeren Zusammenhang einzuordnen wären. Übergreifende Ziele, welche?

Menschenbilder

Schaut man sich die verfügbaren Menschenbilder im Bereich der Wissenschaften an, so kann man die wichtigsten Typen wie folgt auflisten:

  • Die biologische Evolution, unterscheidbar nach homo sapiens und Nicht-homo sapiens.
  • Im Bereich des homo sapiens sein Verhalten (Ethologie, Psychologie, Soziologie, Politik, Wirtschaft…)
  • Im Kontext des Verhaltens des homo sapiens gibt es die unterstellten inneren Mechanismen, die dafür verantwortlich sind, wie der homo sapiens auf seine wahrnehmbare Umgebung reagiert, zusammengefasst im Begriff des Verhaltens bzw. der Verhaltensfunktion. Das ‚Sichtbare (Verhalten)‘ erscheint damit als Wirkung des ‚Unsichtbaren (Inneren)‘. Für diese inneren Zustände gibt es keine wirkliche wissenschaftliche Disziplin, da Bewusstseinszustände als solche kein Gegenstand einer empirischen Wissenschaft sein können. Traditionell ist hier die Philosophie zuständig, die eben nicht als empirische Disziplin gilt. Die Neurowissenschaften behandeln die physikalisch-chemische Maschinerie des Gehirns, nicht aber seine subjektiven Erlebnisse im Bewusstseinsraum.
  • Im Bereich des Verhaltens hat der Mensch Technologien hervorgebracht, die ihm helfen können, praktische Probleme des Alltags (dazu gehören auch Konflikte bis hin zu Großkonflikten (Krieg)) zu lösen. Das Ineinander von Mensch und Maschine lässt ständig neue Situationen entstehen, in denen sich der Mensch über ein verändertes Verhalten selbst neu erfahren kann (Ersetzung menschlicher Muskelkraft, Autos, Eisenbahn, Flugzeug, Raumschiff..).
  • Im Rahmen der Technologie nehmen die Digitalen Technologien eine Sonderstellung ein. Sie erlauben es zunehmend, die inneren Mechanismen des Menschen zu imitieren und in immer mehr Bereichen zu übertreffen. Dies stellt eine extrem starke Infragestellung des Menschen dar: ist er auch nur eine Maschine, dazu eine schlechte?
  • Neben dem Biologischen gibt es das Physikalische als allgemeinen Rahmen für alles Biologische, mit unfassbar weiten Räumen und Energien, die sich als Universum präsentieren.
  • Innerhalb des Biologischen sind die inneren Mechanismen des homo sapiens wissenschaftlich noch unaufgeklärt. Dies gibt viel Spielraum für Spekulationen, Esoterik und dem Phänomen des Religiösen. Es ist schwer zu entscheiden,welch ‚harten Kern‘ all diese Interpretationen haben.

Macht man sich diese Vielfalt klar, ihren weitgehenden Fragmentcharakter aufgrund fehlender Wissensintegration, dann wundert man sich nicht, dass Ideologien, Populismen, Fanatismen und Dogmatismen reichlich Nährboden finden können. Die öffentlichen Wissenskulturen sind nicht ausreichend genug kultiviert, um solchen Verzerrungen den Boden zu entziehen. Die Bedeutung einer Wissenskultur wird in fast allen Gesellschaften stark unterschätzt und die jeweiligen Politiker erweisen sich für diese Fragen auch nicht besonders hilfreich.

Was Tun?

Es ist eines, einen Sachverhalt zu diagnostizieren. Es ist eine ganz andere Frage, ob man aus solch einer Diagnose irgendeinen Handlungsvorschlag generieren kann, der eine deutliche Verbesserung mit sich bringen würde.

Angesichts der zentralen Bedeutung des Wissens für das Verhalten des Menschen eingebettet in Präferenz/ Bewertungsstrukturen, die in einem Lernprozess verfügbar sein müssen, bei gleichzeitiger Berücksichtigung der quantitativen Beschränkungen des biologischen Systems bräuchte es neue Lernräume, die solch ein verbessertes Lernen unterstützen. Ganz wichtig wäre es dabei, das Wissen nicht nur ‚jenseits des Individuums‘ zu kumulieren (die Cloud für alle und alles), sondern den einzelnen als einzelnen zu stärken, auch als soziales Wesen. Dazu braucht es eine grundlegende Re-Analyse dessen, wie der Mensch mittels neuer digitaler und Cyber-Technologien sowie Humantechnologie seinen Möglichkeitsraum vergrößern kann.

Dies wiederum setzt voraus, dass es eine Vision von Gesellschaft der Zukunft gibt, in der der homo sapiens überhaupt noch eine Rolle spielt. Dies wird gerade von elitären Machtgruppen immer mehr in Frage gestellt.

Wo gibt es ernsthafte Visionen für humane Gesellschaften für Morgen?

Diese Aufgabenstellung ist nichts für einen allein; hier sind alle, jeder auf seine Weise, gefragt.

Autor cagent arbeitet an konkreten Lösungen einmal über das weltweite Theoriebuch für Ingenieurezum anderen an dem komplementären Projekt eines Softwarelabors für die Entwicklung solcher Lokaler Lernwelten. Ja, man kann sogar sagen, dass das Kunstprojekt Philosophy-in-Concert hier auch hingehört. Aber, wie auch immer, ein einzelner kann die Aufgabe nicht lösen. Es braucht ein ‚Gesamtkunstwerk‘, in dem sich viele miteinander vernetzen und ergänzen.

KONTEXT BLOG

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER

MENSCHENBILD – VORGESCHICHTE BIS ZUM HOMO SAPIENS – Ergänzungen

PDF

Übersicht
Im Folgenden einige Ergänzungen zu dem vorausgehenden Blogeintrag ’Menschenbild …’.

I. WARUM ERGÄNZUNGEN ?

In dem vorausgehenden Blogeintrag (siehe: [DH17d])
wurde in einem ersten Durchgang versucht, die großen
Linien der ’Menschwerdung des Menschen’ nachzuzeichnen.
Angesichts des Umfangs und der Komplexität
des Themas konnten viele wichtige Punkte nur grob
beschrieben werden. Hier einige ergänzende Nachträge.

II. ZEITMESSUNG

Für die Rekonstruktion der Entwicklung der
verschiedenen Menschenformen benötigt man eine
Einordnung der ’Formen’ in bestimmte Schemata,
ihre ’geologische’ Fixierung mit jeweiligen Kontexten,
sowie die Einordnung auf einer ’Zeitachse’, die einen
direkten Bezug zu den konkreten Substraten (Knochen,
Werkzeuge, …) aufweist.

Eine Einführung in diese Thematik findet sich in
dem Artikel von Günther A.Wagner [Wag07], der am
Beispiel der Zeitbestimmung des Fundes zum homo
heidelbergensis die allgemeine Problematik einer
Zeitbestimmung abhandelt.

A. Stratigraphie

Es war der Geologe Nicolaus Steno, der 1669
erkannt, dass sich die Veränderungen der Erde in
Sedimentablagerungen manifestierten, wobei die
unteren Schichten die Älteren sind. Es entstand daraus
generell die Stratigraphie die die Fossile registriert
(Biostratigraphie), ferner die Lithostratigraphie mit dem
Fokus auf dem Gestein, die Magnetostratigraphie
mit Fokus auf der Gesteinsmagnetisierung, sowie
die Klimastratigraphie, die nach Indikatoren für das
Klima sucht. In der Summe entstehen auf diese Weise
räumliche und zeitliche Netze, die man zu einer primären
geologischen zeitlichen Einteilung nutzen kann. (Siehe
dazu z.B. die Tabellen bei Wagner [Wag07]:SS.204ff)

B.Tertiär, Quartär

Die Zeit seit -2 Ma Jahren [‚Ma‘ := Millonen Jahre] wurde aufgrund der
Stratigraphie in die Abfolge der Systeme Tertiär bis -1.8
Ma Jahren und Quartär bis zur Gegenwart eingeteilt.

C. Pliozän, Pleistozän

Diese grobe Einteilung wurde anhand stratigraphischer
Kriterien weiter verfeinert in die Abteilungen Pliozän
(-2.0 bis -1.8 Ma), Altpleistozän (-1.8 bis -0.78 Ma),
Mittelpleistozän (-078 bis -0.128 Ma), Jungpleistozän
(-0.128 Ma bis -11.7 Ka) und Holozän (-11.7 Ka bis zur
Gegenwart).[‚Ka‘ := 1000 Jahre].

D. Paläolithikum

Eine andere Einteilung orientierte sich an dem
Merkmal Steinwerkzeuge . Erste Steinwerkzeuge lassen
sich in Afrika ab -2,5 Ma nachweisen, in Europa erst ab
-0.9 Ma (siehe: [WD17a]). Diese Zeit wird Altsteinzeit
(Alt-Paläolithikum) genannt, Dauer bis ca.-300.000/-
200.000. Wichtige Formfelder: Acheulien . Es folgt die
Mittelsteinzeit (Mittel-Paläolithikum) , die etwa um -40 Ka
endet. Wichtige Formfelder sind hier:die Moustérien , ca.
-200.000 bis -40.000; es handelt sich hier um sehr fein
gearbeitete Werkstücke in zahlreichen, auf die Funktion
hin gestalteten Formen. Typisch sind fein ausgebildete
Faustkeile. Micoquien (oder ”Keilmesser-Gruppen”),
ca. -130.000 bis -70.000. Hier findet man Keilmesser
Blattspitzen-Gruppen, die flache und ovale Werkzeuge
(Blattspitzen) nutzten. Ch âtelperronien bis ca. -34.000.
(regional eingeschränkt, Frankreich und Nordspanien).
Es folgt die Jungsteinzeit (Jung-Paläolithikum) die bis
zum Ende der letzten Kaltzeit dauert, die mit dem
Beginn des Holozäns zusammenfällt, etwa 11.7 Ka vor
dem Jahr 2000 (siehe dazu: [WD17d]). Der Beginn der
Jungsteinzeit fällt auch zusammen mit dem Auftauchen
des homo sapiens in Europa. Bei den Steinwerkzeugen
unterscheidet man die Formenwelt Aurignacien, ca.
40.000 bis ca. -28.000; sie markiert den Beginn der jungpaläolithischen
Kleinkunst in Europa, u.a. erste Felsbilder; Gravettien von ca.
-28.000 bis ca. -21.000, Zeithorizont der Venusfigurinen.
Solutréen von ca. -22.000 bis ca. -18.000; Magdalénien
von ca. -18.000 bis ca. -12.000.

E. Holozän

Der Beginn des Holozäns (-9.7 Ka oder ’11.7 Ka
vor dem Jahr 2000’) ist gekennzeichnet durch einen
starken Klimaanstieg, der zu starken Veränderungen
in Fauna und Flora geführt hat (man nennt es auch
’drastische ökologische Restrukturierungen’ (siehe
dazu: [WD17d])). Die Zeit -9.7 Ka bis -6 Ka nennt
man auch Alt-Holozän. Riesige Eismassen schmelzen
und die Erdoberfläche hebt sich um viele Meter. Im
nachfolgenden Mittelholozän (ca. -6 Ka bis -2.5 Ka)
gab es einerseits ein Klimaoptimum, das positive
Lebensräume schuf. In einem Klimapessimus (von
ca. -4.1 Ka bis -2.5 Ka) wurde es deutlich kühler und
trockener; viele Wüsten kehrten wieder zurück. Die
Menschen zogen sich in die Flussgebiete zurück, was
zur Ausbildung komplexer Ansiedlungen führte. Es kam
zu Zusammenbrüchen ganzer Kulturen, zu erzwungenen
Wanderungen sowie Eroberungen. Das anschließende
Jung-Holozän (von ca. -2.5 Ka bis heute) ist u.a.
durch einen Wechsel weiterer Kalt- und Warmzeiten
gekennzeichnet.

Innerhalb des Holozäns werden anhand spezieller
Kriterienbündel weitere Unterteilungen vorgenommen.

Epipaläolithikum, Mesolithikum, Neolithikum

Am Beispiel der Begriffe Epipaläolithikum, Mesolithikum,
Neolithikum wird deutlich, wie sich Kriterien, die im
Rahmen der Stratigraphie zur Anwendung kommen
können, aufgrund von Zeitverschiebungen zwischen
verschiedenen Regionen sowie durch parallele
Kriterienbündel überlappen können.

Die Bezeichnung Mesolithikum (Mittelsteinzeit) trifft
eigentlich nur auf das nacheiszeitliche Europa zu (siehe:
[WD17f]), während der Begriff Epipaläolithikum in er
gleichen Zeit angewendet wird, aber eher auf Regionen
die kaum bis gar nicht von nacheiszeitlichen Eiswechsel
betroffen waren (siehe [WD17c]).

2. Neolithikum

Dagegen bezieht sich der Begriff Neolithikum (Jungsteinzeit)
auf ein Bündel von Faktoren, die zusammen
den Charakter dieser Phase beschreiben: die Domestizierung
von Tieren und Pflanzen, die Sesshaftigkeit der
Bauern (Nomadismus auf Viehhaltung basierender Kulturen),
die Verbreitung geschliffener Steingeräte (Steinbeile,
Dexel), sowie Ausweitung des Gebrauchs von
Gefäßen aus Keramik (siehe [WD17e]). Eine Zuordnung
des Beginns dieser Phase in absoluten Zahlen ist aufgrund
der regionalen Zeitverschiebungen im Auftreten
der Phänomene schwankend, frühestens beginnend mit
ca. -11.5 Ka.

F. Anthropozän

Aufgrund der immer stärker werdenden Einwirkung
des Menschen auf die Lebensbedingungen der Erde,
wird diskutiert, ob man die Zeit ab der Englischen
Industriellen Revolution als Anthropozän bezeichnen
sollte (siehe: [WD17b]). Es gibt sehr viele Indikatoren,
die solch eine neue Gliederung nahe legen, allerdings
konnte man sich noch nicht auf einen Anfangszeitpunkt
einigen; mehrere Szenarien stehen zur Auswahl.

G. Chronometrie

Wie aus den vorausgehenden Abschnitten deutlich
werden kann, lassen sich mittels der Stratigraphie
und gut gewählter Kriterien räumlich und zeitlich
abgrenzbare Phasen/ Perioden herausheben, diese
dann benennen, um auf diese Weise eine erste
geologisch motivierte Struktur zu bekommen, an die
sich weitere archäologische Kriterien anbinden lassen.
Will man nun diese relativen Zuordnungen mit
absoluten Zeitangaben verknüpfen (Chronometrie),
dann benötigt man dazu einen Zeitstrahl, der Uhren
voraussetzt, d.h. Prozesse, die hinreichend regelmäßig
in gleichen Abständen Ereignisse erzeugen, die man
abzählen kann.

Wagner beschreibt eine Reihe von solchen ’Uhren’,
auf die die Archäologie zurückgreifen kann; manche
sind recht neuen Datums (siehe: [Wag07]:SS.207ff).
Anhaltspunkte sind z.B. jahreszeitliche Wechsel,
Klimaänderungen, Baumringe (Dendrologie),
Sedimentablagerungen (Warvenchronologie), Eiskerne,
astronomische gesteuerte Ereignisse (wie jene, die
durch die Milanković-Zyklen hervorgerufen werden), Magnetismus, und Eigenschaften der Radioaktivität.

Da die Energiebilanz auf der Erdoberfläche zu
mehr als 99.9% von der Sonneneinstrahlung gespeist
wird, kommt den Parametern Neigung der Erdachse,
Rotationsgeschwindigkeit sowie Erdumlaufbahn
eine fundamentale Bedeutung zu. Schon geringe
Schwankungen hier können zu weitreichenden
Klimaänderungen führen (Stichwort: Milanković-
Zyklen)(siehe: [Wag07]:S.216 und [WD17g]). Da sich die
astronomischen Verhältnisse ziemlich genau berechnen
lassen, kann man die Annahmen des Milanković-
Zusammenhangs direkt experimentell an messbaren
Energiesignalen in den Ablagerungen überprüfen. Die
Autoren Zöller, Urban und Hambach zeigen auf, wie man
die Klimasignale in Meeressedimenten, Lössschichten
und Eisbohrkernen mit den berechneten astronomischen
Parametern korrelieren kann (siehe: [ZUH07], hier z.B.
die Tabelle auf S.87). Auf der Basis dieser ca. 50
globalen Warm- und Kaltzeiten in der Zeit ab ca. -2.5
Ma kann man dann ein Gerüst aufbauen, das mit
absoluten Zahlen versehen werden kann (siehe aber
auch hier [WD17g]).

Aus Stratigraphie und Chronometrie
kommt man damit zu einer Chronologie (Terminologie
von Wagner [Wag07]:S.207). Zu den Forschungen
zur Chronometrisierung von Eiszeiten siehe auch den
ausführlichen Artikel von Masson et al. [MDSP10].

III. PALÄONTOLOGIE UND PALÄOBIOLOGIE

Während im vorigen Blogbeitrag [DH17d] auf eine
Vielfalt von Disziplinen hingewiesen worden ist, die bei
der Analyse der biologischen Entwicklungsprozesse
involviert sind, soll hier das Augenmerk nur auf die
beiden Disziplinen Paläontologie und Paläobiologie
gelegt werden.

Wie Robert Foley herausarbeitet (siehe: [Fol98]),
brauchen beide Disziplinen einander. Die Paläobiologie
kann mittels molekularbiologischer und genetischer
Methoden die Abhängigkeitsbeziehungen zwischen
verschiedenen Lebensformen immer genauer
bestimmen, so genau, wie es die Paläontologie niemals
kann, aber die Paläobiologie kann dafür nicht die
Kontexte der Gene, die begleitenden geologischen,
sozialen, technologischen und sonstigen Elemente
erfassen; dies kann nur die Paläontologie.

Dieses Zusammenspiel demonstriert Foley am
Beispiel der Diskussion um die Abstammungslinien
der Gattung homo. Während die Vielfalt der
paläontologischen Funde viele mögliche Hypothesen
über Abstammungsverhältnisse ermöglichten, konnten
paläobiologische Untersuchungen aufzeigen, dass es
(i) aufgrund der ersten Auswanderungswelle aus Afrika
(ab ca. -1.6 Ma) viele Besiedlungsprozesse in Europa
und Asien gab, dass aber (ii) diese Lebensformen
keine genetischen Austauschverhältnisse mit dem
homo sapiens eingegangen sind, der in einer zweiten
Auswanderungswelle ab ca. -100 Ka von Afrika aus
über Arabien ca. -70 Ka nach Asien vordrang und erst
ab ca. -40 Ka nach Europa kam. (iii) Speziell zum
Neandertaler, der seit ca. -200 Ka vor allem in Europa
auftrat lässt sich sagen, dass es keine nennenswerten
Genaustausch gab. Außerdem zeigte sich (iv), dass der
Genpool aller neuen Lebensformen außerhalb von Afrika
verglichen mit dem Genpool afrikanischer Lebensformen
sehr eng ist. Daraus wird gefolgert, dass alle bekannten
Lebensformen von einer sehr kleinen homo sapiens
Population in Afrika abstammen müssen.(Vgl. zu allem
[Fol98]).

IV. ABSTAMMUNGSLINIEN

Die von Foley angesprochene Methodenproblematik
der Paläontologie wird von den Autoren Hardt und Henke
in ihrer Untersuchung zur ”Stammesgeschichtlichen
Stellung des Homo heidelbergensis” (siehe: [HH07]) sehr
ausführlich am Beispiel der Klassifizierungsgeschichte
des Fundes homo heidelbergensis in Mauer diskutiert.
Die Paläontologischen Deutungsversuche waren bis
in die Mitte des 20.Jahrhunderts gekennzeichnet von
einer gewissen (unwissenschaftlichen) Beliebigkeit,
die keine wirklichen Prinzipien erkennen ließ.

Das Klassifizierungssystem von Carl von Linné (1707 –
1778) mit Art (species), Gattung (genus), Ordnung
(ordo) und Klasse (classis) ist rein begrifflich-logisch
eine Sache, diese Konzepte aber konsistent mit
empirischen Merkmalen zu assoziieren, eine andere.
Bis in die 60er und 70er Jahre des 20.Jahrhunderts
hielt man z.B. an der Interpretation fest, dass es eine
Abfolge gibt von h.africanus zu h.habilis zu h.erectus
zu h.sapiens (siehe: [HH07]:S.188). Die Vermehrung
der Funde weltweit, die Zunahme von Varianten,
das Feststellen von Ähnlichkeiten und Unterschieden
dort, wo sie nach den bisherigen Interpretationen
nicht hätten vorkommen sollen, die zunehmende
Verbesserungen der Methoden, die Steigerung der
Präzision, die Einbeziehung der Paläobiologie, dies alles (und mehr)
führte zu mehrfachen Erschütterungen der bisherigen
Interpretationsansätze. Eines der Ergebnisse war,
dass homo erectus keine valide europäische Spezies
(Art) war. (siehe: [HH07]:S.192). Auch wurde klar,
dass alle bekannten Arten sich auf einen Ursprung
in Afrika zurückführen lassen, wenngleich in zwei
unterschiedlichen Auswanderungswellen: eine um -1.8
Ma und eine viel spätere um -100 Ka mit dem homo
sapiens. Die Nachfahren der ersten Out-of-Afrika Welle
haben sich mit den Nachfahren der zweiten Out-of-Afrika
Welle genetisch nicht vermischt (siehe: [HH07]:S.192f).

Wie nun die modernen Einordnungsversuche zum
homo heidelbergensis zeigen (siehe den Überblick bei
[HH07]:SS.200ff)), gibt es bislang vier große Szenarien,
zwischen denen eindeutig zu entscheiden, noch nicht
mit letzter Eindeutigkeit möglich ist.

Das Thema der wachsenden Vielfalt (Diversität)
der entdeckten Lebensformen und das Problem ihrer
Einordnung wird bei Foley intensiv diskutiert (siehe
[Fol10]). Angesichts der Zunahme der Funde zum
Stamm der hominini (Pan (Schimpansen) und homo
(Menschen)) thematisiert Foley gezielt das Problem
der Klassifizierung von Funden mit dem Modell der
’Art’ (Spezies), da die Vielfalt der möglichen Kriterien
einerseits und der bisweilen fließende Übergang von
Formen im Rahmen einer evolutiven Entwicklung klare
Grenzziehungen schwer bis unmöglich machen. Foley
plädiert daher dafür, den Art-Begriff nicht absolut
zu sehen sondern als ein analytisches Werkzeug
[Fol10]:S.71.

Eine Grundeinsicht in all der aktuellen Vielfalt ist allerdings
(sowohl im Licht der Paläontologie wie auch der
Paläobiologie), dass nicht nur der Stamm der hominini
auf einen rein afrikanischen Ursprung hindeutet, sondern
auch die überwältigende Mehrheit der Primatengattungen
[Fol10]:S.69.

V. GEHIRNVOLUMEN

Anwachsen der Gehirnvolumen mit Daten vonStorch et.al sowie Foley
Bild 1: Anwachsen der Gehirnvolumen (cm^3) mit Daten von Storch et.al (2013) sowie Foley (2010)

Ein interessantes Detail ist der Zuwachs des Gehirnvolumens
von ca. 320 – 380 cm^3 bis dann ca. 1000 –
1700 cm^3 im Zeitraum von ca. -7.2 Ma bis zu ersten
Funden des homo sapiens (siehe: [SWW13]:S.474). Man
beachte dabei, dass die Gehirnvolumina in der Auflistung
von [SWW13]:S.474 nicht relativ zum Körpergewicht
gewichtet sind. Für die Zeitachse wurden außerdem nicht alle
verfügbaren Daten aufgetragen, sondern anhand der
Liste von Foley [Fol10]:S.70f nur jeweils das zeitlich
erste Auftreten. Die Kurve im Bild 1 zeigt, wie das
Gehirnvolumen immer steiler ansteigt (bisher). Diese Volumenangaben
streuen jedoch sehr stark (bis zu 50% Abweichung vom Mittelwert).

VI. WISSENSCHAFTSPHILOSOPHISCHES

Wie sich in den vorausgehenden Diskussionen andeutet,
repräsentieren die Paradigmen von Paläontologie
und Paläobiologie zwei eigenständige Methodenbündel,
die ihre volle Leistung aber erst in einem gemeinsamen
Rahmen entfalten, in dem ihre individuellen
Daten in einen übergeordneten Zusammenhang – auf
einer Metaebene – zusammengebaut werden. Weder die
Paläontologie für sich noch die Paläobiologie für sich
bieten solch eine Metaebene explizit an. Im Interesse
der Sache wäre es aber gut, wenn das Zusammenspiel
beider Methodenbündel in einem gemeinsamen theoretischen
Rahmen explizit möglich wäre. Wie könnte dies
geschehen?

A. Ein Theorieschema für Paläontologie mit Paläobiologie

Im Rahmen eines Theorieprojektes, bei dem cagent
beteiligt ist (siehe: [DH17b]) wird gezeigt, wie man
im Rahmen der Vorgehensweise des allgemeinen
Systems Engineerings das Verhalten von Menschen in
Aufgabenkontexten theoretisch beschreiben kann. Die
Details finden sich in dem Abschnitt, der üblicherweise
als ’Mensch-Maschine Interaktion’ bezeichnet wird (EN:
’Human-Machine Interaction (HMI)) (siehe: [DH17a]).

Die beiden Grundkonzepte dort sind ’Userstory
(US)’ und ’Usermodel (UM)’. In der Userstory wird das
Verhalten von Akteuren beschrieben (Menschen oder
geeignete Maschinen (Roboter…), die eine Reihe von
Aufgaben in einer definierten Umgebung abarbeiten.
Diese Darstellung ist rein ’beobachtend’, sprich: wird
aus einer ’Dritten-Person-Perspektive’ (EN: ’3rd Person
View’) vorgenommen. Die inneren Zustände der
beteiligten Personen bleiben unbekannt (Akteure als
’black boxes’). Will man innere Zustände dieser Akteure
beschreiben, dann bedeutet dies, dass man Annahmen
(Hypothesen) über die inneren Zustände samt ihren
Wechselwirkungen treffen muss. Dies entspricht der
Konstruktion einer Verhaltensfunktion Φ#, die beschreibt,
wie die angenommenen ’Input-Ereignisse (I)’ des
Akteurs in die angenommenen ’Output-Ereignisse (O)’
des Akteurs abgebildet werden, also # Φ: I O.
Solch eine hypothetische Verhaltensfunktion ist Teil
einer umfassenden Struktur <I, O, Φ>. Diese Struktur
stellt einen minimalen Theoriekern dar, in den die
hypothetische Verhaltensfunktion Φ eingebettet ist. Wie
man diesen Theoriekern mit der Verhaltensfunktion im
einzelnen ausfüllt, ist im allgemeinen Fall beliebig. Die
einzige Anforderung, die erfüllt werden muss, besteht
darin, dass die Abfolge der Input-Output-Ereignisse
{(i1; o1), …} der Theorie mit der vorgegebenen Userstory
übereinstimmen muss. Darin drückt sich aus, dass die
Userstory aus Sicht des Usermodells den vorgegebene
Kontext darstellt, analog zur Erde als vorgegebenem
Kontext zu den biologischen Systemen.

Angewendet auf den Ausgangsfall Paläontologie und
Paläobiologie bedeutet dies, man kann die Paläontologie
aus Sicht einer Metatheorie verstehen als eine Userstory,
in der alle Rahmenbedingungen fixiert werden, die man
empirisch fassen kann; die verschiedenen biologischen
Systeme sind dann die identifizierten Akteure, für
die man jeweils Usermodelle konstruieren könnte,
die das Verhalten dieser Akteure in der definierten
Userstory beschreiben. Hier käme die Paläobiologie
ins Spiel, die durch Annahmen über das Genom
und Annahmen über ursächliche Zusammenhänge
zwischen Genom einerseits und Körperbau und
Verhalten andererseits, Beiträge für eine mögliche
Verhaltensfunktion leisten kann. Dazu kämen auch noch
die Vergleiche zwischen den verschiedenen Genomen
bzw. zwischen den verschiedenen Verhaltensfunktionen,
die auf Abhängigkeitsbeziehungen schließen lassen
würden.

Aufgrund der großen Komplexität sowohl bei der
Erstellung der Userstory wie auch der verschiedenen
Usermodelle werden alle dieser Modelle natürlich nur
Annäherungen sein können. Die heute angewendeten Modelle
sind allerdings auch nur Annäherungen, ihnen fehlen
allerdings nahezu alle formalen Eigenschaften, die sie
zu theoretischen Strukturen im Sinne einer empirischen
Theorie machen würden.

B. Simulationsmodelle für Paläontologie mit Paläobiologie

Sofern man sich auf das obige wissenschaftsphilosophisch
motivierte Theorieparadigma einlassen würde, würde sich
relativ schnell ein rein praktisches
Problem ergeben. Schon das Hinschreiben einfacher
Userstories und insbesondere Usermodelle führt sehr
schnell zu einem großen Schreibaufwand. Dieser
immer größere Schreib- und dann auch Lese- und
Ausführungsaufwand verlangt ziemlich direkt nach
computergestützten Verfahren der Simulation.
Dazu bräuchte man mindestens zwei Computerprogramme:
eines, durch das die Eigenschaften und die
Dynamik der Userstory simuliert würden, ein anderes
für die verschiedenen Usermodelle.
Ganz konkret bieten sich für diese Anforderungen
eine Unzahl möglicher Softwareumgebungen an. Für
den Neustart des ’Emerging Mind Projektes’ des INM
ab September 2017 (siehe: [DH17c]) wird zur Zeit mit
folgender Software und Hardware geplant:

  1. Für schnelle, kleine Modellierung wird sowohl das
    freie Mathematikpaket ’scilab’ benutzt (scilab.org)
    wie auch das freie Kreativprogramm ’processing’
    (processing.org).
  2. Für komplexe Anwendung mit Anspruch auf einen
    realistischen Einsatz auch in der realen Welt mit
    realen Robotern wird das Betriebssystem ’ubuntu’
    (ubuntu.com) benutzt und dazu die Middleware
    ’ROS (:= Robotic Operating System)(ros.org).
  3. Als Hardware kann dazu nahezu alles benutzt werden,
    was es gibt, auch eher ältere Geräte. Dies ist
    für Anwendungen im Bereich Schulen (und auch
    Hochschulen) sehr günstig, da es hier meist an
    Geld mangelt (trotz aller Schönwetterparolen der
    Deutschen Politiker).

REFERENCES

  • [DH17a] Gerd Doeben-Henisch. Approaching Hmi. Pages 1–nn, July 2017. Journal: UFFMM, URL: https://uffmm.org/2017/08/03/approaching-hmi/.
  • [DH17b] Gerd Doeben-Henisch. Bootstrapping main concepts, pages 1–nn, July 2017. Journal: UFFMM , URL: uffmm.org.
  • [DH17c] Gerd Doeben-Henisch. Emerging Mind Projekt, pages 1–nn, Sept 2017. Project: INM-EMP, URL: https://www.emerging-mind.org.
  • [DH17d] Gerd Doeben-Henisch. Menschenbild. Vorgeschichte bis zum homo sapiens. Überlegungen Philosophie Jetzt, ISSN 2365-5062, URL: cognitiveagent.org.
  • [Fol98] Robert Foley. The context of human genetic evolution, (8):339–347, 1998. Journal: Genom Research (GR).
  • [Fol10] Robert Foley. Species diversity in human evolution: challenges and opportunities, (60):62–72, 2010. Journal: Transactions of the Royal Society of South Africa, URL: http://dx.doi.org/10.1080/00359190509520479.
  • [HH07] Thorolf Hardt and Winfried Henke. Zur stammesgeschichtlichen Stellung des Homo heidelbergensis, In Günther A. Wagner, Hermann Rieder, Ludwig Zöller, Erich Mick (Hg.), Homo heidelbergensis. Schlüsselfund der Menschheitsgeschichte, SS. 184–202. Konrad Theiss Verlag, Stuttgart, 2007.
  • [MDSP10] V. Masson-Delmotte, B. Stenni, K. et.al., Pol. Epica dome c record of glacial and interglacial intensities, (29):113–128, 2010. Journal: Quaternary Science Reviews, URL: doi:10.1016/j.quascirev.2009.09.030.
  • [SWW13] Volker Storch, Ulrich Welsch, Michael Wink, (Hg.) Evolutionsbiologie, Springer-Verlag, Berlin – Heidelberg, 3.Aufl., 2013.
  • [Wag07] Günther A. Wagner. Altersbestimmung: Der lange Atem der Menschwerdung, In Günther A. Wagner, Hermann Rieder, Ludwig Zöller, Erich Mick (Hg.), Homo heidelbergensis. Schlüsselfund der Menschheitsgeschichte, SS. 203 -225. Konrad Theiss Verlag, Stuttgart, 2007.
  • [WD17a] Wikipedia-DE. Altpaläolithikum. 2017.
  • [WD17b] Wikipedia-DE. AnthropozÄn. 2017.
  • [WD17c] Wikipedia-DE. Epipaläolithikum. 2017.
  • [WD17d] Wikipedia-DE. HolozÄn. 2017.
  • [WD17e] Wikipedia-DE. Jungsteinzeit. 2017.
  • [WD17f] Wikipedia-DE. Mesolithikum. 2017.
  • [WD17g] Wikipedia-DE. Milanković-Zyklen. 2017.
  • [ZUH07] Ludwig Zöller, Brigitte Urban, Ulrich Hambach. Klima und Umweltveränderungen während des Eiszeitalters, In Günther A. Wagner, Hermann Rieder, Ludwig Zöller, Erich Mick (Hg.), Homo heidelbergensis. Schlüsselfund der Menschheitsgeschichte, SS. 84–112. Konrad Theiss Verlag, Stuttgart, 2007.

KONTEXT BLOG

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER.

MENSCHENBILD – VORGESCHICHTE BIS ZUM HOMO SAPIENS – Überlegungen

Journal: Philosophie Jetzt – Menschenbild, ISSN 2365-5062, 27.August 2017
URL: cognitiveagent.org
Email: info@cognitiveagent.org

Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Letzte Altualisierung: 27.Aug.2017 - 17:37h
Es gibt eine Weiterentwicklung dieses Beitrags in einem Folgebeitrag!

PDF

Überblick

Eingeleitet durch wissenschaftsphilosophische
Überlegungen wird versucht, die Entwicklung der
Säugetiere bis hin zum homo sapiens anhand der aktuellen
Forschungsdaten abzubilden. Das Hauptaugenmerk liegt
auf der allgemeinen Struktur. Für die vielen Details sei auf
die Literatur verwiesen, die angegeben wird.

I. KONTEXT

Eine der Leitfragen dieses Blogs ist die Frage nach
dem neuen Menschenbild, speziell auch im Kontext
der Diskussion um die Zukunft von Menschen und
intelligenten Maschine.

Wer nach der Zukunft des Menschen fragt,
braucht ein gutes Bild vom aktuellen Menschen und
seiner Entstehungsgeschichte, um auf dieser Basis
Überlegungen zu einer möglichen Zukunft anstellen zu
können.

Während zur biologischen Evolution allgemein schon
einige Blogbeiträge geschrieben wurden, fehlt es im Blog
an konkreten Daten zur Entwicklung unmittelbar vor dem
Auftreten des homo sapiens, etwa in dem Zeitfenster -10
Mio Jahren bis ca. -30.000 Jahren vor dem Jahr 0. Dies
soll hier in einem ersten Beitrag nachgeholt werden.

II. WISSENSCHAFTLICHE SICHTWEISEN

Bei der Frage nach der Entwicklung des homo
sapiens spielen mehrere wissenschaftliche Disziplinen
ineinander. Einmal ist es die Geologie (Siehe: [WD17g]),
die den Kontext Erde untersucht; dann die Klimatologie
(Siehe: [WD17n]), die sich mit den klimatischen
Verhältnissen im Kontext Erde beschäftigt. Für das
Phänomen des Lebens selbst ist die Biologie zuständig,
speziell die Evolutionsbiologie (Siehe: [SWW13],
[WD17e]). Als Teil der Evolutionsbiologie sind noch
zu nennen die Molekularbiologie (Siehe: [WD17s]) mit
der Genetik (Siehe: [WD17f]). Ferner könnte man als
Teil der Evolutionsbiologie auch noch die Paläontologie
(Siehe: [WD17u], [Par15]) nennen und auch die
Archäologie (Siehe: [WD17a]). Wobei das Wechselspiel
von Evolutionsbiologie und Archäologie nicht ganz
so klar erscheint. Viele weitere wissenschaftliche
Disziplinen tauchen innerhalb der genannten Disziplinen
in unterschiedlichsten Kontexten auf.

Diese Vielfalt spiegelt ein wenig die Komplexität der
Phänomene wieder, um die es hier geht. Der Autor
cagent selbst betrachtet die hier zu verhandelnden
empirischen Phänomene aus Sicht der Philosophie
mit den Schwerpunkten Erkenntnisphilosophie, die
Überschneidungen hat mit Phänomenen wie z.B.
‚Lernen’ und ’Intelligenz’. Dies sind Themen, die
feste Orte auch in der Psychologie haben, heute
oft parallelisiert mit der Gehirnforschung (letztere
methodisch gesehen ein Teil der Biologie).

Angesichts dieser Komplexität ist es praktisch
unmöglich, ein völlig konsistentes, einheitliches Bild der
Phänomene zu zeichnen. An dieser Stelle ist es das
Anliegen von cagent, einen ’hinreichenden’ Überblick
über die ’unmittelbare’ Vorgeschichte des homo sapiens
zu bekommen.

Der homo sapiens ist jene biologische Art (Spezies),
die zur Gattung homo gerechnet wird, die sich aus
dem biologischen Formenstrom über Jahrmillionen
herausgeschält hat. Es zeigt sich, dass die zeitliche
Abgrenzung, wann genau ’das Menschliche’ anfängt,
und wann das ’Tierische’ aufhört, irgendwie beliebig
erscheint. Der homo sapiens ab ca. -30.000 besitzt
natürlich Eigenschaften, die wir beschreiben können
wie Körperbau, genetisch bestimmte Erbanlagen,
typische Verhaltensweisen, aber diese Eigenschaften
tauchen nicht abrupt in der Geschichte auf, sind nicht
irgendwann einfach so da, sondern man findet in
der vorausgehenden Zeit eine große Formenvielfalt
in den Artefakten, mit unterschiedlichen genetischen
Distanzen zum heutigen homo sapiens. Daraus muss
man schließen, dass es einen viele Millionen dauernden
Prozess des Formenwandels gab, innerlich genetisch
und äußerlich durch die jeweiligen geologischen und
klimatologischen Verhältnisse beeinflusst, die sich
zudem noch verknüpfen mit der jeweiligen Pflanzen- und
Tierwelt. Alle diese genannten Faktoren waren selbst
einem kontinuierlichen Wandel unterworfen.

Wenn die Grenzziehung zwischen dem ’Tierischen’
und dem ’Menschlichen’ von daher nicht ganz scharf
gezogen werden kann, ist auch eine Zeitangabe dazu,
wie weit zurück in der Zeit man gehen soll, um die
Vorgeschichte’ zu beschreiben, relativ, d.h. abhängig
von den Kriterien, die man bei der Analyse anlegen
will.

In diesem Beitrag wurde der Startpunkt für die
Beschreibung bei den Lebensformen gewählt, die die
Biologen ’Primaten’ nennen, und zwar spezieller den
Punkt der Aufspaltung in die Strepsirrhini und Haplorhini
(Siehe: [WE17l] und [WD17r]), die sich um etwa -80
Mio Jahren ereignet haben soll. Aus Sicht der heutigen
menschlichen Geschichte, wo 100 Jahre oder gar 1000
Jahre eine lange Zeit sind, wirken diese 80 Millionen
Jahre sehr, sehr lang. Innerhalb der Geschichte des
Lebens mit ca. 3.5 Milliarden Jahre fallen die 0.08 Mrd
Jahre seit dieser Aufspaltung nahezu kaum ins Gewicht,
es sind gerade mal 2.2% der gesamten Entwicklungszeit
des biologischen Lebens. Betrachtet man dagegen nur
die Zeit seit dem Auftreten der Lebensform homo, die
dem heute bekannten Menschlichem schon nahe kommt
(etwa ab -2.5 Mio), dann schrumpft der Zeitanteil auf
0.071 % der Entwicklungszeit des biologischen Lebens
zusammen. Umgerechnet auf das 12-Stunden Ziffernblatt
einer Uhr mit 720 Minuten würde die Entstehung der
Lebensform homo die letzte halbe Minute auf dem
Ziffernblatt ausmachen. Die Lebensform homo sapiens,
zu der wir uns zählen, tauchte frühestens um -190.000 in
Afrika auf. Das wären auf dem Ziffernblatt dann (bei ca.
81.000 Jahren pro Sekunde) die letzten 2.3 Sekunden.

Im Spiel des Lebens erscheint dies nicht viel. Betrachtet
man aber, was sich allein in den letzten ca. 10.000
Jahren ereignet hat, und hier speziell nochmals in den
letzten 100 Jahren, dann legt sich der Schluss nahe,
dass die Lebensform homo sapiens offensichtlich über
Fähigkeiten verfügt, die gegenüber der Vorgeschichte
von ca. 3.5 Mrd Jahren etwas qualitativ ganz Neues
sichtbar macht. Autor cagent ist sich nicht sicher,
ob der homo sapiens selbst bislang wirklich begreift,
was hier passiert, welche Rolle er in diesem Prozess
spielt. Auf der einen Seite zeichnet sich eine immer
größere Zerstörungskraft ab (die auch stattfindet), auf
der anderen Seite deuten sich konstruktive Potentiale
an, die alles übersteigen, was bislang vorstellbar war.

III. DEUTUNGEN: MATERIAL, MUSTER, FUNKTION, KONTEXTE

Die Tätigkeit der eingangs erwähnten Wissenschaft
kann man verstehen als eine Deutung, ausgeführt in
einem Deutungsprozess. Diese Deutung beginnt bei der
Bestimmung der Substanzen/ Materialien, die Forscher
vorfinden. Ist das eine Gesteinsart, sind das Knochen,
sind das pflanzliche Bestandteile …. ? Ein anderer
Aspekt ist die Frage nach ’Formen’ und ’Mustern’:
kann man an dem Material auffällige Formen oder
Muster erkennen, dann auch im Vergleich zu anderen
Materialien? Schließlich auch die Frage nach möglichen funktionalen Zusammenhängen’: wenn es ein Knochen
ist, in welchem Zusammenhang eines Knochengerüsts
kommt er vor? Wenn etwas ein Zahn sein soll, wie sah
das zugehörige Gebiss aus? Oder ist dieser Knochen Teil
eines Werkzeugs, einer zu unterstellenden Handlung,
die das Stück benutzt hat? Schließlich, in welchem
Kontext kommt ein Material vor? Ist es zufälliger Kontext,
ein Kontext durch einen geologischen Prozess, ein
Kontext erzeugt durch Verhalten von Lebewesen?
Schon bei diesen Fragen bieten sich eine Vielzahl von
Deutungsmöglichkeiten, bestehen viele Ungewissheiten.

IV. DEUTUNGEN 2: ZEITLICHE ABFOLGE

Was Forscher zur Evolutionsbiologie besonders
interessiert, ist das Erfassen von zeitlichen Abfolgen:
unter Voraussetzung eines bestimmten Zeitmaßes
möchte die Evolutionsbiologie wissen, ob ein
Gegenstand/ Artefakt A im Sinne des Zeitmaßes ‚vor’ oder ’nach’ einem anderen Gegenstand/ Artefakt B ‚anzuordnen’ ist.
Diese Frage macht nur Sinn, wenn man neben
einem definierten Zeitmaß auch annehmen darf
(muss), dass sich die Erde als Generalumgebung aller
vorfindbaren Materialien/ Artefakte grundsätzlich in
einem Veränderungsmodus befindet, dass also die
Erde zu zwei verschiedenen Zeitpunkten grundsätzlich
verschieden sein kann.

Dass sich am Kontext Erde Veränderungen feststellen
lassen, dies haben Menschen schon sehr früh erleben
können: Temperatur, Regen oder nicht Regen, Tag und
Nacht, Wachstum der Pflanzen, Geboren werden und
Sterben, usw. Es passierte aber erst im 17.Jahrhundert,
dass die Fragestellung nach dem Vorher und Nachher in
der Entwicklung der Gesteine mit Nils Stensen (nicolaus
steno) eine systematische Form fand, aus der sich nach
und nach die moderne Geologie entwickelte (Siehe:
[WD17h]).

Erst durch die wissenschaftliche Geologie wissen
wir zunehmend, dass die Erde selbst ein dynamisches
System ist, das sich beständig verändert, wo sich
ganze Kontinente bilden, verschieben, verformen; wo
Vulkanismus stattfindet, Erosion, Klimaänderungen, und
vieles mehr. Erst durch die geologische Sehweise konnte
man nicht nur verschiedene Zustände der Erde entlang
einem definierten Zeitmaß identifizieren, sondern damit
dann auch Veränderungen in der Zeit’ sichtbar machen.

Dieses geologische Wissen vorausgesetzt,  besteht
plötzlich die Möglichkeit, ein Material/ Artefakt einer
erdgeschichtlichen Phase, einem Zeitpunkt in einem
Veränderungsprozess, zuzuordnen. Die Geologie hat – mittlerweile unterstützt durch viele Spezialgebiete, wie z.B. auch die Klimatologie (Siehe:
[WD17n]) – unter anderem eine zeitliche Abfolge von
Vulkanausbrüchen in den verschiedenen Regionen
der Erde identifizieren können und auch das sich
verändernde Klima.

So spricht man in der Klimatologie von sogenannten
Eiszeitaltern’ (Siehe: [WD17d]). In der schwachen
Version einer Definition von Eiszeitalter geht man davon
aus, dass mindestens eine Polkappe vereist ist. Die
letzte Eiszeit dieser Art fand statt um -33.5 Mio Jahren.
In der starken Version geht man davon aus, dass beide
Polkappen vereist sind. Die letzte Eiszeit dieser Art
begann um ca. -2.7 Mio Jahren und hält bis heute
an. In dieser Zeit gab es unterschiedliche Kalt- und
Warm-Phasen. Seit ca. -1 Mio Jahren haben sich 6
mal Kaltzeiten wiederholt: ca. -0.9 Mio, -0.77 Mio, -0.6
Mio, -0.48 Mio, -0.35 Mio, -12.000 (siehe: [WD17o],
[Rot00]:SS.173ff ).

Ein anderer starker Faktor, der das Klima
beeinflussen kann, sind Supervulkanausbrüche
(Siehe: [WD17w]). Hier eine Zusammenstellung
von Eiszeitaltern mit Kaltphasen in Kombination mit
den Supervulkanausbrüchen sofern sie das frühe
Ausbreitungsgebiet von homo und homo sapiens berührt
haben (wobei auch andere große Ausbrüche sich
weltweit auswirken konnten)(man beachte, dass die
Zeitangaben mit großen Unschärfen versehen sind):

  • Eiszeit: ab ca. -2.7 Mio Jahren
  • Vulkan:-1 Mio Äthiopien
  • Vulkan: -788.000 Indonesien
  • Kaltzeit: ca. -0.77 Mio Jahren
  • Kaltzeit: ca. -0.6 Mio Jahren
  • Vulkan: -500.000 (+/- 60.000) Äthiopien
  • Kaltzeit: ca. -0.48 Mio Jahren
  • Vulkan: -374.000 Italien
  • Kaltzeit: ca. -0.35 Mio Jahren
  • Vulkan:-161.000 Griechenland
  • Vulkan: -74.000 Indonesien
  • Vulkan:-50.000 Italien
  • Vulkan:-39.000 Italien
  • Kaltzeit: ca. -12.000

Bei der Entstehung von Eiszeiten spielen eine Vielzahl
von Faktoren eine Rolle, die ineinandergreifen. Sofern
es sich um periodische Faktoren handelt, kann sich dies
auf den Periodencharakter von Kalt- und Warmzeiten
auswirken (siehe: [WD17o], [Rot00]:SS.173ff ). Die globale Erwärmung, die
aktuell beklagt wird, ist ein Ereignis innerhalb eines noch
existierenden Eiszeitalters. Insofern ist die Erwärmung
eigentlich keine Anomalie, sondern eher die Rückkehr
zum ’Normalzustand’ ohne Eiszeitalter. Wobei sich
natürlich die Frage stellt, welcher Zustand der Erde ist
eigentlich ’normal’? Kosmologisch betrachtet – und darin
eingebettet die Wissenschaften von der Erde – wird
die Erde in einem Zustand enden, der nach heutigem
Wissen absolut lebensfeindlich sein wird (siehe: [WD17p],
[WE17b], [WE17c]). Für die Erde ist dieser Zustand
normal’, weil es dem physikalischen Gang der Dinge
entspricht, aus Sicht der biologischen Lebensformen
ist dies natürlich überhaupt nicht ’normal’, es ist ganz
und gar ’fatal’.

Insofern wird hier schon deutlich, dass
die innere Logik des Phänomens ‚biologisches Leben‘
nicht automatisch kongruent ist mit einem aktuellen
Lebensraum. Das Phänomen des biologischen Lebens
manifestiert einen Anspruch auf Geltung, für den
es im Licht der physikalischen Kosmologie keinen
natürlichen’ Ort gibt. Das biologische Leben erscheint
von daher als eine Art ’Widerspruch’ zum bekannten
physikalischen Universum, obgleich es das physikalische
Universum ist, das das biologische Leben mit ermöglicht.

V. DEUTUNGEN 3: ENTWICKLUNG VON KOMPLEXITÄT

Wenn man so weit vorgestoßen ist, dass man
Materialien/ Artefakte auf einer Zeitachse anordnen kann,
dann kann man auch der Frage nachgehen, welche
möglichen Veränderungen sich entlang solch einer
Zeitachse beobachten lassen: Bleibt alles Gleich? Gibt
es Änderungen? Wie lassen sich diese Veränderungen
klassifizieren: werden die beobachtbaren Phänomene
einfacher’ oder ’komplexer’?

Um solche eine Klassifikation in ’einfach’ oder
komplex’ vorzunehmen, braucht man klare Kriterien für
diese Begriffe. Aktuell gibt es aber keine einheitliche, in
allen Disziplinen akzeptierte Definition von ’Komplexität’.

In der Informatik wird ein Phänomen relativ zu
einem vorausgesetzten Begriff eines ’Automaten’ als
komplex’ charakterisiert: je nachdem wie viel Zeit
solch ein Automat zur Berechnung eines Phänomens
benötigt oder wie viel Speicherplatz, wird ein Phänomen
als mehr oder weniger ’komplex’ eingestuft (Siehe
dazu: [GJ79]). Dieser vorausgesetzte Automat ist eine
sogenannte ’Turingmaschine’. Dieses Konzept entstand
in der Grundlagendiskussion der modernen Mathematik
um die Wende vom 19. zum 20.Jahrhundert, als sich
die Mathematiker (und Logiker) darüber stritten, unter
welchen Bedingungen ein mathematischer Beweis
für einen Menschen (!) als ’nachvollziehbar’ gelten
kann. Nach gut 30 Jahren heftigster Diskussionen fand
man mehrere mathematische Konzepte, die sich als
äquivalent erwiesen. Eines davon ist das Konzept der
Turingmaschine, und dieses gilt als das ’einfachste’
Konzept von allen, das sich seit 1936/7 bisher in
allen Widerlegungsversuchen als stabil erwiesen hat.
Dies ist zwar selbst kein unwiderleglicher logischer
Beweis, aber ein empirisches Faktum, was alle Experten
bislang glauben lässt, dass mit diesem Konzept eine
zentrale Eigenschaft des menschlichen Denkens
eine konzeptuelle Entsprechung gefunden hat, die
sich formal und empirische experimentell überprüfen
lässt. So, wie die Physiker zum Messen Standards
entwickelt haben wie das ’Kilogramm’, das ’Meter’
oder die ’Sekunde’, so haben die Informatiker zum
Messen der ’Komplexität’ eines Phänomens relativ zur
(menschlichen) Erkenntnisfähigkeit die ’Turingmaschine’
(samt all ihren äquivalenten Konzepten) gefunden. Der
Vorteil dieser Definition von Komplexität ist, dass man
über das zu klassifizierende Phänomen vorab nahezu
nichts wissen muss. Darüber hinaus macht es Sinn, das
menschliche Erkennen als Bezugspunkt zu wählen, da
die Frage der Komplexität jenseits des menschlichen
Erkennens keinen wirklichen Ort hat.

Zurück zum Ausgangspunkt, ob sich im ’Gang der
Dinge’ auf der Erde Phänomene erkennen lassen,
die ’im Lauf der Zeit’ an Komplexität zunehmen,
deutet sich Folgendes an: es scheint unbestritten,
dass die Beschreibung einer biologischen ’Zelle’
(siehe: [AJL+15]) einen erheblich größeren Aufwand
bedeutet als die Beschreibung eines einzelnen Moleküls.
Zellen bestehen aus Milliarden von Molekülen, die
in vielfältigsten funktionellen Zusammenhängen
miteinander wechselwirken. Der Übergang von einzelnen
Molekülen zu biologischen Zellen erscheint von daher
gewaltig, und es ist sicher kein Zufall, dass es bis heute
kein allgemein akzeptiertes Modell gibt, das diesen
Übergang vollständig und befriedigend beschreiben
kann.

Für den weiteren Verlauf der biologischen Evolution
gibt es zahllose Phänomene, bei denen eine Vielzahl
von Faktoren darauf hindeuten, dass es sich um eine
Zunahme von Komplexität’ im Vergleich zu einer
einzelnen Zelle handelt, wenngleich manche dieser
Komplexitäts-Zunahmen’ Milliarden oder hunderte von
Millionen Jahre gebraucht haben. Im Fall der Entwicklung
zum homo sapiens ab ca. -80 Millionen Jahre gibt es
auch solche Phänomene, die sich aber immer weniger
nur alleine im Substrat selbst, also im Körperbau
und im Gehirnbau, festmachen lassen, sondern wo
das ’Verhalten’ der Lebewesen ein Indikator ist für
immer komplexere Wechselwirkungen zwischen den
Lebewesen und ihrer Umwelt.

Der Körper des homo sapiens selbst umfasst ca.
37 Billionen (10^12) Körperzellen, dazu im Innern des
Körpers geschätzte ca. 100 Billionen Bakterien, und
zusätzlich auf der Körperoberfläche ca. 224 Milliarden
Bakterien (siehe dazu [Keg15]). Diese ca. 137 Billionen
Zellen entsprechen etwa 437 Galaxien im Format
der Milchstraße. Während Menschen beim Anblick
des Sternenhimmels zum Staunen neigen, bis hin
zu einer gewissen Ergriffenheit über die Größe (und
Schönheit) dieses Phänomens, nehmen wir einen
anderen menschlichen Körper kaum noch wahr (falls
er sich nicht irgendwie auffällig ’inszeniert’). Dabei
ist der menschliche Körper nicht nur 437 mal größer in seiner Komplexität
als die Milchstraße, sondern jede einzelne Zelle ist
ein autonomes Individuum, das mit den anderen auf
vielfältigste Weise interagiert und kommuniziert. So kann
eine einzelne Gehirnzelle bis zu 100.000 Verbindungen
zu anderen Zellen haben. Körperzellen können über
elektrische oder chemische Signale mit vielen Milliarden
anderer Zellen kommunizieren und sie beeinflussen.
Bakterien im Darm können über chemische Prozesse
Teile des Gehirns beeinflussen, das wiederum aufgrund dieser Signale Teile des
Körpers beeinflusst. Und vieles mehr. Obgleich
die Erfolge der modernen Wissenschaften in den letzten
20 Jahren geradezu atemberaubend waren, stehen wir
in der Erkenntnis der Komplexität des menschlichen
Körpers noch weitgehend am Anfang. Niemand hat
bislang eine umfassende, zusammenhängende Theorie.

Dazu kommen noch die vielen immer komplexer
werden Muster, die sich aus dem Verhalten von
Menschen (und der Natur) ergeben. Zusätzlich wird das Ganze
stark beeinflusst von modernen Technologi wie z.B. der
Digitalisierung.

VI. DEUTUNGEN4: SELBSTREFERENZ: CHANCE UND
RISIKO

Ist man also zur Erkenntnis einer Zunahme an
Komplexität vorgestoßen, gerät das Erkennen vermehrt
in einen gefährlichen Zustand. Das Erkennen von
Zunahmen an Komplexität setzt – nach heutigem
Wissensstand – symbolisch repräsentierte ’Modelle’
voraus, ’Theorien’, mittels deren das menschliche
(und auch das maschinelle) Denken Eigenschaften
und deren Anordnung samt möglichen Veränderungen
repräsentieren’. Sobald ein solches Modell vorliegt, kann
man damit die beobachteten Phänomene ’klassifizieren’
und in ’Abfolgen’ einordnen. Die ’Übereinstimmung’
von Modell und Phänomen erzeugt psychologisch ein
befriedigendes’ Gefühl. Und praktisch ergibt sich daraus
meist die Möglichkeit, zu ’planen’ und Zustände ’voraus
zu sagen’.

Je komplexer solche Modelle werden, um so größer
ist aber auch die Gefahr, dass man nicht mehr so leicht
erkennen kann, wann diese Modelle ’falsch’ sind. Solche
Modelle stellen Zusammenhänge (im Kopf oder in der
Maschine) her, die dann vom Kopf in die Wirklichkeit
außerhalb des Körpers ’hinein gesehen’ werden, und
mögliche Alternativen oder kleine Abweichungen können
nicht mehr so ohne weiteres wahrgenommen werden.
Dann hat sich in den Köpfen der Menschen ein bestimmtes
Bild der Wirklichkeit ’festgesetzt’, das auf Dauer
fatale Folgen haben kann. In der Geschichte der empirischen
Wissenschaften kann man diese Prozesse mit
zahlreichen Beispielen nachvollziehen (siehe den Klassiker:
[Kuh62]). Dies bedeutet, je umfassender Modelle
des Erkennens werden, um so schwieriger wird es auf
Dauer – zumindest für das aktuelle menschliche Gehirn
das ’Zutreffen’ oder ’Nicht-Zutreffen’ dieser Modelle
zu kontrollieren.

Nachdem mit dem Gödelschen ’Unentscheidbarkeitstheorem’
schon Grenzen des mathematischen Beweisens sichtbar wurden (Siehe: [WD17q]),
was dann mit der Heisenbergschen ’Unschärferelation’
(Siehe: [WD17j]) auf das empirischen Messen erweitert
wurde, kann es sein, dass das aktuelle menschliche
Gehirn eine natürliche Schranke für die Komplexität
möglicher Erklärungsmodelle bereit hält, die unserem
aktuellen Erkennen Grenzen setzt (Grenzen des Erkennens
werden im Alltag in der Regel schon weit vorher
durch psychologische und andere Besonderheiten des
Menschen geschaffen).

VII. PERIODISIERUNGEN: BIS HOMO SAPIENS

Wie schon angedeutet, ist das Vornehmen einer
Periodisierung ein Stück willkürlich. Autor cagent hat
den Zeitpunkt der Aufspaltung der Primaten um etwa
-80 Mio Jahren vor dem Jahr 0 gewählt. Dabei gilt
generell, dass solche Zeitangaben nur Näherungen sind,
da die zugehörigen Wandlungsprozesse sich immer als
Prozess über viele Millionen Jahre erstrecken (später
dann allerdings immer schneller).

Bei der Datierung von Artefakten (primär
Knochenfunden, dazu dann alle weiteren Faktoren,
die helfen können, den zeitlichen Kontext zu fixieren),
gibt es einmal den Ansatzpunkt über die äußere und
materielle Beschaffenheit der Artefakte, dann aber
auch – im Falle biologischer Lebensformen – den
Ansatzpunkt über die genetischen Strukturen und
deren Umformungslogik. Über die Genetik kann man
Ähnlichkeiten (Distanzen in einem Merkmalsraum)
zwischen Erbanlagen feststellen sowie eine ungefähre
Zeit berechnen, wie lange es gebraucht hat, um von
einer Erbanlage über genetische Umformungen zu
einer anderen Erbanlage zu kommen. Diese genetisch
basierten Modellrechnungen zu angenommenen Zeiten
sind noch nicht sehr genau, können aber helfen,
die Materie- und Formen-basierten Zeitangaben zu
ergänzen.

  • Ordnung: Primates (Siehe: [SWW13]:Kap.5.2)
    (Aufteilung ab ca. -80 Mio) –->Strepsirrhini (Lorisi-,
    Chiromyi-, Lemuriformes) und Haplorhini (Tarsier,
    Neu- und Altweltaffen (einschließlich Menschen))
    (Siehe: [SWW13]:S.428,S.432, S.435 [WE17l],
    [WD17r])
  • Unterordnung: Haplorrhini (Aufteilung ab ca. -60
    Mio) (Siehe: [WE17l]) –->Tarsiiformes und Simiiformes
    Nebenordnung: Simiiformes (Aufteilung ab ca. –
    42.6 Mio) -–>Platyrrhini (Neuwelt- oder Breitnasenaffen)
    und Catarrhini (Altwelt- oder Schmalnasenaffen)
    (Siehe: Siehe: [SWW13]:S.428, [WE17l])
  • Teilordnung: Catarrhini (Altwelt- oder Schmalnasenaffen)
    (Aufteilung ab ca. -29/-25 Mio) -–>Cercopithecoidea
    (Geschwänzte Altweltaffen) und Hominoidea
    (Menschenartige) (Siehe: Siehe: [WE17l] und
    [WD17r])

    • Überfamilie: Hominoidea (Menschenartige)
      (Aufteilung ab ca. -20 Mio/ -15 Mio) –>Hylobatidae
      (Gibbons)und Hominidae (Große Menschenaffen
      und Menschen) (Siehe: [WD17r])
    • Aufspaltung der Menschenaffen (Hominidae) in die
      asiatische und afrikanische Linie (ca. -11 Mio)
      (Siehe: [WD17r])

      • Familie: Hominidae (Menschenaffen)(Aufteilung ab
        ca. -15Mio/-13 Mio in Afrika) –>Ponginae (Orang-
        Utans) und Homininae (Siehe: [WD17r])

        • Unterfamilie: Homininae
          Aufteilung der Homininae (ab ca. -9 Mio/ -8 Mio) –>
          Tribus: Gorillini und Hominini (Siehe: [WE17d])

          • Gattung: Graecopithecus (Süden von Griechenland)
          • Spezies/ Art: Graecopithecus freybergi (Siehe: [WD17i]) (ca. -7.2 Mio)
          • Gattung: Sahelanthropus (ab ca. -7.0/ -6.0 Mio)
          • Spezies/ Art: Sahelanthropus tchadensis
            (Siehe: [WD17v] [WE17k]) (im Tschad)
        • Tribus (Stamm/ Tribe): Hominini
        • Aufteilung der Hominini (ab ca. -6.6/-4.2 Mio)
          (Siehe: [SWW13]:S.435, [WE17d]) -–>Pan
          (Schimpansen) und Homo (Die Lebensform
          Panina bildet einen Unterstamm zum
          Stamm ’homini’. Für die Trennung zwischen
          Schimpansen (Pan) und Menschen (Homo) wird
          ein komplexer Trennungsprozess angenommen,
          der viele Millionen Jahre gedauert hat. Aktuelle
          Schätzungen variieren zwischen ca. -12 Mio und
          -6-8 Mio Jahren (Siehe: [WE17a])

          • Gattung: Orrorin tugenensis (ab ca. -6.2 bis
            ca. -5.65 Mio) (Siehe: [WD17t])
          • Gattung: Ardipithecus (ab ca. -5.7 Mio bis ca.
            -4.4 Mio) (Siehe: [WD17b])
          • Gattung: Australopithecus anamensis (ab
            ca. -4.2 Mio bis ca. -3.9 Mio) (Siehe:
            [SWW13]:S.475f)
          • Gattung: Australopithecus (ab ca. -4 Mio bis
            ca. -2/-1.4 Mio) (Siehe: [SWW13]:S.475f)
          • Gattung: Australopithecus afarensis (ab
            ca. -3.5 Mio bis ca. -3 Mio) (Siehe:
            [SWW13]:S.476)
          • Gattung: Kenyanthropus platyops (ab ca. –
            3.5/ -3.3 Mio) (Siehe: [WD17m]) Kann
            möglicherweise auch dem Australopithecus
            zugerechnet werden (Siehe: [SWW13]:S.475,
            479).
          • Gattung: Australopithecus africanus (ab
            ca. -3.2 Mio bis ca. -2.5 Mio) (Siehe:
            [SWW13]:S.477)
          • Gattung: Australopithecus ghari (um ca.- 2.5
            Mio) (Siehe: [SWW13]:S.477)
          • Gattung: Paranthropus (Australopithecus)
            (ab ca. -2.7 Mio) (Siehe: [WE17j]).
            Kann möglicherweise auch dem
            Australopithecus zugerechnet werden (Siehe:
            [SWW13]:S.475).

            • Spezies/ Art: Paranthropus (Australopithecus)
              aethiopicus (ab ca. -2.6 Mio bis ca. -2.3
              Mio) (Siehe: [SWW13]:S.478)
            • Spezies/ Art: Paranthropus (Australopithecus)
              boisei (ab ca. -2.3 Mio bis ca. -1.4 Mio)
              (Siehe: [SWW13]:S.478). Mit dem Australopithecus
              boisei starb der Australopithecus
              vermutlich aus.
            • Spezies/ Art: Paranthropus (Australopithecus)
              robustus (ab ca. -1.8 Mio bis ca. -1.5
              Mio) (Siehe: [SWW13]:S.478)
          • Gattung: Homo (ab ca. -2.5/ -2.0 Mio).
            Im allgemeinen ist es schwierig, sehr klare
            Einteilungen bei den vielfältigen Funden
            vorzunehmen. Deswegen gibt es bei der
            Zuordnung der Funde zu bestimmten Mustern
            unterschiedliche Hypothesen verschiedener
            Forscher. Drei dieser Hypothesen seien hier
            explizit genannt:

            1. Kontinuitäts-Hypothese: In dieser Hypothese
              wird angenommen, dass es vom
              homo ergaster aus viele unterschiedliche
              Entwicklungszweige gegeben hat, die
              aber letztlich alle zum homo sapiens
              geführt haben. Die Vielfalt der Formen
              in den Funden reflektiert also so eine
              genetische Variabilität.
            2. Multiregionen-Hypothese: In dieser Hypothese
              wird angenommen, dass sich –
              ausgehend vom homo ergaster – regional
              ganz unterschiedliche Formen ausgebildet
              haben, die dann – bis auf den homo sapiens
              mit der Zeit ausgestorben sind
            3. Out-of-Africa Hypothese: Neben
              früheren Auswanderungen aus Afrika
              geht es in dieser Hypothese darum, dass
              sich nach allen neuesten Untersuchungen
              sagen lässt, dass alle heute lebenden
              Menschen genetisch zurückgehen auf
              den homo sapiens, der ca. um -100.000
              Jahren von Afrika aus kommend nach und
              nach alle Erdteile besiedelt hat (Siehe:
              [SWW13]:S.488ff, 499).

            Natürlich ist auch eine Kombination der ersten
            beiden Hypothesen möglich (und wahrscheinlich),
            da es zwischen den verschiedenen Formen
            immer wieder Vermischungen geben
            konnte.

          • Spezies/ Art: Homo rudolfensis (von
            ca. -2.4 bis ca. -1.8 Mio) (Siehe:
            [SWW13]:S.481)
          • Spezies/ Art: Homo habilis (von ca. -2.4 Mio bis ca. 1.65 Mio). Erste Art der Gattung Homo. Benutzte Steinwerkzeuge (Oldowan Kultur). Diese Artefakte sind
            nachweisbar für -2.5 bis -700.000 (Siehe: [SWW13]:S.480)
          • Gattung: Australopithecus sediba (um ca.
            -2 Mio) (Siehe: [SWW13]:S.477)
          • Spezies/ Art: Homo gautengensis (von ca.
            -1.9 Mio bis ca. -0.6 Mio)(Südafrika) (Siehe:
            [WE17h])
          • Spezies/ Art: Homo ergaster (von ca. -1.9
            Mio bis ca. -1.0 Mio) Werkzeuggebrauch
            wahrscheinlich, ebenso die Nutzung von
            Feuer (Lagerplätze mit Hinweisen um ca.
            -1.6 Mio). Stellung zu homo erectus unklar.
            (Siehe: [SWW13]:S.482f) Funde in
            Nordafrika (ca. -1.8 Mio), Südspanien (ca. –
            1.7-1.6 Mio und -1 Mio), Italien (ca. -1 Mio),
            Israel (ca. -2 Mio), Georgien (ca. -1.8 bis –
            1.7 Mio) und China (ca. -1.0 Mio) zeigen,
            dass homo ergaster sich schon sehr früh
            aus Afrika heraus bewegt hat.
          • Spezies/ Art: Homo erectus (Siehe:
            [WE17f]) (ab ca. -1.9 Mio bis ca. -85.000/
            -56.000); entwickelte sich vor allem in
            Asien (China, Java…), möglicherweise
            hervorgegangen aus dem homo ergaster.
            Ist fas zeitgleich zu homo ergaster in Afrika
            nachweisbar. Würde voraussetzen, dass
            homo ergaster in ca. 15.000 Jahren den
            Weg von Afrika nach Asien gefunden hat.
            (Siehe: [SWW13]:S.484-487)
          • Spezies/ Art: Homo antecessor (Siehe:
            [WE17e]) (von ca. -1.2 Mio bis –
            800.000). Hauptsächlich Funde in
            Nordafrika und Südspanien. Wird zur
            ersten Auswanderungswelle ’Out of Africa’
            gerechnet, die nach Europa und Asien kam.
            Letzte Klarheit fehlt noch. Es scheint viele
            Wechselwirkungen zwischen h.ergaster,
            h.erectus, h.antecessor, h.heidelbergensis,
            h.rhodesiensis, h.neanderthalensis sowie
            h.sapiens gegeben zu haben. (Siehe:
            [SWW13]:S.489)
          • Spezies/ Art ?: Homo cepranensis
            (Datierung zwischen ca. -880.000 bis
            ca.-440.000); (Siehe: [WD17k]) noch keine
            klare Einordnung (siehe Anmerkungen zu
            h.antecessor.)
          • Spezies/ Art: Homo heidelbergensis
            (Siehe: [WD17l]) (von ca. -600.000 bis
            -200.000). Überwiegend in Europa; es
            gibt viele Ähnlichkeiten mit Funden
            außerhalb von Europa in Afrika, Indien,
            China und Indonesien, z.B. Ähnlichkeiten
            zu homo rhodesiensis. Steinwerkzeuge,
            weit entwickelte Speere, Rundbauten,
            Feuerstellen, evtl. auch Kultstätten. (Siehe:
            [SWW13]:SS.490-493).
          • Spezies/ Art: Homo rhodesiensis (Siehe:
            [WE17i]) (von ca.-300.000 bis ca. –
            125.000)(Ost- und Nord-Afrika, speziell
            Zambia)
          • Spezies/ Art: Homo neanderthalensis
            (ab ca. -250.000 bis ca. -33.000). Frühe
            Formen und späte Formen. Genetische
            Eigenentwicklung seit ca. -350.000/ -400.000. Schwerpunkt Europa, aber Ausdehnung von Portugal, Spanien, bis
            Wales, Frankreich, England, Deutschland,
            Kroatien, schwarzes Meer, Nordirak,
            Zentralasien, Syrien, Israel . Meist nie
            mehr als insgesamt einige 10.000 in ganz
            Europa. In der Schlussphase parallel
            mit homo sapiens für ca. 50.000 Jahre.
            Es kam zu geringfügigen genetischen
            Beeinflussungen. Eine eigenständige
            hohe Werkzeugkultur, die aus der
            Steinwerkzeugkultur der Acheul´een ca.
            -200.000 hervorging und bis -40.000
            nachweisbar ist. Neben Steinwerkzeugen
            auch Schmuck. Sie pflegten Kranke,
            bestatteten ihre Toten. Die differenzierte
            Sozialstruktur, das gemeinsames Jagen,die
            Werkzeugkultur, das großes Gehirn
            sowie die Genbeschaffenheit lassen es
            wahrscheinlich erscheinen, dass der
            Neandertalerüber Sprache verfügte. Ein
            besonders kalter Klimaschub um -50.000
            verursachte einen starken Rückzug aus
            West- und Mitteleuropa, der dann wieder
            mit Einwanderer aus dem Osten gefüllt
            wurde. Im Bereich Israels/ Palästina gab
            es zwischen ca. -120.000 und -50.000
            eine Koexistenz von Neandertaler und
            homo sapiens. Was auch darauf hindeutet,
            dass eine erste Auswanderungswelle von
            h.sapiens schon um ca. -120.000/ -100.000
            stattgefunden hatte, aber nur bis Israel
            gekommen ist. Warum die Neandertaler
            ausstarben ist unbekannt. homo sapiens
            hat seine Population in Europa im Zeitraum
            -55.000 und -35.000 etwa verzehnfacht.
            (Siehe: [SWW13]:SS.493-498)
          • Spezies/ Art: Homo sapiens (ab ca. -190.000 bis heute); Wanderungsbewegungen aus Afrika heraus ab ca. -125.000
            erster Vorstoß bis Arabien. Parallel gab
            es eine kleine Auswanderung um -120.000
            über das Niltal bis Palästina/Israel, die
            aber keine weitere Expansion zeigte. Um
            -70.000 von Arabien aus in den Süden des mittleren Ostens, um ca. -60.000/ -50.000 nach Neuguinea und
            Australien. Vor ca. -50.000 bis -45.000 über
            Kleinasien nach Südost-, Süd- und Westeuropa.
            Um ca. -40.000 über Zentralasien
            bis Nordchina. Von Asien aus um -19.000/ -15.000 Einwanderung in Nordamerika über
            die Beringstraße, bis nach Südamerika um
            ca. -13.000. Es gibt aber auch die Hypothese,
            dass Südamerika schon früher
            (ca. -35.000 ?)über den Pazifik besiedelt
            wurde. Die Gene der Indianer in Nord- und
            Südamerika stimmen mit Menschen aus
            Sibirien, Nordasien und Südasien überein.
            Ab der Zeit -60.000/ -40.000 wird ein deutlicher
            kultureller Entwicklungssprung beim
            homo sapiens diagnostiziert, dessen Entwicklung
            seitdem anhält und sich heute
            noch erheblich beschleunigt. Felszeichnungen
            ab ca. -40.000, Werkzeuge, Wohnungen,
            Kleidung, Sprache.
          • Spezies/ Art: Homo floresiensis
            (Siehe: [WE17g])(ca. um -38.000 bis -12.000)(Insel Flores, Indonesien). Benutze Steinwerkzeuge, beherrschte das Feuer, Kleinwüchsig, entwickeltes Gehirn. Insel
            war seit mindestens -800.000 besiedelt.
            Vorfahren könnten seit -1 Mio dort gewesen
            sein. (Siehe: [SWW13]:S.487f)
          • Spezies/ Art: Denisovaner (noch kein
            wissenschaftlicher Name vereinbart)(um
            -40.000) (Siehe: [WD17c]), Funde im
            Altai Gebirge (Süd-Sibierien); es gibt
            Funde auf den Pilippinen, in Indonesien,
            Neuguinea, Australien, auf einigen Inseln
            des südlichen Pazifik, mit den Genen der
            Denisovaner. Herkunft möglicherweise von
            h.heidelbergensis. Es gab genetischen
            Austausch mit h.sapiens. (Siehe:
            [SWW13]:S.498)

VIII. WAS FOLGT AUS ALLEDEM?

Jeder, der diesen Text bis hierher gelesen haben
sollte, wird sich unwillkürlich fragen: Ja und, was heißt
das jetzt? Was folgt aus Alledem?

In der Tat ist dieser Text noch nicht abgeschlossen.

Der Text stellt allerdings eine notwendige
Vorüberlegung dar zu der – hoffentlich – weiter führenden
Frage nach der Besonderheit des homo sapiens als
Erfinder und Nutzer von intelligenten Maschinen.

Während die abschließende Definition von potentiell
intelligenten Maschinen mit dem mathematischen
Konzept der Turingmaschine im Prinzip vollständig
vorliegt, erscheint die Frage, wer oder was denn der
homo sapiens ist, je länger umso weniger klar. Mit
jedem Jahr empirischer Forschung (in allen Bereichen)
enthüllt sich scheibchenweise eine immer unfassbarere
Komplexität vor unseren Augen, die ein Verständnis
des homo sapiens samt seinem gesamten biologischen
Kontext eher in immer weitere Ferne zu rücken scheint.

Konnten die großen Offenbarungsreligionen über
viele Jahrhunderte irgendwie glauben, dass sie
eigentlich wissen, wer der Mensch ist (obwohl sie
nahezu nichts wussten), ist uns dies heute – wenn wir
die Wissenschaften ernst nehmen – immer weniger
möglich. Wenn im jüdisch-christlichen Glauben der
Mensch bildhaft als ’Ebenbild Gottes’ bezeichnet werden
konnte und damit – zumindest indirekt – angesichts
dieser unfassbaren Erhabenheit eine Art Schauer über
den Rücken jagen konnte (ohne dass zu dieser Zeit
verstehbar war, worin denn die Besonderheit genau
besteht), so werden wir in den letzten Jahren durch
immer tiefere Einblicke in die Abgründe der Komplexität
von Leben und Lebensprozessen in einem scheinbar
lebensfremden physikalischen Universum provoziert,
herausgefordert, und Gelegenheit zum Staunen gäbe es
allerdings genug.

In diesem anwachsenden Wissen um
unser Nichtwissen begegnen wir einer schwer fassbaren
Größe, die wir salopp ’biologisches Leben’ nennen, die
aber alles übersteigt, dessen wir denkerisch fähig sind.

Eine der vielen Paradoxien des Universums ist
genau dieses Faktum: in einem scheinbar ’leblosen’
physikalischen Universum ’zeigen sich’ materielle
Strukturen, die Eigenschaften besitzen, die es strikt
physikalisch eigentlich nicht geben dürfte, und die sich
in einer Weise verhalten, die das ganze Universum
prinzipiell zu einem ’Un-Ort’ machen: das bekannte
physikalische Universum ist lebensfeindlich, das
biologische Leben will aber genau das Gegenteil:
es will leben. Wie kann das zusammen gehen? Warum
kann ein scheinbar lebloses physikalisches Universum
Überhaupt der Ort sein, wo Leben entsteht, Leben
stattfinden will, Leben sich schrittweise dem inneren
Code des ganzen Universums bemächtigt?

In weiteren Beiträgen wird es darum gehen, dieses
Phänomen ’biologisches Leben’ weiter zu erhellen,
und zu zeigen, wie das biologische Leben sich mit
Hilfe intelligenter Maschinen nicht nur generell weiter
entwickeln wird, sondern diesen Prozess noch erheblich
beschleunigen kann. Es gilt hier die Arbeitshypothese,
dass die intelligenten Maschinen ein konsequentes
Produkt der biologischen Evolution sind und dass es
gerade dieser Kontext ist, der dieser Technologie ihre
eigentliche Zukunftsfähigkeit verleiht.

Die heutigen Tendenzen, die Technologie vom biologischen Leben
zu isolieren, sie in dieser Isolation zugleich in geradezu
religiöser Manier zu Überhöhen, wird die evolutionär
induzierte Entwicklung dieser Technologie eher
behindern, und damit auch das vitale Element der
biologischen Evolution, den homo sapiens.

Der homo sapiens ist kein Individuum, er wird
repräsentiert durch eine Population, die wiederum nur
Teil einer umfassenderen Population von Lebensformen
ist, die sich gegenseitig am und im Leben halten. Es wird
wichtig sein, dass der homo sapiens diese Arbeitsteilung
versteht, bevor er mit seiner wachsenden Aufbau- und
Zerstörungskraft das biologische Universum zu stark
beschädigt hat.

Zum aktuellen Zeitpunkt kann niemand mit Gewissheit
sagen, ob das alles irgendeinen ’Sinn’ besitzt, d.h. ob es
in all den Abläufen in der Zukunft eine Menge möglicher
Zielzustände gibt, die in irgendeinem Sinne als ’gut’/
’schön’/ ’erfüllend’ oder dergleichen bezeichnet werden
können. Genauso wenig kann aber irgend jemand zum
aktuellen Zeitpunkt mit Gewissheit einen solchen Sinn
ausschließen. Rein empirisch kann man schon heute
eine solche Menge an atemberaubenden Strukturen und
Zusammenhänge erfassen, die ’aus sich heraus’ ein
Exemplar der Gattung homo sapiens in ’Erstaunen’ und
’Begeisterung’ versetzen können; aber weder gibt es für
solch ein Erstaunen einen Zwang, eine Regel, ein Muss,
noch ist all dies ’zwingend’. Noch immer können wir
nicht ausschließen, dass dies alles nur ein Spiel ist,
eine gigantische kosmologische Gaukelei, oder – wie
es die physikalischen kosmologischen Theorien nahelegen
– in einem gigantischen Kollaps endet, aus der
möglicherweise wieder ein Universum entsteht, aber ein
anderes.

REFERENCES

  • [AJL+15] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff,
    K. Roberts, and P. Walter.Molecular Biology of the Cell.
    Garland Science, Taylor & Francis Group, LLC, Abington
    (UK) – New York, 6 edition, 2015.
  • [GJ79] Michael R. Garey and David S. Johnson.Computers and
    Intractibility. A Guide to the Theory of NP.Completeness.
    W.H. Freeman an Company, San Francisco (US), 1 edition,
    1979.
  • [Keg15] Bernhard Kegel.Die Herrscher der Welt. DuMont, Köln (DE),
    1 edition, 2015.
  • [Kuh62] Thonas S. Kuhn.The Structure of Scientific Revolutions.
    University of Chicago Press, Chicago (US), 1 edition, 1962.
  • [Par15] Hermann Parzinger.DIE KINDER DES PROMETHEUS.
    Geschichte der Menschheit vor der Erfindung der Schrift.
    Wissenschaftliche Buchgesellschaft, Darmstadt (DE), 2 edition,
    2015.
  • [Rot00] Peter Rothe.Erdgeschichte. Spurensuche im Gestein. Wissenschaftliche
    Buchgesellschaft, Darmstaadt (DE), 1 edition, 2000.
  • [SWW13] Volker Storch, Ulrich Welsch, and Michael Wink, editors.
    Evolutionsbiologie. Springer-Verlag, Berlin – Heidelberg, 3 edition, 2013.
  • [WD17a] Wikipedia-DE. Archäologie. 2017.
  • [WD17b] Wikipedia-DE. Ardipithecus. 2017.
  • [WD17c] Wikipedia-DE. Denisova-mensch. 2017.
  • [WD17d] Wikipedia-DE. Eiszeitalter. 2017.
  • [WD17e] Wikipedia-DE. Evolutionsbiologie. 2017.
  • [WD17f] Wikipedia-DE. Genetik. 2017.
  • [WD17g] Wikipedia-DE. Geologie. 2017.
  • [WD17h] Wikipedia-DE. Geschichte der geologie. 2017.
  • [WD17i] Wikipedia-DE. Graecopithecus freybergi. 2017.
  • [WD17j] Wikipedia-DE. Heisenbergsche unschärferelation. 2017.
  • [WD17k] Wikipedia-DE. Homo cepranensis. 2017.
  • [WD17l] Wikipedia-DE. Homo heidelbergensis. 2017.
  • [WD17m] Wikipedia-DE. Kenyanthropus platyops. 2017.
  • [WD17n] Wikipedia-DE. Klimatologie. 2017.
  • [WD17o] Wikipedia-DE. Känozoisches eiszeitalter. 2017.
  • [WD17p] Wikipedia-DE. Kosmologie. 2017.
  • [WD17q] Wikipedia-DE. Kurt gödel. 2017.
  • [WD17r] Wikipedia-DE. Menschenaffen. 2017.
  • [WD17s] Wikipedia-DE. Molekularbiologie. 2017.
  • [WD17t] Wikipedia-DE. Orrorin tugenensis. 2017.
  • [WD17u] Wikipedia-DE. Paläontologie. 2017.
  • [WD17v] Wikipedia-DE. Sahelanthropus tchadensis. 2017.
  • [WD17w] Wikipedia-DE. Supervulkan. 2017.
  • [WE17a] Wikipedia-EN. chimpanzee–human last common ancestor
    (chlca). 2017.
  • [WE17b] Wikipedia-EN. Cosmology. 2017.
  • [WE17c] Wikipedia-EN. Earth science. 2017.
  • [WE17d] Wikipedia-EN. Homininae. 2017.
  • [WE17e] Wikipedia-EN. Homo antecessor. 2017.
  • [WE17f] Wikipedia-EN. Homo erectus. 2017.
  • [WE17g] Wikipedia-EN. Homo floresiensis. 2017.
  • [WE17h] Wikipedia-EN. Homo gautengensis. 2017.
  • [WE17i] Wikipedia-EN. Homo rhodesiensis. 2017.
  • [WE17j] Wikipedia-EN. Paranthropus. 2017.
  • [WE17k] Wikipedia-EN. Sahelanthropus tchadensis. 2017.
  • [WE17l] Wikipedia-EN. Simian. 2017.

Eine FORTSETZUNG findet sich HIER.

VIII. KONTEXTE

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER.