KÜNSTLICHE INTELLIGENZ (KI) – CHRISTLICHE THEOLOGIE – GOTTESGLAUBE. Ein paar Gedanken

Journal: Philosophie Jetzt – Menschenbild, ISSN 2365-5062
24.Juni 2018
URL: cognitiveagent.org
Email: info@cognitiveagent.org

Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

VORBEMERKUNG

Der folgende Text wurde im September in einer christlichen Zeitschrift veröffentlicht [*]. Es war (und ist) ein ‚experimenteller Text‘, bei dem ich versucht habe, auszuloten, was gedanklich passiert, wenn man die beiden Themenkreise ‚Glaube an Gott im   Format christlicher Theologie‘ mit dem Themenkreis ‚Künstliche Intelligenz‘ zusammen führt. Das Ergebnis kann überraschen, muss aber nicht. Dieser ganze Blog ringt von Anbeginn um das Verhältnis von Philosophie, Wissenschaft (mit Technologie) und dem Phänomen der Spiritualität als Menschheitsphänomen, und die christliche Sicht der Dinge (die in sich ja keinesfalls einheitlich ist), ist nur eine Deutung von Welt unter vielen anderen. Wer die Einträge dieses Blogs durch mustert (siehe Überblick) wird feststellen, dass es sehr viele Beiträge gibt, die um die Frage nach Gott im Lichte der verfügbaren Welterfahrung kreisen. Die aktuelle Diskussion von W.T.Stace’s Buch ‚Religion and the Modern Mind‘ (Beginn mit Teil 1 HIER) setzt sich auch wieder   mit dieser Frage auseinander.

INHALT BEITRAG

Im Alltag begegnen wir schon heute vielfältigen Formen von Künstlicher Intelligenz. Bisweilen zeigt sie sehr menschenähnliche Züge. In Filmen werden uns Szenarien vorgeführt, in denen Superintelligenzen zukünftig die Herrschaft über uns Menschen übernehmen wollen. Wie verträgt sich dies mit unserem Menschen-und Gottesbild? Macht Glauben an Gott dann noch Sinn?

I. KI IST SCHON DA …

Vielen Menschen ist gar nicht bewusst, wo sie im Alltag schon mit Programmen der Künstlichen Intelligenz (KI) zu tun haben. Schaut man sich aber um, wird man entdecken, dass Sie scheinbar schon überall am Werk ist. Hier ein paar Stichworte: Kundenanfragen werden immer mehr durch KI-Programme bestritten. In der Logistik: In Lagerhallen und ganzen Häfen arbeiten intelligente Roboter, die wiederum von anderen KI-Programmen überwacht und optimiert werden. Ähnliches in Fabriken mit Produktionsstraßen. Für die Wartung von Maschinenbenutzen Menschen Datenhelme, die über ein KI-Programm gesteuert werden und die dem Menschensagen, was er sieht, und wo er was tun soll. In der Landwirtschaft sind die beteiligten Maschinen vernetzt, haben KI-Programme entweder an Bord oder werden über Netzwerke mit KI-Programmen verbunden: diese kontrollieren den Einsatz und steuern Maßnahmen. Auf den Feldern können diese Maschinen autonom fahren. Im Bereich Luftfahrt und Schifffahrt können sich Flugzeuge und Schiffe schon heute völlig autonom bewegen, ebenso beim LKW-Verkehr und auf der Schiene. Durch das Internet der Dinge (IoT) wird gerade der Rest der Welt miteinander vernetzt und damit einer zunehmenden Kontrolle von KI-Programmen zugänglich gemacht. In der Telemedizin ist dies schon Alltag: Ferndiagnose und Fernbehandlung sind auf dem Vormarsch. Schon heute wird für die Diagnose schwieriger und seltener Krankheiten KI eingesetzt, weil sie besser ist als ganze Gruppen menschlicher Experten. Viele komplizierte Operationen – speziell im Bereich Gehirn – wären ohne Roboter und KI schon heute unmöglich. KI-Programme entschlüsseln das Erbgut von Zellen, Suchen und Finden neue chemische Verbindungen und pharmakologische Wirkstoffe.

In der Finanzwirtschaft haben KI-Programme nicht nur den Handel mit Aktien und anderen Finanzprodukten übernommen (Stichwort: Hochfrequenzhandel), sondern sie verwalten auch zunehmend das Vermögen von Privatpersonen, übernehmen den Kontakt mit den Kunden, und wickeln Schadensfälle für Versicherungen ab. Bei anwaltlichen Tätigkeiten werden Routineaufgaben von KI-Programmen übernommen. Richter in den USA lassen sich in einzelnen Bundesländern mit KI-Programmen die Wahrscheinlichkeit ausrechnen, mit der ein Angeklagter wieder rückfällig werden wird; dies wird zum Schicksal für die Angeklagten, weil die Richter diese Einschätzungen in ihr Urteil übernehmen. Das Militär setzt schon seit vielen Jahren in vielen Bereichen auf KI-Programme. Zuletzt bekannt durchfliegende Kampfroboter (Drohnen). Dazu weltweite Ausspähprogramme von Geheimdiensten, die mit Hilfe von KI-Programmen gewaltige Datenströme analysieren und bewerten.Diese Aufzählung mag beeindruckend klingen, sie ist aber nicht vollständig. In vielen anderen Bereichen wie z.B. Spielzeug, Online-Spiele, Musikproduktion,Filmproduktion, Massenmedien, Nachrichtenproduktion,… sind KI-Programme auch schon eingedrungen. So werden z.B. mehr und mehr Nachrichtentexte und ganze Artikel für Online-Portale und Zeitungen durch KI-Programme erstellt; Journalisten waren gestern. Dazu hunderttausende von sogenannten ’Bots’ (Computerprogramme, die im Internet kommunizieren, als ob sie Menschen wären), die Meinungen absondern, um andere zu beeinflussen. Was bedeuten diese Erscheinungsformen Künstlicher Intelligenz für uns?

A. Freund oder Konkurrent?

Bei einem nächtlichen Biergespräch mit einem der berühmtesten japanischen Roboterforschern erzählte er aus seinem Leben, von seinen Träumen und Visionen. Ein Thema stach hervor: seine Sicht der Roboter. Für ihn waren Roboter schon seit seiner Kindheit Freunde der Menschen, keinesfalls nur irgendwelche Maschinen. Mit diesen Roboter-Freunden soll das Leben der Menschen schöner, besser werden können. In vielen Science-Fiction Filmen tauchen Roboter in beiden Rollen auf: die einen sind die Freunde der Menschen, die anderen ihre ärgsten Feinde; sie wollen die Menschen ausrotten, weil sie überflüssig geworden sind. Bedenkt man, dass die Filme auf Drehbüchern beruhen, die Menschen geschrieben haben, spiegelt sich in diesem widersprüchlichen Bild offensichtlich die innere Zerrissenheit wieder, die wir Menschen dem Thema Roboter, intelligenten Maschinen, gegenüber empfinden. Wir projizieren auf die intelligenten Maschinen sowohl unsere Hoffnungen wie auch unsere Ängste, beides übersteigert, schnell ins Irrationale abrutschend.

B. Neue Verwundbarkeiten

Ob intelligente Maschinen eher die Freunde der Menschen oder ihre Feinde sein werden, mag momentan noch unklar sein, klar ist jedoch, dass schon jetzt der Grad der Vernetzung von allem und jedem jeden Tag einen realen Raum mit realen Bedrohungen darstellt. Global operierenden Hacker-Aktivitäten mit Datendiebstählen und Erpressungen im großen Stil sind mittlerweile an der Tagesordnung. Während die einen noch versuchen, es klein zu reden, lecken andere schon längst ihre Wunden und es gibt immer mehr Anstrengungen, diesen Angriffen mehr ’Sicherheit’ entgegen zu setzen. Doch widerspricht das Prinzip der Zugänglichkeit letztlich dem Prinzip der vollständigen Abschottung. Wenn die Vernetzung irgendeinen Sinn haben soll, dann eben den, dass es keine vollständige Abschottung gibt. Dies läuft auf die große Kunst einer ’verabredeten Abschottung’ hinaus: es gibt eine ’bestimmte Datenkonstellation, die den Zugang öffnet’. Dies aber bedeutet, jeder kann herumprobieren, bis er diese Datenkonstellation gefunden hat. Während die einen KI-Programme einsetzen, um diese Datenschlüssel zu finden, versuchen die anderen mit KI-Programmen, mögliche Angreifer bei ihren Aktivitäten zu entdecken. Wie dieses Spiel auf lange Sicht ausgehen wird, ist offen. In der Natur wissen wir, dass nach 3.8 Milliarden Jahren biologischem Leben die komplexen Organismen bis heute beständig den Angriffen von Viren und Bakterien ausgeliefert sind, die sich um Dimensionen schneller verändern können, als das biologische Abwehrsystem(das Immunsystem) lernen kann. Die bisherige Moral aus dieser Geschichte ist die, dass diese Angriffe bei komplexen Systemen offensichtlich ko-existent sind, dazu gehören. Nur ein schwacher Trost ist es, dass der beständige Abwehrkampf dazu beiträgt, die Systeme graduell besser zu machen. Mit Blick auf diese fortschreitende Vernetzung ist es wenig beruhigend, sich vorzustellen, dass es in ca. 70- 90 Jahren (wie viele vermuten) (Anmerkung: Siehe dazu eine längere Argumentation im 1.Kap. von Bostrom (2014) [Bos14]) tatsächlich eine echte technische Superintelligenz geben wird, die allen Menschen gegenüber überlegen ist; eine solche technische Superintelligenz könnte im Handumdrehen alle Netze erobern und uns alle zu ihren Gefangenen machen. Nichts würde mehr in unserem Sinne funktionieren: die Super-KI würde alles kontrollieren und uns vorschreiben, was wir tun dürfen. Über das Internet der Dinge und unsere Smartphones wäre jeder 24h unter vollständiger Kontrolle. Jede kleinste Lebensregung wäre sichtbar und müsste genehmigt werden. Ob und was wir essen, ob wir noch als lebenswert angesehen werden …

C. Noch ist es nicht soweit …

Zum Glück ist dieses Szenario einer menschenfeindlichen Superintelligenz bislang nur Science-Fiction. Die bisherigen sogenannten KI-Programme sind nur in einem sehr eingeschränkten Sinne lernfähig. Bislang sind sie wie abgerichtete Hunde, die nur das suchen,was ihnen ihre Auftraggeber vorgeben, zu suchen. Sie haben noch keine wirkliche Autonomie im Lernen, sie können sich noch nicht selbständig weiter entwickeln(nur unter speziellen Laborbedingungen). Allerdings sammeln sie Tag und Nacht fleißig Daten von allem und jedem und erzeugen so ihre einfachen Bilder von der Welt: z.B. dass die Männer im Alter von 21 in der Region Rhein-Main mit Wahrscheinlichkeit X folgende Gewohnheiten haben …. Herr Müller aus der Irgendwo-Straße hat speziell jene Gewohnheiten …. seine Freunde sind … Es gibt eine hohe Wahrscheinlichkeit dass er Partei Y wählen wird … dass er in drei Monaten ein neues Auto vom Typ X kaufen wird ….am liebsten klickt er folgende Adressen im Internet an …

In den Händen von globalen Firmen, anonymen Nachrichtendiensten, autoritären Regierungen oder verbrecherischen Organisationen können allerdings schon diese Daten zu einer echten Bedrohung werden, und diese Szenarien sind real. Die Rolle der bösen Superintelligenz wird hier bis auf weiteres noch von Menschen gespielt; Menschen haben in der Vergangenheit leider zur Genüge bewiesen, dass sie das Handwerk des Bösen sehr gut beherrschen können…Es stellt sich die Frage, ob sich die bisherigen einfachen künstlichen Intelligenzen weiter entwickeln können? Lernen künstliche Intelligenzen anders als Menschen? Welche Rolle spielen hier Werte? Sind Werte nicht ein altmodischer Kram, den nur Menschen brauchen (oder selbst diese eigentlich nicht)? Schließlich, wo kommt hier Gott ins Spiel? Tangieren künstliche Intelligenzen den menschlichen Glauben an Gott überhaupt?

II. WAS IST ’KÜNSTLICHE INTELLIGENZ’

Für eine Erkundungsreise in das Land der Künstlichen Intelligenz ist die Lage nicht ganz einfach, da das Gebiet der KI sich mittlerweile sehr stürmisch entwickelt. Immer mehr Konzepte stehen nebeneinander im Raum ohne dass es bislang allgemein akzeptierte Theorie- und Ordnungskonzepte gibt. (Anmerkung: Für zwei sehr unterschiedliche historische Rückblicke in das Thema sei verwiesen auf Mainzer (1995) [Mai95] und Nilsson (2010) [Nil10]. Für eine sehr populäre, wenngleich methodisch problematische, Einführung in den Stand der Disziplin siehe Russel und Norvik (2010) [RN10]).

Wir besuchen hier für einen Einstieg einen der großen Gründungsväter ganz zu Beginn 1936 – 1950 Alan Matthew Turing, und dann für die Zeit 1956 – 1976 Alan Newell und Herbert A.Simon. (Anmerkung: Simon war auch ein Nobelpreisträger im Gebiet der Wirtschaftswissenschaften 1978.) Dann schauen wir noch kurz in allerneueste Forschungen zum Thema Computer und Werte.

A. Am Anfang war der Computer

Wenn wir von künstlicher Intelligenz sprechen setzen wir bislang immer voraus, dass es sich um Programme (Algorithmen) handelt, die auf solchen Maschinen laufen, die diese Programme verstehen. Solche Maschinen gibt es seit 1937 und ihre technische Entwicklung hing weitgehend davon ab, welche Bauteile ab wann zur Verfügung standen. Das Erstaunliche an der bisherigen Vielfalt solcher Maschinen, die wir Computer nennen, ist, dass sich alle diese bis heute bekannt gewordenen Computer als Beispiele (Instanzen) eines einzigen abstrakten Konzeptes auffassen lassen. Dieses Konzept ist der Begriff des universellen Computers, wie er von Alan Matthew Turing 1936/7 in einem Artikel beschrieben wurde (siehe: [Tur 7] 4 ). In diesem Artikel benutzt Turing das gedankliche Modell einer endlichen Maschine für jene endlichen Prozesse, die Logiker und Mathematiker intuitiv als ’berechenbar’ und ’entscheidbar’ ansehen. (Anmerkung: Zum Leben Turings und den vielfältigen wissenschaftlichen Interessen und Einflüssen gibt es die ausgezeichnete Biographie von Hodges (1983) [Hod83].) Das Vorbild für Turing, nach dem er sein Konzept des universellen Computers geformt hat, war das eines Büroangestellten, der auf einem Blatt Papier mit einem Bleistift Zahlen aufschreibt und mit diesen rechnet.

B. Computer und biologische Zelle

Was Turing zur Zeit seiner kreativen Entdeckung nicht wissen konnte, ist die Tatsache, dass sein Konzept des universellen Computers offensichtlich schon seit ca. 3.5 Milliarden Jahre als ein Mechanismus in jeder biologischen Zelle existierte. Wie uns die moderne Molekularbiologie über biologische Zellen zur Erfahrung bringt(siehe [AJL + 15]), funktioniert der Mechanismus der Übersetzung von Erbinformationen in der DNA in Proteine (den Bausteinen einer Zelle) mittels eines Ribosom-Molekülkomplexes strukturell analog einem universellen Computer. Man kann dies als einen Hinweis sehen auf die implizite Intelligenz einer biologischen Zelle. Ein moderner Computer arbeitet prinzipiell nicht anders.

C. Computer und Intelligenz

Die bei Turing von Anfang an gegebene Nähe des Computers zum Menschen war möglicherweise auch die Ursache dafür, dass sehr früh die Frage aufgeworfen wurde, ob, und wenn ja, wieweit, ein Computer, der nachdem Vorbild des Menschen konzipiert wurde, auch so intelligent werden könnte wie ein Mensch?

Der erste, der diese Frage in vollem Umfang aufwarf und im einzelnen diskutierte, war wieder Turing. Am bekanntesten ist sein Artikel über Computerintelligenz von 1950 [Tur50]. Er hatte aber schon 1948 in einem internen Forschungsbericht für das nationale physikalische Labor von Großbritannien einen Bericht geschrieben über die Möglichkeiten intelligenter Maschinen. (Anmerkung: Eine Deutsche Übersetzung findet sich hier: [M.87]. Das Englische Original ’Intelligent Machinery’ von 1948 findet sich online im Turing Archiv: http://www.alanturing.net/intelligent_machinery.) In diesem Bericht analysiert er Schritt für Schritt, wie eine Maschine dadurch zu Intelligenz gelangen kann, wenn man sie, analog wie bei einem Menschen, einem Erziehungsprozess unterwirft, der mit Belohnung und Strafe arbeitet. Auch fasste er schon hier in Betracht, dass sein Konzept einer universellen Maschine das menschliche Gehirn nachbaut. Turing selbst konnte diese Fragen nicht entscheiden, da er zu dieser Zeit noch keinen Computer zur Verfügung hatte, mit dem er seine Gedankenexperimente realistisch hätte durchführen können. Aber es war klar, dass mit der Existenz seines universellen Computerkonzeptes die Frage nach einer möglichen intelligenten Maschine unwiderruflich im Raum stand. Die Fragestellung von Turing nach der möglichen Intelligenz eines Computers fand im Laufe der Jahre immer stärkeren Widerhall. Zwei prominente Vertreter der KI-Forschung, Allen Newell und Herbert A.Simon, hielten anlässlich des Empfangs des ACM Turing-Preises1975 eine Rede, in der sie den Status der KI-Forschung sowie eigene Arbeiten zum Thema machten (siehe dazu den Artikel [NS76]).

D. Eine Wissenschaft von der KI

Für Newell und Simon ist die KI-Forschung eine empirische wissenschaftliche Disziplin, die den Menschen mit seinem Verhalten als natürlichen Maßstab für ein intelligentes Verhalten voraussetzt. Relativ zu den empirischen Beobachtungen werden dann schrittweise theoretische Modelle entwickelt, die beschreiben, mit welchem Algorithmus man eine Maschine (gemeint ist der Computer) programmieren müsse, damit diese ein dem Menschen vergleichbares – und darin als intelligent unterstelltes – Verhalten zeigen könne. Im Experiment ist dann zu überprüfen, ob und wieweit diese Annahmen zutreffen.

E. Intelligenz (ohne Lernen)

Aufgrund ihrer eigenen Forschungen hatten Newell und Simon den unterstellten vagen Begriff der ’Intelligenz’ schrittweise ’eingekreist’ und dann mit jenen Verhaltensweisen in Verbindung gebracht, durch die ein Mensch (bzw. ein Computer) bei der Abarbeitung einer Aufgabe schneller sein kann, als wenn er nur rein zufällig’ handeln würde. ’Intelligenz’ wurde also in Beziehung gesetzt zu einem unterstellten ’Wissen’ (und zu unterstellten ‚Fertigkeiten‘), über das ein Mensch (bzw. ein Computer) verfügen kann, um eine bestimmte Aufgabe ’gezielt’ zu lösen. Eine so verstandene ’Intelligenz’ kann sich aus sehr vielfältigen, möglicherweise sogar heterogenen, Elementen zusammen setzen.

Dies erklärt ihre mannigfaltigen Erscheinungsweisen bei unterschiedlichen Aufgaben. ’Intelligenz’ ist dabei klar zu unterscheiden, von einem ’Lernen’. Ist die Aufgabenstellung vor dem Einsatz einer Maschine hinreichend bekannt, dann kann ein Ingenieur all das spezifische Wissen, das eine Maschine für die Ausführung der Aufgabe benötigt, von vornherein in die Maschine ’einbauen’. In diesem Sinne ist jede Maschine durch das Knowhow von Ingenieuren in einem spezifischen Sinne ’intelligent’. Bis vor wenigen Jahrzehnten war dies die Standardmethode, wie Maschinen von Ingenieuren entworfen und gebaut wurden.

F. Lernen ermöglicht Intelligenz

Im Fall von biologischen Systemen ist ein solches Vorgehen kaum möglich. Biologische Systeme entstehen (durch Zellteilung), ohne dass bei der Entstehung bekannt ist, wie die Umwelt aussehen wird, ob sie sich verändert, welche Aufgaben das biologische Systemlösen muss. Zwar haben alle biologische Systeme auch genetisch vorbestimmte Verhaltensmuster, die gleich bei der Geburt zur Verfügung stehen, aber darüber hinaus haben alle biologische Systeme einen ariablen Anteil von Verhaltensweisen, die sie erst lernen müssen. Das Lernen ist hier jene Fähigkeit eines biologischen Systems, wodurch es seine internen Verhaltensstrukturen in Abhängigkeit von der ’Erfahrung’ und von ’spezifischen Bewertungen’ ’ändern’ kann. Dies bedeutet, dass biologische Systeme durch ihre Lernfähigkeit ihr Verhalten ’anpassen’ können. Sie können damit – indirekt – ein ’spezifisches Wissen’ erwerben, das ihnen dann eine spezifische ’Intelligenz’ verleiht, wodurch das biologischen System besser als durch Zufall reagieren kann. Diese Fähigkeit eines situationsgetriebenen Wissens besaßen Maschinen bis vor kurzem nicht. Erst durch die modernen Forschungen zu einer möglichen ’künstlichen Intelligenz (KI)’ machte man mehr und mehr Entdeckungen, wie man Maschinen dazu in die Lage versetzen könnte, auch nach Bedarf neues Verhalten erlernen zu können. Innerhalb dieses Denkrahmens wäre dann eine ’künstliche Intelligenz’ eine Maschine, hier ein Computer, der über Algorithmen verfügt, die ihn in die Lage versetzen, Aufgaben- und Situationsabhängig neues Verhalten zu erlernen, falls dies für eine bessere Aufgabenbearbeitung wünschenswert wäre.

Die noch sehr ursprüngliche Idee von Turing, dass ein Computer Lernprozesse analog dem der Menschen durchlaufen könnte, inklusive Belohnung und Bestrafung, wurde seitdem auf vielfältige Weise weiter entwickelt. Eine moderne Form dieser Idee hat unter dem Namen ’Reinforcement Learning’ sehr viele Bereiche der künstlichen Intelligenzforschung erobert (vgl. Sutton und Barto (1998) [SB98]).

G. KI und Werte

Für die Aufgabenstellung einer ’lernenden Intelligenz’ spielen ’Werte’ im Sinne von ’Verhaltenspräferenzen’ eine zentrale Rolle. Ein Gebiet in der KI-Forschung, in dem diese Thematik sehr intensiv behandelt wird, ist der Bereich der ’Entwicklungs-Robotik’ (Engl.:’developmental robotics’). In diesem Bereich wurde u.a. die Thematik untersucht (vgl. Kathryn Merrick(2017) [Mer17]), wie ein Roboter ’von sich aus’, ohne direkte Befehle, seine Umgebung und sich selbst ’erforschen’ und aufgrund dieses Lernens sein Verhalten ausrichten kann. Dabei zeigt sich, dass reine Aktivierungsmechanismen, die im Prinzip nur die Neugierde für ’Neues’ unterstützen, nicht ausreichend sind. Außerdem reicht es nicht aus, einen Roboter isoliert zu betrachten, sondern man muss Teams oder ganze Populationen von Robotern betrachten, da letztlich ein ’Wert’ im Sinne einer ’Präferenz’ (eine bevorzugte Verhaltenstendenz) nur etwas nützt, wenn sich alle Mitglieder einer Population daran orientieren wollen. Dies führt zur grundlegenden Frage, was denn eine Population von Robotern gemeinschaftlich als solch einen gemeinsamen ’Wert’ erkennen und akzeptieren soll. Wirklich befriedigende Antworten auf diese grundlegenden Fragen liegen noch nicht vor. Dies hat u.a. damit zu tun, dass die Robotersysteme, die hier untersucht werden, bislang noch zu unterschiedlich sind und dass es auch hier bislang – wie bei der KI-Forschung insgesamt – ein großes Theoriedefizit gibt in der Frage, innerhalb welches theoretischen Rahmens man diese unterschiedlichen Phänomene denn diskutieren soll.

Man kann aber den Ball dieser Forschung einmal aufgreifen und unabhängig von konkreten Realisierungsprozessen die Frage stellen, wie denn überhaupt ein ’Wert’ beschaffen sein müsste, damit eine ganze Population von Robotern sich ’von sich aus’ darauf einlassen würde. Letztlich müsste auch ein Roboter entweder eine ’eingebaute Tendenz’ haben, die ihn dazu drängt, ein bestimmtes Verhalten einem anderen vor zu ziehen, oder aber es müsste eine ’nicht eingebaute Tendenz’ geben, die im Rahmen seiner ’internen Verarbeitungsprozesse’ neue Verhalten identifizieren würde, die ihm im Sinne dieser ’Tendenz’ ’wichtiger’ erscheinen würde als alles andere. Es ist bislang nicht erkennbar, wo eine ’nicht eingebaute Tendenz’ für eine Verhaltensauswahl herkommen könnte. Ein industrieller Hersteller mag zwar solche Werte aufgrund seiner Interessenlage erkennen können, die er dann einem Roboter ’zu verstehen geben würde’, aber dann wäre die Quelle für solch eine ’Initiierung einer Verhaltenstendenz’ ein Mensch.

In der aktuellen Forschungssituation ist von daher als einzige Quelle für nicht angeborene Verhaltenstendenzen bislang nur der Mensch bekannt. Über welche Werte im Falle von sogenannten künstlichen Super-Intelligenzen diese verfügen würden ist noch unklar. Dass künstliche Super-Intelligenzen von sich aus Menschen grundsätzlich ’gut’ und ’erhaltenswert’ finden werden, ist in keiner Weise abzusehen. Die künstlichen Superintelligenzen müssten sich in Wertefragen – wenn überhaupt – eher am Menschen orientieren. Da die bisherige Geschichte der Menschheit zeigt, dass der Mensch selbst zu allen Zeiten eine starke Neigung hat, andere Menschen zu unterdrücken, zu quälen, und zu töten, würde dies für alle Menschen, die nicht über künstliche Superintelligenzen verfügen, tendenziell sehr gefährlich sein. Ihr ’Opferstatus’ wäre eine sehr große Versuchung für die jeweilige technologische Macht.

III. WER SIND WIR MENSCHEN?

Wenn Menschen sich in der KI wie in einem Spiegelbetrachten, dann kann dies für den betrachtenden Menschen viele Fragen aufwerfen. Zunächst erfinden die Menschen mit dem Computer einen Typ von intelligenter Maschine, die zunehmend den Eindruck erweckt, dass sich die Menschen in solchen Maschinen vervielfältigen (und möglicherweise noch übertreffen) können. Dann benutzen sie diese Computer dazu, die Strukturen des menschlichen Körpers immer tiefer zu erforschen, bis hin zu den Zellen und dort bis in die Tiefen der molekularen Strukturen, um z.B. unsere Gene zu erforschen, unser Erbmaterial, und zwar so weitgehend, dass wir dieses Erbmaterial gezielt verändern können. Die Menschen verstehen zwar noch nicht in vollem Umfang die möglichen Wirkungen der verschiedenen Änderungen, aber es ist möglich, real Änderungen vorzunehmen, um auszuprobieren, ’was dann passiert’? Mit Hilfe des Computers beginnt der Mensch, seinen eigenen Bauplan, sein eigenes genetisches Programm, umzubauen.

Dazu kommt, dass die Menschen seit dem19.Jahrhundert mit der modernen Biologiewissen können, dass die vielfältigen Formen des biologischen Lebens zu einem bestimmten Zeitpunkt immer das Ergebnis von langen vorausgehenden Entwicklungsprozessen sind. Das Wachsen und Sterben von Organismen gründet jeweils in einer befruchteten Zelle, für die durch das Erbmaterial festgelegt ist, wie sie sich weiter vermehrt und wie sich Millionen, Milliarden und gar Billionen von Zellen zu komplexen Formen zusammen finden. Und bei der Vervielfältigung von Zellen können Änderungen, Abweichungen vom ursprünglichen Plan auftreten, die über viele Tausende  und Millionen von Jahren zu deutlichen Änderungen im Bau und Verhalten eines Organismus führen können. Die Biologen sprechen von ’Evolution’. Eine Erkenntnis aus diesem Evolutionsprozess war (und ist), dass wir Menschen, so, wie wir heute da sind, auch solche evolutionär gewordene biologische Strukturen sind, die Vorläufer hatten, die mit uns heutigen Menschen immer weniger zu tun hatten, je weiter wir in der Zeit zurückgehen. Wer sind wir also?

Die Frage, ob Computer als intelligente Maschinen genau so gut wie Menschen werden können, oder gar noch besser, läuft auf die Frage hinaus, ob der Mensch Eigenschaften besitzt, die sich generell nicht durch einen Computer realisieren lassen.

Die moderne Psychologie und die modernen Neurowissenschaften haben bislang nichts zutage fördern können, was sich einem ingenieurmäßigen Nachbau entziehen könnte. Auch wenn es sich hierbei nicht um einen ’strengen Beweise’ handelt, so kann dieser Anschein einer generellen ’maschinelle Reproduzierbarkeit’ des Menschen in Gestalt von intelligenten Maschinen das bisherige Selbstverständnis von uns Menschen stark verunsichern.

IV. GLAUBEN AN GOTT

A. In allen Himmelsrichtungen

Aus der Geschichte der letzten Jahrtausende wissen wir, dass es zu allen Zeiten und in allen Kulturen Religionen gegeben hat. Die größten sind wohl (bis heute) der Hinduismus, der Buddhismus, das Judentum mit dem Christentum, und der Islam. So verschieden diese zu verschiedenen Zeiten und in verschiedenen Regionen äußerlich erscheinen mögen, sie verbindet alle das tiefe Fühlen und Glauben von Menschen an einen über-persönlichen Sinn, der Glaube an ein höheres Wesen, das zwar unterschiedliche Namen hat (’Gott’, ’Deus’, ’Theos’, ’Jahwe’, ’Allah’ …), aber – möglicherweise – vielleicht nur ein einziges ist.

B. Jüdisch-Christlich

So verschieden die christlichen Bekenntnisse der Gegenwart auch sein mögen, was die Anfänge angeht beziehen sich noch immer alle auf die Bibel, und hier, für die Anfänge der Geschichte auf das Alte Testament.(Anmerkung: Für eine deutsche Übersetzung siehe die Katholisch-Evangelische Einheitsübersetzung [BB81]).

Wie uns die modernen Bibelwissenschaften lehren, blickt der Text des Alten Testaments auf eine vielfältige Entstehungsgeschichte zurück. (Anmerkung: Für eine Einführung siehe Zenger et.al (1998) [ZO98]). Nicht nur, dass der Übergang von der mündlichen zur schriftlichen Überlieferung sich im Zeitraum von ca. -700 bis ca.+200 abgespielt hat, auch die redaktionelle Erzeugung verweist auf sehr viele unterschiedliche Traditionen, die nebeneinander existiert und die zu unterschiedlichen Varianten geführt haben. Auch die Kanonbildung dauerte dann nochmals viele hundert Jahre mit dem Ergebnis, dass es schwer ist, von dem einen Urtext zu sprechen. Für jene Menschen, die vorzugsweise Halt an etwas Konkretem, Festen suchen, mag dieses Bild der Überlieferung der Texte des alten Testaments beunruhigend wirken. Wird hier nicht vieles relativiert? Kann man denn da noch von einem ’Wort Gottes an die Menschen’ sprechen? Diese Furcht ist unbegründet, im Gegenteil.

C. Neues Weltbild

Wenn wir Menschen heute lernen (dürfen!), wie unsere individuelle, konkrete Existenz eingebettet ist in einen geradezu atemberaubenden Prozess der Entstehung der bekannten Lebensformen über viele Milliarden Jahre, wie unser eigener Körper ein unfassbares Gesamtkunstwerk von ca. 37 Billionen (10^12 !) Körperzellen in Kooperation mit ca. 100 Bio Bakterien im Körper und ca. 220 Mrd. Zellen auf der Haut  ist, die in jedem Moment auf vielfältige Weise miteinander reden, um uns die bekannten Funktionen des Körpers zur Verfügung zu stellen, dann deutet unsere reale Existenz aus sich heraus hin auf größere Zusammenhänge, in denen wir vorkommen, durch die wir sind, was wir sind. Und zugleich ist es die Erfahrung einer Dynamik, die das Ganze des biologischen Lebens auf der Erde in einem ebenfalls sich entwickelnden Universum umfasst und antreibt. Wenn wir verstehen wollen, wer wir sind, dann müssen wir diesen ganzen Prozess verstehen lernen.

Wenn wir uns dies alles vor Augen halten, dann können uns die Texte des alten Testaments sehr nahe kommen. Denn diese Texte manifestieren durch ihre Vielfalt und ihre Entstehungsgeschichte über viele Jahrhunderte genau auch diese Dynamik, die das Leben auszeichnet.

D. Schöpfungsberichte

Claus Westermann, ein evangelischer Theologe und Pfarrer, leider schon verstorben, hat uns einen Kommentar zum Buch Genesis hinterlassen und eine Interpretation der beiden biblischen Schöpfungsberichte, der jedem, der will, aufzeigen kann, wie nah diese alten Texte uns heute noch sein können, vielleicht viel näher als je zuvor. (Anmerkung: Neben seinen beiden wissenschaftlichen Kommentaren aus den Jahren 1972 und 1975 hat er schon 1971 ein kleines Büchlein geschrieben, in dem er seine Forschungsergebnisse in einer wunderbar lesbaren Form zusammengefasst hat (siehe: [Wes76]).

Der erste der beiden Schöpfungstexte in Gen 1,1-2,4a ist der jüngere der beiden; seine Entstehung wird auf die Zeit 6.-5.Jh vor Christus angesetzt, der zweite Schöpfungstext in Gen 2,4b – 24 wird mit seiner Entstehung im 10.-9.Jh vor Christus verortet. Der jüngere wird einer Überlieferungsschicht zugeordnet, die als ’Priesterschrift’ bezeichnet wird, die einen großen Bogen spannt von der Entstehung der Welt mit vielen Stationen bis hin zu einem neuen Bund zwischen Menschen und Gott. Dieser erste Schöpfungsbericht, bekannt durch sein 7-Tage-Schema, steht im Übergang von sehr, sehr vielen Traditionen mythischer Berichte über Schöpfung in den umliegenden Kulturen, Traditionen, die selbst viele Jahrhunderte an Entstehungszeit vorweisen können. Von daher wundert es nicht, wenn sich einzelne Worte, Motive, Bilder, die auch im 7-Tage-Schema auftauchen, Parallelen haben in anderen Schöpfungsgeschichten. Interessant ist das, was die biblische Schöpfungsgeschichte der Priesterschrift anders macht als die anderen bekannten Geschichten es tun.

E. Menschen als Ebenbild

Die zentrale Aussage im neueren Schöpfungsbericht ist nicht, wie im älteren Text, wie Gott den Menschen geschaffen hat, sondern die Aussage, dass er den Menschen nach seinem Bilde geschaffen hat, und dass er dem Menschen eine Verantwortung übertragen hat. In der schon zu dieser Zeit bekannten Vielgestaltigkeit der Welt, ihrer vielen Werdeprozesse, war die zentrale Einsicht und damit verbunden der Glaube, dass der Mensch als ganzer (nicht eine einzelne Gruppe, kein bestimmter Stamm, kein bestimmtes Volk!) über die konkrete, reale Existenz hinausweisend mit Gott verbunden ist als seinem Schöpfer, der auch ansonsten alles geschaffen hat: die Gestirne sind keine Götter, wie in vielen anderen älteren Mythen. Die Menschen sind nicht dazu da, niedere Arbeiten für Gott zu machen, wie in anderen Mythen. Die Menschen werden vielmehr gesehen als in einem besonderen Status im Gesamt der Existenz in der Geschichte, mit einer Verantwortung für das Ganze.

Und diese besondere Stellung des Menschen wird nicht festgemacht an besonderen körperlichen und geistigen Eigenschaften; schon zu dieser Zeit wussten die Autoren der Priesterschrift, wie vielfältig die Lebensformen, ja der konkrete Mensch, sein kann. Wenn wir heute durch die Wissenschaften lernen können, wie der Mensch sich im größeren Ganzen eines biologischen Werdens einsortieren lässt, wie der Mensch selbst durch seine Kultur, seine Technologie in der Lage und bereit ist, sich selbst in allen Bereichen– einschließlich seines biologischen Körpers – zu verändern, dann steht dies in keiner Weise im Gegensatz zu der globalen Sicht des biblischen Schöpfungsberichts. Im Gegenteil, man kann das Gefühl bekommen, das sich in unserer Gegenwart die Weite des biblischen Texte mit den neuen Weiten der Erkenntnisse über Mensch und Universum neu begegnen können. Was allerdings heute auffällig ist, wie viele Menschen sich schwer tun, in diesen neuen primär wissenschaftlichen Weltsichten den Glauben an einen Gott, einen Schöpfer, an eine Geschichtsübergreifende Beziehung zu einem Schöpfer aufrecht zu erhalten. Ist dies heute nicht mehr möglich?

F. Frömmigkeit – Spiritualität

An dieser Stelle sollte man sich vergegenwärtigen, dass zu allen Zeiten die Menschen in ihrer Religiosität nie nur ’gedacht’ haben, nie nur ’mit Bildern’ der Welt oder Gottes umgegangen sind. Zu allen Zeiten gab es – und gibt es noch heute – auch das, was man ’Frömmigkeit’ nennt, ’Spiritualität’, jenes sehr persönliche, individuelle sich einem Gott gegenüber ’innerlich Vorfinden‘, ’Ausrichten’, ’Fühlen’, ’Erleben’. Es ist nicht leicht, dafür die richtigen Worte zu finden, da es nun einmal ’innere’ Prozesse sind, die sich nicht wie Gegenstände vorweisen lassen können.   Sie betreffen das grundsätzliche Erleben eines Menschen, ein inneres Suchen, ein Erfahren, ein Erfülltsein (oder auch Leersein), das, was viele Menschen ermöglicht, ihr Leben in einer anderen, neuen Weise zu gestalten, sich zu ändern, anders mit Gefahren und Leiden umzugehen. In den Bildern des Alltags ’mehr’ sehen zu können als ohne dieses innere Erleben, Gestimmt sein.

In einer interessanten Untersuchung hat der britische Philosoph Walter Terence Stace die spirituellen Zeugnisse von vielen Jahrtausenden in unterschiedlichen Kulturen philosophisch untersucht (vgl. [Sta60]). Er kommt zu dem Ergebnis, dass sich trotz aller Verschiedenheiten im Äußeren, auch bei bestimmten Interpretationen, im Kern des Erlebens, des Wahrnehmens, sofern man dieses überhaupt von möglichen Interpretationen trennen lässt, erstaunliche Übereinstimmungen erkennen kann. Er folgert daraus, dass diese Fähigkeit von Menschen, einen übergreifenden Sinn direkt, existentiell erfahren zu können, möglicherweise auf eine sehr grundsätzliche Eigenschaft aller Menschen verweist, die wir einfach haben, weil wir Menschen sind. (Anmerkung: Er schließt auch nicht aus, dass alles Lebendige, von dem wir Menschen ja nur ein Teil sind, an dieser grundsätzlichen Fähigkeit einen Anteil haben könnte, wenn auch möglicherweise verschieden von der Art, wie wir Menschen erleben können.)

Die Tiefe und Weite der Sicht des jüngeren Schöpfungsberichts im Buch Genesis würde einem solchen grundlegenden Sachverhalt gut entsprechen: das Bild vom Menschen als Ebenbild Gottes schließt eine besondere Verbundenheit nicht aus; das ist das, was nach Westermann dem Menschen seine besondere Würde verleiht, diese Beziehung, nicht sein aktuelles konkretes So-sein, das sich ändern kann, ist die zentrale Botschaft.

G. Mensch, KI, Glaube an Gott

Damit beginnt sich der Kreis zu schließen. Wenn die Besonderheit des Menschen, seine zeitübergreifende Würde, in dieser grundlegenden Beziehung zu einem Schöpfergott gründet, die sich vielfältig im Gesamt des Universums und Lebens manifestiert, speziell auch in einer Form von individueller Spiritualität, dann gewinnt die Frage nach der Zukunft von Mensch und intelligenten Maschinen noch eine neue Nuance.

Bislang wird von den Vertretern einer Zukunft ohne Menschen nur noch mit intelligenten Maschinen einseitig abgehoben auf die größere Rechenkraft und die größeren Speicher, die alles erklären sollen. In diesem Beitrag wurde darauf hingewiesen, dass selbst die einfachsten Formen des Lernens ohne ’Werte’ im Sinne von ’Präferenzen’, von ’Bevorzugung von Handlungsalternativen’, ins Leere laufen. Sogenannte ’angeborene’ Präferenzen (oder eingebaute) können nur einen sehr begrenzten Nutzen vermitteln, da sich die Handlungsgegebenheiten und die gesamte Welt beständig weiter verändern. Auch die teilweise sehr komplexen Wertfindungen im sozialen-kulturellen Kontext ganzer Populationen, die von den künstlichen Intelligenzen dieser Welt noch nicht mal ansatzweise beherrscht werden, sind nur von begrenztem Wert, wie die bisherige Kulturgeschichte der Menschen eindrücklich belegt. [Mai95]

Vor diesem Hintergrund ist aktuell nicht zu sehen, wie intelligente Maschinen in der Zukunft alleine zu irgendwelchen brauchbaren Präferenzen kommen können. [SB98][Mer17][Nil10][NS76][RN10][Sta60][Tur37] Ungeklärt ist aktuell allerdings, ob und wieweit der Mensch – also jeder von uns – im Wechselspiel von philosophisch-empirischer Welterkenntnis und Spiritualität jene großen Richtungen ermitteln kann, die für die kommende komplexe Zukunft gefordert wird?

Sollte die Existenz eines Schöpfergottes über Welterkenntnis und Spiritualität wichtig sein für ein weiteres erfolgreiches Fortschreiten, dann hätten intelligente Maschinen möglicherweise ein grundsätzliches Problem. Es sei denn, auch sie könnten Gott erfahren? Einfacher wäre es, wenn Mensch und Maschine ihre aktuelle Koexistenz zu einer intensiveren Symbiose ausbauen würden. Dies würde viele sehr spannende Perspektiven bieten. Der Glaube an einen Schöpfergott ist auch heute, nach allem, was wir jetzt wissen können, keineswegs unsinnig;er erweist sich sogar – rein rational – als scheinbar dringend notwendig. Andererseits ist ein lebendiger Glaube kein Automatismus, sondern erfordert von jedem Menschen sein sehr persönliches Engagement in Verbundenheit mit dem ganzen Leben in einem dynamischen Universum. Gott erscheint hier nicht als das Hindernis, eher unsere Verweigerungen, das Ganze anzuschauen und zu akzeptieren.

QUELLEN

[*] G.Doeben-Henisch, Künstliche Intelligenz und der Glaube an Gott, In: Brennpunkt Gemeinde 70 (Aug./Sept. 2017), Studienbrief R21, 14 S., Hg. AMD Arbeitsgemeinschaft Missionarische Dienste im Verbund der Diakonie, Neukirchener Verlagsgesellschaft mbH, 47497 Neukirchen-Vluyn

[AJL + 15] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff,
K. Roberts, and P. Walter. Molecular Biology of the Cell.
Garland Science, Taylor & Francis Group, LLC, Abington
(UK) – New York, 6 edition, 2015.
[BB81] Katholisches Bibelwerk and Deutsche Bibelgesellschaft. Die
Heilige Schrift. Einheitsübersetzung. Verlag Katholisches
Bibelwerk & Deutsche Bibelgesellschaft, Stuttgart, 1 edition, 1981.
[Bos14] Nick Bostrom. Superintelligence. Paths, Dangers, Strategies.
Oxford University Press, Oxford (UK), 1 edition, 2014.
[Hod83] Andrew Hodges. Alan Turing, Enigma. Springer Verlag, Wien
– New York, 1 edition, 1983.
[M.87] Turing Alan M. Intelligente maschinen. In Bernhard Dotzler
and Friedrich Kittler, editors, Alan M. Turing. Intelligence
Service, pages 81 – 113. Brinkmann & Bose, Berlin, 1987.

[Mai95] Klaus Mainzer. Computer – Neue Flügel des Geistes? Die
Evolution computergestützter Technik, Wissenschaft, Kultur
und Philosophie. Walter de Gruyter, Berlin – New York, 1th edition, 1995.
[Mer17] Kathrin Merrick. Value systems for developmental cognitive
robotics: A survey. Cognitive Systems Research, 41:38–55, 2017.
[Nil10] Nils J. Nilsson, editor. The Quest for Artificial Intelligence. A
History of Idesas and Achievements. Cambridge University
Press, New York, 2010.
[NS76] Allen Newell and Herbert A. Simon. Computer science as
empirical inquiry: Symbols and search. Communications of
the ACM, 19(3):113–126, 1976.
[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, Inc., Upper Saddle River, 2010.
[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning. An Introduction. The MIT Press, Ambridge (MA) –
London, 1 edition, 1998.
[Sta60]W.T. Stace. Mysticism and Philosophy. Jeremy P.Tarcher,
Inc., Los Angeles, 1 edition, 1960. (Eine Diskussion hier im Blog findet sich HIER).
[Tur37] Alan M. Turing. Corrections to: On computable numbers, with
an application to the entscheidungsproblem. Proceedings of
the London Mathematical Society, 43:544–546, 1937.
[Tur50] Alan Turing. Computing machinery and intelligence. Mind,
59:433–460, 1950.
[Tur 7] Alan M. Turing. On computable numbers, with an application
to the entscheidungsproblem. Proceedings of the London
Mathematical Society, 42(2):230–265, 1936-7.
[Wes76] Claus Westermann. Schöpfung. Kreuz-Verlag, Stuttgart –
Berlin, 2 edition, 1976.
[ZO98] Erich Zenger and Others. Einleitung in das Alte Testament.
W.Kohlhammer, Stuttgart, 3rd edition, 1998

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

PSYCHOANALYSE DURCH ROBOTER? MEMO ZUR PHILOSOPHIEWERKSTATT vom 28.Januar 2018

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 29.Januar 2018
URL: cognitiveagent.org
info@cognitiveagent.org

Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

PDF (mit Bildern)

INHALT

I Vorbemerkung 1
II Dialog 2
III PSYCHOANALYSE 3
IV ROBOTER 5
V Fortsetzung 7
VI Anhang: Gedankenskizze vom 28.Januar 2018 9
Quellen

ÜBERBLICK

Ausgehend von den Themenvorschlägen der letzten Philosophiewerkstatt vom 28.November 2017 und den beginnenden Gesprächen zwischen Jürgen Hardt (Psychoanalytiker) und Gerd Doeben-Henisch (Wissenschaftsphilosoph, KI-Forscher) zum Thema ”Kann der Psychoanalytiker durch einen intelligenten Roboter ersetzt werden?” wurde für das Treffen am So, 28.Januar 2018 als Thema (leicht salopp formuliert) ”Psychoanalyse durch Roboter?” gewählt. Nach einer Einführung von Seiten Wissenschaftsphilosophie und der allgemeinen Sicht der Ingenieurswissenschaften wurde die Position der Psychoanalyse am Beispiel des Therapieprozesses weiter kommentiert.

I. VORBEMERKUNG

Zwar glauben alle einschlägigen Experten im Feld der Psychoanalyse bislang, dass ein
Zukunftsszenarium, in dem Roboter die Psychoanalytiker ersetzen, für lange Zeit nicht möglich sein wird, vielleicht ist es sogar grundsätzlich nicht möglich, aber philosophisches und wissenschaftliches Denken hört nicht bei herrschenden Meinungen auf, sondern fängt genau da an.

Der Dialog zwischen Wissenschaftsphilosophie und Künstliche-Intelligenzforschung einerseits (hier vertreten durch Doeben-Henisch) und Psychoanalyse andererseits (hier vertreten durch Jürgen Hardt (und im Rahmen der Philosophiewerkstatt ergänzt durch zwei weitere sehr erfahrene Psychoanalytikerinnen)) wird in erster Linie angetrieben von einem Erkenntnisinteresse. Diese kann man vielleicht mit folgenden
Fragen umreißen:

1) Wie beschreibt die Psychoanalyse als Disziplin das, was sie tut?
2) Wie rekonstruiert die allgemeine Ingenieurswissenschaft (hier genommen als ’Systems Engineering’) die Beschreibung der Psychoanalyse?
3) Wie kommentiert die Wissenschaftsphilosophie diese beiden Beschreibungen?
4) Wieweit kann man aus den rekonstruierenden Beschreibungen der Ingenieurswissenschaften die Konstruktion einer konkreten Maschine ableiten, die sich in der realen Welt wie ein realer Psychoanalytiker verhält?
5) Welches Bild vom Menschen wird in diesen unterschiedlichen Beschreibungen sichtbar?
6) Gibt es irgend etwas, was den Menschen auszeichnet, was sich entweder in den rekonstruierenden Beschreibungen der Ingenieurswissenschaften oder in der realen Psychoanalytiker-Maschine nicht abbilden lässt?
7) Falls es solch einen ’prinzipiell nicht-abbildbaren Anteil’ im realen Menschen gibt, was sagt dieser über den Menschen in der Welt aus?

II. DIALOG

Der Versuch des wechselseitigen Verstehens einmal der Psychoanalyse durch die Ingenieurwissenschaften und Wissenschaftsphilosophie sowie andererseits des Verstehens der  ingenieurwissenschaftlichen Rekonstruktionen der Psychoanalyse wiederum durch die Psychoanalyse wird in Form eines Dialogs stattfinden. Daher wurden Überlegungen zu den Rahmenbedingungen eines ’interdisziplinären’ Dialogs vorangestellt (Siehe dazu das Bild 1).

Kennzeichnend für einen interdisziplinären Dialog sind die unterschiedlichen Voraussetzungen der Teilnehmer. Diese Unterschiede können sich auf eine Vielzahl von Aspekten beziehen. Von zentraler Wichtigkeit ist natürlich das wirksame Wissen in jedem und seine aktive Sprache. Dabei zerfällt die Sprache in den Ausdrucksteil (Wortschatz, Grammatik, Wortmuster,…) sowie die Bedeutung. Letztere ergibt sich aus den Beziehungen zwischen Ausdruckselementen und irgendwelche Wissens-
oder sonstigen Erfahrungsanteilen. Diese Beziehungen liegen nicht als wahrnehmbare Objekte der Außenwelt vor sondern als spezifische, individuelle Kodierungen in jedem Einzelnen. Diese zu erkennen ist in jeder Äußerungssituation eine grundlegende Aufgabe für alle Beteiligten. Bei einfachen Sachverhalten mit Außenweltbezug ist eine solche Bedeutungsklärung einigermaßen praktizierbar, je mehr Bedeutungsanteile benutzt werden, die keinen direkten Außenweltbezug aufweisen, um so schwieriger wird eine Bedeutungsklärung.

Im heutigen Alltag explodieren die Unterschiede an Erfahrungen, an Wissen fortlaufend. Allein die ca. 9000 unterschiedlichen Masterstudiengänge in Deutschland im Jahr 2017  produzieren unterschiedliche Wissens- und Erfahrungsräume, und dies ist nur die berühmte ’Spitze des Eisbergs’. Für den angestrebten Dialog zwischen Psychoanalyse und Wissenschaftsphilosophie und Künstlicher Intelligenz scheinen folgende Dialogtypen von Interesse zu sein:

1) PSA1-A: Psychoanalytiker PSA1 in Therapiesituation mit Analysand A.
2) PSA2-(PSA1-A): Kontroll-Analytiker PSA2 in Supervision mit Psychoanalytiker PSA1, der einen Analysand A therapiert.
3) WP-(PSA2-(PSA1-A))(PSA1-A): Wissenschaftsphilosoph in Rekonstruktion eines Therapieprozesses von Psychoanalytiker PSA1 mit Analysand A mittels der Beschreibung eines Kontrollanalytikers PSA2.

III. PSYCHOANALYSE

In einer ersten Übertragung des Dialog-Modells auf die Therapiesituation im Format von Typ 3 WP-(PSA2-(PSA1-A))(PSA1-A) wird im Bild 2 angezeigt.

Grundlegend gelten alle Anforderungen des allgemeinen Dialogparadigmas. Als besondere Aspekte sind allerdings hervor zu heben, dass von Seiten des Analysanden nicht nur die sprachlichen Äußerungen von Belang sind, sondern gleichwertig auch alle nicht-sprachlichen Äußerungen. Da nicht-sprachliche Äußerungen von sich aus nicht darauf hinweisen, ob sie eine Bedeutungszuordnung besitzen, erfordert dies vom Psychoanalytiker sehr viel Erfahrung. Auch muss der Psychoanalytiker über sein allgemeines psychoanalytisches Wissen hinaus in der Lage sein, situationsgerecht und bezogen auf die Individualität des Analysanden kontinuierlich neue Deutungshypothesen zu entwickeln.

Bild 6 aus dem Anhang repräsentiert viele zusätzliche Aspekte zu der Therapiesituation zwischen Psychoanalytiker und Analysand. Ganz allgemein präsentiert sich die Psychoanalyse nicht als ein einheitlicher, monolithischer Theorieblock, in vielen Schulen aufgespalten, nicht formalisiert.

Einer eigentlichen Therapie geht  eine Probebehandlung voraus (die bis zu 6 Monate dauern kann), in der sowohl geklärt wird,
(i) welche Art von Störung zur Therapie ansteht, (ii) ob diese überhaupt für eine psychoanalytische Behandlung geeignet ist, und, falls sich eine psychoanalytische Behandlung nahe legt, (iii) es findet ein Gespräch statt zum äußeren Rahmen solch einer Therapie, Pflichte und Rechten der Teilnehmer, verschiedene Spielregeln. Als minimale Zeit für eine Therapie werden 2-3 Jahre angenommen.

In einer psychoanalytischen Therapie liegt der Analysand auf einer Couch, der Therapeut befindet sich nicht im Sichtfeld, und der Austausch findet sowohl mit sprachlichen wie auch mit nicht-sprachlichen Äußerungen statt. Der äußerliche Rahmen einer psychoanalytischen Therapie soll es dem Analysanden ermöglichen, seinen inneren Dialog erfahrbar zu machen. Dies geht natürlich nur bei absoluter Diskretion.
Der therapeutische Dialog weist eine Asymmetrie dahingehend auf, dass der Analysand sich in jeder Richtung ganz persönlich mitteilen kann, der Psychotherapeut hingegen sollte sich mit Persönlichem zurück halten und auf keinen Fall bewerten.

Bei allem Bemühen um Neutralität geht ein Psychoanalytiker nicht ohne spezifische Voreinstellungen in eine Therapie hinein, eben jene Voreinstellungen, die ihn als Psychoanalytiker auszeichnen. Hier sind einige genannt:

1) Existenz Vor-/Un-Bewusstes: Im Analysanden A und im Therapeuten PSA wird ein Vor-/Un-Bewusstes angenommen.
2) Kommunikation Vor-/Un-Bewusstes: Das Vor-/Un-Bewusste kann sich in den unterschiedlichen Äußerungen mitteilen.

3) Keine Normierung: Die Art und Weise, wie sich das Vor-/Un-Bewusste in den verschiedenen Äußerungen mitteilt, ist nicht normiert.
4) Einbeziehung Vor-/Un-Bewusstes von PSA: Der Therapeut PSA muss sein eigens Vor-/Un-Bewusstes im Verstehen und Kommunizieren bis zu einem gewissen Grade einbeziehen, da ansonsten weder das Verstehen ganz funktionieren kann noch das Mitteilen.
5) Neue Befähigung des Analysanden: Erstes Ziel des Therapieprozesses ist es, den Analysanden dazu zu befähigen, sich selbst soweit anders Wahrnehmen und Verstehen zu können, dass sich die Störungen hinreichend und nachhaltig abschwächen.
Für einen Therapeuten ist es also sehr wichtig, dass er in der Lage ist, einen solchen spezifischen Erwartungshorizont aufbauen zu können, der ihn in die Lage versetzt, die unterschiedlichen Äußerungen als potentielle Mitteilungen des Vor-/Un-Bewussten des Analysanden erkennen zu können. Aufgrund der unklaren Äußerungssituation ist die Deutung eines Äußerungsereignisses als potentielle Mitteilung immer eine Hypothese, die falsch sein kann, aufgrund deren aber der Therapeut immer wieder auch eigene
Äußerungen generiert. Diese Äußerungen des Therapeuten PSA können zu ganz unterschiedlichen Reaktionen seitens des Analysanden führen.

Bei aller Professionalität wird jeder Psychoanalytiker neben dem allgemeinen psychoanalytischen Wissen unausweichlich viele individuelle Erfahrungs-/Wissens-/.. Anteile haben, die sich in der Therapie auswirken. Von daher ist auch der Therapieprozess nicht ganz ablösbar von dieser individuellen Note. Es
ist von daher zu vermuten – aber nicht beweisbar –, dass ein Therapieprozess bei einem Psychoanalytiker A hinreichen verschieden von einem Therapieprozess bei einem Psychoanalytiker B verlaufen würde.

IV. ROBOTER

Für die grundsätzliche Frage, ob sich ein menschlicher Psychoanalytiker durch einen maschinellen Psychoanalytiker – also durch einen ’Roboter-Psychoanalytiker’ – ersetzen lässt oder nicht, muss man  die offizielle Beschreibung zum Ausgangspunkt nehmen, die die Psychoanalyse von sich selbst gibt. Hier kann möglicherweise die Situation des Kontroll-Analytikers einen Bezugspunkt bilden. Wie beschreibt ein
Kontroll-Analytiker PSA2 das Verhalten eines Psychoanalytikers PSA1, der in einer Therapiebeziehung zu einem Analysanden A steht? Hier besteht methodisch aktuell noch eine gewisse Unklarheit.

Klar ist nur (siehe hierzu Bild 3), dass ein Roboter-Psychoanalytiker – hier abgekürzt als PSA_robot – über alle Eigenschaften verfügen muss, über die auch ein menschlicher Psychoanalytiker – hier abgekürzt als PSA_hs – verfügt. Die Verbindung vom menschlichen Psychoanalytiker PSA_hs zum maschinellen Psychoanalytiker PSA_robot läuft von der offiziellen psychoanalytischen Beschreibung eines menschlichen Psychoanalytiker – hier abgekürzt als D_psa.hs – zu einer offiziellen Engineering Beschreibung eines maschinellen Psychoanalytikers  – hier abgekürzt als D_psa.robot –. Diese offizielle Beschreibung D_psa.robot wird dann übersetzt in eine entsprechende Software SW_psa.robot , die wiederum dann mit einer geeigneten Hardware HW_psa.robot ’unterlegt’ würde. Diese verschiedenen Übersetzungen kann man auch als Abbildungsprozesse auffassen:

(1) θ_psa : PSA_hs  −→ D_psa.hs
(2) θ_engineer : D_psa.hs  −→ D_psa.robot
(3) θ_design : D_psa.robot  −→ SW_psa.robot
(4) θ_impl : SW_psa.robot  −→ HW_psa.robot

Der Abbildungsprozess θ_psa repräsentiert letztlich eine Theoriebildung innerhalb der Psychoanalyse, innerhalb deren ein Psychoanalytiker beschrieben in einem Dokument beschrieben wird, das wir hier als Theorie annehmen.

Der Abbildungsprozess θ_engineer schildert die Arbeit, wie Ingenieure die Beschreibung eines menschlichen Psychoanalytikers in die Beschreibung für einen maschinellen Psychoanalytiker übersetzen würden.

Die folgenden Abbildungsprozesse θ_design und θ_impl beschreiben dann die fortschreitende Übersetzung der Theorie in Software bzw. in Hardware.

Während die Übersetzung von einer ingenieurmäßigen Beschreibung eines Systems – z.B. eines maschinellen Psychoanalytikers – in Software und Hardware völlig transparent und standardisiert ist (Anmerkung: Eine standardisierte Beschreibung des Systems Engineering (SE) existiert. Bild 4 deutet minimalistisch den Prozesspfeil
an, der im Systems Engineering die verschiedenen genormten Verarbeitungsphasen repräsentiert. Für mehr Details siehe z.B. [EDH11b], [EDH11a]) ist aktuell noch weitgehend unklar, wie denn eine theoretisch adäquate Beschreibung eines menschlichen Analytikers aussehen würde. Aktuell scheint es also so zu sein, dass das ganze Projekt daran hängt, ob überhaupt eine brauchbare theoretische Beschreibung eines menschlichen Psychoanalytikers existiert.

Aus Sicht des Engineerings wäre es allerdings nicht genug, die theoretische Beschreibung eines menschlichen Psychoanalytikers zu haben. Vielmehr müsste man auch den gesamten Verhaltenskontext dazu haben. Dies entspricht in etwa dem gesamten Therapieprozess, innerhalb dessen der Psychoanalytiker nur ein Element ist. Wesentlich dazu gehört der Analysand sowie der konkrete Raum, in dem beide, der Psychoanalytiker und der Analysand, agieren. Im Bild 5 wird dies angedeutet. Bevor der
Ingenieur das Modell eines maschinellen Psychoanalytikers entwerfen würde, würde er eine hinreichend ausführliche Beschreibung des gesamten Therapieprozesses generieren als textbasierte Geschichte, als mathematischer Graph, als Bildergeschichte (Comic) sowie darauf aufbauend als komplette Simulation des Prozesses, allerdings ohne die inneren Details der beteiligten Akteure Psychoanalytiker und Analysand. Diese Modelle mit inneren Zuständen und Verhaltensfunktionen würden erst unter Angabe des Prozesses generiert.

V. FORTSETZUNG

Es bleibt also spannend, wie diese Geschichte sich weiter entwickelt. Die Werkstattgruppe will auf jeden Fall noch eine Sitzung der Philosophiewerkstatt diesem Thema spendieren.

Im Moment sieht es so aus, als ob das Problem, einen maschinellen Psychoanalytiker zu bauen, zunächst daran hängt, überhaupt eine brauchbare theoretische Beschreibung von dem zu bekommen,  was denn die Psychoanalyse unter einem Psychoanalytiker versteht. Mit einer geeigneten theoretischen Beschreibung in der Hand wäre es für die Ingenieure reine Routine, daraus eine funktionierende Maschine
zu bauen, und zwar eine, die genau das tut, was man erwartet. So könnte es aktuell erscheinen …. aber hier gibt es einige sehr vertrackte Fallstricke .. es wird umso spannender, je weiter man in das Thema vordringt …

VI. ANHANG : GEDANKENSKIZZE VOM 28.J ANUAR 2018

Bild 6 repräsentiert viele spezielle Aspekte des Dialoges zwischen Psychoanalytiker und Analysand in einer Therapie.

Gedankenskizze aus dem Werkstattgespräch vom 28.Januar 2018

Gedankenskizze aus dem Werkstattgespräch vom 28.Januar 2018

QUELLEN

[EDH11a] Louwrence Erasmus and Gerd Doeben-Henisch. A theory of the system engineering management processes. In 9th IEEE AFRICON Conference. IEEE, 2011.
[EDH11b] Louwrence Erasmus and Gerd Doeben-Henisch. A theory of the system engineering process. In ISEM 2011 International Conference. IEEE, 2011.

KONTEXTE

Einen Überblick über alle Einträge zur Philosophiewerkstatt nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs finden sich HIER.

EINLADUNG zur PHILOSOPHIEWERKSTATT: PSYCHOANALYSE DURCH ROBOTER? So, 28.Jan.2018, 15:00h, im INM (Frankfurt)

THEMA

Ausgehend von den Themenvorschlägen von der letzten Philosophiewerkstatt am 28.November 2017 und den beginnenden Gesprächen zwischen Jürgen Hardt (Psychoanalytiker) und Gerd Doeben-Henisch (Wissenschaftsphilosoph, KI-Forscher) zum Thema ‚Kann der Psychoanalytiker durch einen intelligenten Roboter ersetzt werden?‘ wird für das Treffen am So, 28.Januar 2018 als Thema (leicht salopp formuliert) „Psychoanalyse durch Roboter?“ gewählt.

Zwar glauben alle einschlägigen Experten im Feld der Psychoanalyse bislang, dass solch ein Zukunftsszenarium für lange Zeit nicht möglich sein wird, vielleicht ist es sogar grundsätzlich nicht möglich, aber philosophisches und wissenschaftliches Denken hört nicht bei herrschenden Meinungen auf, sondern fängt genau da an.

Da die Analyse des Verhältnisses zwischen einem Psychoanalytiker als Akteur und einem einem Patienten als Akteur   kaum umhin können wird, auch die Frage nach dem zugrunde liegenden Menschenbild anzusprechen,  darf man davon ausgehen, dass sich die Themenwünsche von der letzten Philosophiewerkstatt  in diesem Diskurskontext alle wiederfinden werden.

WO

INM – Institut für Neue Medien, Schmickstrasse 18, 60314 Frankfurt am Main (siehe Anfahrtsskizze). Parken: Vor und hinter dem Haus sowie im Umfeld gut möglich.

WER

Moderation: Prof.Dr.phil Dipl.theol Gerd Doeben-Henisch (Frankfurt University of Applied Sciences, Mitglied im Vorstand des Instituts für Neue Medien)

ZEIT

Beginn 15:00h, Ende 18:00h. Bitte unbedingt pünktlich, da nach 15:00h kein Einlass.

ESSEN & TRINKEN

Es gibt im INM keine eigene Bewirtung. Bitte Getränke und Essbares nach Bedarf selbst mitbringen (a la Brown-Bag Seminaren)

EREIGNISSTRUKTUR

Bis 15:00h: ANKOMMEN

15:00 – 15:40h GEDANKEN ZUM EINSTIEG (Erste Deutungsversuche von Gerd Doeben-Henisch aus Sicht der Wissenschaftsphilosophie, dann Gegenrede, Kommentierungen von Jürgen Hardt aus Sicht der Psychoanalyse)

15:40 – 16:30h: GEMEINSAMER DISKURS ALLER (Fragen, Kommentare…, mit Gedankenbild/ Mindmap)

16:30 – 16:40h PAUSE

16:40– 17:00h: Zeit zum INDIVIDUELLEN FÜHLEN (manche nennen es Meditation, individuell, freiwillig)

17:00 – 17:10h: ASSOZIATIONEN INDIVIDUELL (privat)

17:10 – 17:50h: Zweite GESPRÄCHSRUNDE (Mit Gedankenbild/ Mindmap)

17:50– 18:00h: AUSBLICK, wie weiter

Ab 18:00h: VERABSCHIEDUNG VOM ORT

Irgendwann: BERICHT(e) ZUM TREFFEN, EINZELN, IM BLOG (wäre schön, wenn)

Irgendwann: KOMMENTARE ZU(M) BERICHT(en), EINZELN, IM BLOG (wäre schön, wenn)

KONTEXTE

Einen Überblick über alle Einträge zur Philosophiewerkstatt nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs finden sich HIER.

Mit freundlichen Grüßen,

Gerd Doeben-Henisch

DAS PHILOSOPHIE JETZT PHILOTOP

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 30.Nov. 2017
URL: cognitiveagent.org
info@cognitiveagent.org

Autor: cagent
Email: cagent@cognitiveagent.org

Worum geht’s — Meine Antwort auf die von vielen gestellte
Frage, wie denn die  verschiedenen Seiten untereinander zusammen hängen, war zu schnell (siehe den Blogeintrag vom 14.November ). Hier eine Korrektur.

I. EIN PHILOTOP

Wie man unschwer erkennen kann, ist das Wort
’Philotop’ eine Übertragung von dem Wort ’Biotop’.
Für Biologen ist klar, dass man einzelne Lebensformen
eigentlich nur angemessen verstehen kann, wenn
man ihren gesamten Lebensraum mit betrachtet:
Nahrungsquellen, Feinde, ’Kollaborateure’, Klima, und
vieles mehr.

Ganz ähnlich ist es eigentlich auch mit dem Blog
’Philosophie Jetzt: Auf der Suche …’. Auch diese Ideen
haben sehr viele Kontexte, Herkünfte, wechselseitige
Interaktionen mit vielen anderen Bereichen. Ohne diese
Kontexte könnte der Blog vielleicht gar nicht ’atmen’.

Im Blogeintrag vom 14.November 2017 wurde
verwiesen auf die monatliche Philosophiewerkstatt, in
der in einer offenen Gesprächsrunde Fragestellungen
gemeinsam gedacht werden. Seltener gibt es
die Veranstaltung Philosophy-in-Concert, in der philosophische Ideen, eingebettet in experimentelle Musik, Bildern und Texten ihren Empfänger suchen und
sich auch auf ein Gespräch einlassen.

Schaubild vom Philotop ( die 'Kernbereiche') :-)

Schaubild vom Philotop ( die ‚Kernbereiche‘) 🙂

Die Wechselwirkung mit den nächsten beiden
Blogs liegt für manche vielleicht nicht so auf der
Hand. Aber bedingt durch die langjährige Lehr-
und Forschungstätigkeit von cagent im Bereich des
Engineerings stellte sich heraus, dass gerade das
Engineering der Welt riesige Potentiale für eine
moderne Philosophie bietet, und dies nicht nur einfach
als begriffs-ästhetische Spielerei, sondern mit einem
sehr konkreten Impakt auf die Weise, wie Ingenieure die
Welt sehen und gestalten. Daraus entstand ein Projekt,
das bislang keinen wirklich eigenen Namen hat.

Umschrieben wird es mit ’Integrated Engineering of
the Future’, also ein typisches Engineering, aber eben
’integriert’, was in diesem Kontext besagt, dass die
vielen methodisch offenen Enden des Engineerings hier
aus wissenschaftsphilosophischer Sicht aufgegriffen und
in Beziehung gesetzt werden zu umfassenderen Sichten
und Methoden. Auf diese Weise verliert das Engineering
seinen erratischen, geistig undurchdringlichen Status
und beginnt zu ’atmen’: Engineering ist kein geist-
und seelenloses Unterfangen (wie es von den Nicht-
Ingenieuren oft plakatiert wird), sondern es ist eine
intensive Inkarnation menschlicher Kreativität, von
Wagemut und zugleich von einer rationalen Produktivität,
ohne die es die heutige Menschheit nicht geben würde.

Das Engineering als ein Prozess des Kommunizierens
und darin und dadurch des Erschaffens von neuen
komplexen Strukturen ist himmelhoch hinaus über
nahezu allem, was bildende Kunst im Kunstgeschäft
so darbietet. Es verwandelt die Gegenart täglich und
nachhaltig, es nimmt Zukünfte vorweg, und doch fristet
es ein Schattendasein. In den Kulturarenen dieser Welt,
wird es belächelt, und normalerweise nicht verstanden.
Dies steht  im krassen Missverhältnis zu seiner Bedeutung.
Ein Leonardo da Vinci ist ein Beispiel dafür, was es
heißt, ein philosophierender Ingenieur gewesen zu sein,
der auch noch künstlerisch aktiv war.
Innerhalb des Engineerings spielt der Mensch in
vielen Rollen: als Manager des gesamten Prozesses, als mitwirkender Experte, aber auch in vielen Anwendungssituationen als der intendierte Anwender.

Ein Wissen darum, wie ein Mensch wahrnimmt, denkt,
fühlt, lernt usw. ist daher von grundlegender Bedeutung. Dies wird in der Teildisziplin Actor-Actor-Interaction (AAI) (früher, Deutsch, Mensch-Maschine Interaktion oder,
Englisch, Human-Machine Interaction), untersucht und methodisch umgesetzt.

Die heute so bekannt gewordene Künstliche Intelligenz
(KI) (Englisch: Artificial Intelligence (AI)) ist ebenfalls ein
Bereich des Engineerings und lässt sich methodisch
wunderbar im Rahmen des Actor-Actor Interaction
Paradigmas integriert behandeln. Im Blog wird es unter
dem Label Intelligente Maschinen abgehandelt.
Sehr viele, fast alle?, alle? Themen aus der
Philosophie lassen sich im Rahmen des Engineerings,
speziell im Bereich der intelligenten Maschinen als Teil
des Actor-Actor-Interaction Paradigmas neu behandeln.

Engineering ist aber nie nur Begriffsspielerei.
Engineering ist immer auch und zuvorderst Realisierung
von Ideen, das Schaffen von neuen konkreten Systemen,
die real in der realen Welt arbeiten können. Von daher
gehört zu einer philosophisch orientierten künstlichen
Intelligenzforschung auch der Algorithmus, das lauffähige
Programm, der mittels Computer in die Welt eingreifen
und mit ihr interagieren kann. Nahezu alle Themen der
klassischen Philosophie bekommen im Gewandte von
intelligenten Maschinen eine neue Strahlkraft. Diesem
Aspekt des Philosophierens wird in dem Emerging-Mind
Lab Projekt Rechnung getragen.

Mit dem Emerging-Mind Lab und dessen Software
schließt sich wieder der Kreis zum menschlichen
Alltag: im Kommunizieren und Lernen ereignet sich
philosophisch reale und mögliche Welt. Insoweit intelligenten Maschinen aktiv daran teilhaben können, kann dies die Möglichkeiten des Menschen spürbar erweitern. Ob zum Guten oder Schlechten, das entscheidet
der Mensch selbst. Die beeindruckende Fähigkeit von
Menschen, Gutes in Böses zu verwandeln, sind eindringlich belegt. Bevor wir Maschinen verteufeln, die wir
selbst geschaffen haben, sollten wir vielleicht erst einmal
anfangen, uns selbst zu reformieren, und dies beginnt
im Innern des Menschen. Für eine solche Reform des
biologischen Lebens von innen gibt es bislang wenig bis
gar keine erprobten Vorbilder.

KONTEXT BLOG

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER

KÜNSTLICHE INTELLIGENZ – Newell und Simon 1976

PDF

IDEE

Im Jahr 2017 nimmt die Erwähnung von sogenannter Künstlicher Intelligenz außerhalb der Wissenschaften, im öffentlichen Bereich, fast inflatorisch zu. Zugleich muss man feststellen, dass Erklärungen des Begriffs ‚Künstliche Intelligenz‘ wie auch anderer Begriffe in seinem Umfeld Mangelware sind. Es wird daher ab jetzt mehr Blogeinträge geben, die auf diese Thematik gezielter eingehen werden. Hier ein erster Beitrag mit Erinnerung an einen wichtigen Artikel von Newell and Simon 1976.

I. INFORMATIK ALS EMPIRISCHE WISSENSCHAFT

Informatik als empirische Disziplin (nach Newell und Simon, 1976)

Informatik als empirische Disziplin (nach Newell und Simon, 1976)

Im Jahr 1975 empfingen Allen Newell und Herbert A.Simon den angesehenen ACM Turing Preis von der ACM aufgrund ihrer vielen wichtigen Beiträge zur Künstlichen Intelligenzforschung in den vorausgehenden Jahren. Die Preisrede beider Autoren wurde in den Communications of the ACM 1976 abgedruckt (siehe: NewellSimon:1976).

In dieser Rede wagen die Autoren eine generelle Sicht auf die Informatik (‚computer science‘), die Akzente erkennen lässt, die von heutigen Auffassungen von Informatik — zumindest wie sie in Deutschland üblich sind — doch deutlich abweicht.

Für die beiden Autoren ist die Informatik eine empirische Wissenschaft, deren Interesse darin besteht, das Verhalten von Menschen, dort, wo es Intelligenz erkennen lässt, in ein theoretisches Modell zu übersetzen, das sich dann als eine konkrete Maschine (ein Computer, ein Roboter) physikalisch realisieren lässt. Man kann dann diese konkrete Maschine dazu benutzen, Tests durchzuführen, durch die man überprüfen kann, ob sich die gebaute Maschine hinreichend ähnlich wie ein Mensch verhält oder aber davon deutlich abweicht. Liegen Abweichungen vor, dann muss man den Sachverhalt weiter ergründen und versuchen, ob man das theoretische Modell verbessern kann.

Für sie erscheint der Mensch als eine Art Standardmodell für Intelligenz, allerdings nicht so, dass man den Begriff ‚Intelligenz‘ mit einer einzigen Verhaltensweise oder mit einem einzigen Prinzip identifizieren könnte. Das vielfältige menschliche Verhalten verweist nach den Autoren vielmehr auf eine Vielzahl von Komponenten, deren Zusammenwirken zu einem als ‚intelligent‘ wirkenden Verhalten führt. Für das Erkennen einer möglichen ‚Intelligenz‘ ist es ferner wichtig, dass man den ganzen Kontext berücksichtigt, in dem spezifische Aufgaben vorliegen, die gelöst werden sollten.

Durch ihre Forschungsarbeiten zu symbolischen Systemen und zur heuristischen Suche haben Newell und Simon herausgefunden, dass die Klärung eines Problemraumes nur dann besser als zufällig sein kann, wenn der Problemraum minimale Regelhaftigkeiten, eine minimale Ordnung aufweist, die — sofern sie erkannt wurde — dann in Form spezieller Informationen angesammelt werden kann und dann, nach Bedarf, bei der Klärung des Problemraumes genutzt werden kann. Und es ist genau diese spezifische angesammelte Information die die Autoren mit Intelligenz gleichsetzen! Ein Mensch kann nur dann gezielter, schneller eine Aufgabe lösen, wenn er über spezielle Informationen (Wissen) verfügt, die ihn in die Lage versetzen, genau jene Verhaltensweisen zu zeigen, die schnell und effizient zum Ziel führen.

Überträgt man dies auf die theoretischen Modelle der Informatik, dann muss man Wege finden, spezifisches Bereichswissen (engl.: ‚domain knowledge‘) für ein intelligentes Verhalten in geeignete Datenstrukturen und Prozesse zu übersetzen. Auf die vielen Beispiele und Details zu diesen Überlegungen wird hier verzichtet [diese kann jeder in dem Artikel nachlesen ….].

II. DISKURS

Hier einige Überlegungen im Anschluss an den Artikel von Newell und Simon.

A. Intelligenz

Zunächst ist interessant, dass die Verwendung des Begriffs ‚Intelligenz‘ gebunden wird an das Verhalten von Menschen, wodurch der Mensch als undiskutierter Maßstab für mögliche Intelligenz gesetzt wird.

Daraus folgt nicht notwendigerweise, dass es jenseits des Menschen keine andere Formen von Intelligenz gibt, sondern nur, dass man den Typ von Intelligenz, der beim Menschen vorliegt und sichtbar wird, vorläufig als Standard benutzen möchte. Also eine Intelligenz mit Index: Intelligenz_human.

Das macht auch verständlich, dass man als wichtige empirische Wissenschaft in Begleitung der Informatik die kognitive Psychologie sieht, die sich u.a. auch mit der sogenannten ‚Informationsverarbeitung im Menschen‘ beschäftigt.

Es wundert dann allerdings, dass die Autoren den im Rahmen der Psychologie eingeführten Begriff des Intelligenz-Quotienten (IQ) samt den dazugehörigen erprobten Messverfahren nicht benutzen, nicht einmal erwähnen. Dies würde die Möglichkeit eröffnen, die Verhaltensleistung von technischen Systemen entsprechend zu messen und direkt mit Menschen zu vergleichen. Der oft zitierte Turing-Test (nicht von den beiden Autoren) ist verglichen mit den Testbatterien des IQ-Quotienten mehr als dürftig und nahezu unbrauchbar.

Durch den Verzicht auf die sehr detailliert ausgearbeiteten Testbatterien der Psychologie bleibt die Charakterisierung des Begriffs ‚Intelligenz‘ in der Informatik weitgehend vage, fast beliebig.

An dieser Stelle könnte man einwenden, dass in der Informatik andere Aufgabenstellungen untersucht werden als in der Psychologie üblich bzw. andere Aufgabenstellung, die Menschen in dieser Weise nicht angehen, dadurch wir die Verwendung des Begriffs ‚Intelligenz‘ aber noch undurchsichtiger, geradezu ominös.

Obgleich Newell und Simon betonen, dass sie die Informatik als eine empirische Theorie sehen, bleibt der ganze Komplex des tatsächlichen objektiven Messens etwas vage. Zum objektiven Messen gehören zuvor vereinbarte Standards, die beim Messen als Referenzen benutzt werden, um ein Zielobjekt zu ‚vermessen‘. Wenn das zu messende Zielobjekt ein Verhalten sein soll (nämlich das Verhalten von Maschinen), dann muss zuvor sehr klar definiert sein, was denn das Referenz-Verhalten von Menschen ist, das in einem (welchen?) Sinn als ‚intelligent‘ angesehen wird und das dazu benutzt wird, um das Maschinenverhalten damit zu vergleichen. Es ist weder bei Newell und Simon klar zu sehen, wie sie ihr Referenzverhalten von Menschen zuvor klar definiert haben, noch sind die Messprozeduren klar.

Der grundsätzliche Ansatz von Newell und Simon mit der Informatik als empirischer Disziplin (zumindest für den Bereich ‚Intelligenz) erscheint auch heute noch interessant. Allerdings ist das begriffliche Chaos im Kontext der Verwendung des Begriffs ‚Intelligenz‘ heute zu einem notorischen Dauerzustand geworden, der es in der Regel unmöglich macht, den Begriff von ‚künstlicher Intelligenz‘ in einem wissenschaftlichen Sinne zu benutzen. Jeder benutzt ihn heute gerade mal, wie es ihm passt, ohne dass man sich noch die Mühe macht, diese Verwendung irgendwie transparent zu machen.

B. Lernen

Während Newell und Simon im Fall des Begriffs ‚Intelligenz‘ zumindest ansatzweise versuchen, zu erklären, was sie damit meinen, steht es um den Begriff ‚Lernen‘ ganz schlecht.

Explizit kommt der Begriff ‚Lernen‘ bei den Autoren nicht vor, nur indirekt. Dort wo heuristische Suchprozesse beschrieben werden, die mit Hilfe von symbolischen Systemen geleistet werden, stellen sie fest, dass man aufgrund ihrer empirischen Experimente wohl (in dem theoretischen Modell) annehmen muss, dass man Informationen speichern und verändern können muss, um zu jenem Wissen kommen zu können, das dann ein optimiertes = intelligentes Verhalten ermöglicht.

Aus psychologischen Lerntheorien wissen wir, dass ‚Intelligenz‘ und ‚Lernen‘ zwei unterschiedliche Eigenschaften eines Systems sind. Ein System kann wenig intelligent sein und doch lernfähig, und es kann sehr intelligent sein und doch nicht lernfähig.

Nimmt man die Charakterisierung von Newell und Simon für ‚Intelligenz‘ dann handelt es sich um ein ’spezielles Wissen‘ zum Aufgabenraum, der das System in die Lage versetzt, durch ein ‚gezieltes Verhalten‘ schneller ans Ziel zu kommen als durch rein zufälliges Verhalten. Eine solche Intelligenz kann einem System zur Verfügung stehen, auch ohne Lernen, z.B. (i) bei biologischen Systemen als eine genetisch vererbte Verhaltensstruktur; (ii) bei technischen Systemen durch eine volle Konfiguration durch Ingenieure. Bei biologischen Systeme tritt allerdings ‚Intelligenz‘ nie isoliert auf sondern immer in Nachbarschaft zu einer Lernfähigkeit, weil die dynamische Umwelt biologischer Systeme beständig neue Anpassungen verlangt, die nicht alle vorher gesehen werden können. Im Fall technischer Systeme mit begrenzter Lebensdauer und definiertem Einsatz war dies (und ist dies) weitgehend möglich.

Wenn man von ‚Künstlicher Intelligenz‘ spricht sollte man daher die beiden Strukturen ‚Intelligenz‘ und ‚Lernen‘ sehr klar auseinander halten. Die Fähigkeit, etwas zu lernen, erfordert völlig andere Eigenschaften als die Struktur eines Wissens, durch das ein System sich ‚intelligent‘ statt ‚zufällig‘ verhalten kann.

C. Theorie

Die Forderung von Newell und Simon, die Informatik als eine ‚empirische Wissenschaft‘ zu betrachten, die richtige theoretische Modelle (= Theorien) konstruiert und diese über realisierte Modelle dann empirisch überprüft, hat im Rahmen des allgemeinen Systems Engineerings auch heute noch einen möglichen Prozess-Rahmen, der alle diese Forderungen einlösen kann. Allerdings hat es sich in der Informatik eingebürgert, dass die Informatik einen Sonderweg kreiert hat, der unter der Überschrift Softwareengineering zwar Teilaspekte des generellen Systemsengineerings abbildet, aber eben nur Teilaspekte; außerdem ist durch die Beschränkung auf die Software ohne die Hardware ein wesentlicher Aspekt des Gesamtkonzepts Computer ausgeklammert. Ferner ist der harte Aspekt einer vollen empirischen Theorie durch die Phasenbildungen ‚logisches Design‘ nur unvollständig abgebildet. Designmodelle sind kein Ersatz für eine richtige Theorie. Für das sogenannte ‚modellgetriebene Entwickeln‘ gilt das Gleiche.

D. Mensch als Maßstab

War es noch für Newell und Simon offensichtlich klar, dass man für den Begriff ‚Intelligenz‘ den Menschen als Referenzmodell benutzt, so ist dies in der heutigen Informatik weitgehend abhanden gekommen. Dies hat einmal damit zu tun, dass der Wissenschaftsbegriff der Informatik samt der meisten Methoden bislang nicht in den allgemeinen, üblichen Wissenschaftsbegriff integriert ist, zum anderen dadurch, dass die Aufgaben, die die intelligenten Maschinen lösen sollen, aus allen möglichen ad-hoc Situationen ausgewählt werden, diese keinen systematischen Zusammenhang bilden, und man in den meisten Fällen gar nicht weiß, wie man den Bezug zum Menschen herstellen könnte. Dadurch entsteht der vage Eindruck, dass die ‚Intelligenz‘ der künstlichen Intelligenzforschung irgendwie etwas anderes ist als die menschliche Intelligenz, von der menschlichen Intelligenz möglicherweise sogar ganz unabhängig ist. Man macht sich allerdings nicht die Mühe, systematisch und zusammenhängend die Verwendung des Begriffs der ‚Intelligenz‘ in der Informatik zu klären. Aktuell hat man den Eindruck, dass jeder gerade mal das behauptet, was ihm gerade gefällt. Auch eine Art von Fake News. Die Marketingabteilungen der großen Konzerne freut es, weil sie nach Belieben alles Versprechen können, was sie wollen, ohne dass irgendjemand sinnvoll nachprüfen kann, was das genau ist, ob das überhaupt geht.

Doch sollte man sich durch diese terminologische Unklarheiten, die auf eine fehlende wissenschaftliche Methodik der Informatik zurück zu führen sind, nicht davon ablenken lassen, zu konstatieren, dass trotz chaotischer Begrifflichkeit im Konkreten und Im Detail seit Newell und Simon 1976 extreme Fortschritte gemacht wurden in speziellen Algorithmen und spezieller Hardware, mit der man heute viel mehr realisieren kann, als sich Newell und Simon damals hätten träumen lassen. Die Vorteile, die man sich durch diese Fortschritte im Konkreten erarbeitet hat, werden aber weitgehend verspielt durch große Theoriedefizite, die zu gerade kuriosen Anschauungen und kuriosen Forschungsprojekten führen. In der KI ist dies aber nichts Neues: es gab sehr unterschiedliche Phasen; alle Fehler führten irgendwann dann doch zu verbesserten Einsichten.

QUELLE

Allen Newell and Herbert A. Simon. Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3):113–126, 1976.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER.

NUR EIN SOUND MIT STIMME – ZEITALTER DER KÜNSTLICHEN INTELLIGENZ – Prolog

Dies ist nur ein Sound mit einer Stimme:

Empfohlen: Guter Kopfhöer oder Soundanlage; entspannte Haltung wäre günstig, Augen geschlossen? Dauer ca.18 Min … Man muss aber nicht. Menschen müssen grundsätzlich nicht, sie können …

 

Fortsetzung (8.4.2017): Gedanken ohne Stimme

 

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

(MASCHINELLES) BEWUSSTSEIN – ALLTAGSERKENNEN – ZURÜCK AUF START

(A shorter version in English can be found HERE)

KONTEXT: WELT DER INGENIEURE

  1. Seit letztem Sommer arbeite ich bei einem Buchprojekt mit, bei dem es eigentlich um die Welt der Ingenieure geht: Wie löst ein Ingenieur ein Problem? Sozusagen vom ‚Problem‘ zum ‚fertigen Produkt‘. Zu diesem Thema gibt es viele dicke Bücher und internationale Standards, viele hundert Artikel. Dennoch gibt es hier viele offene Fragen, z.B. auch die nach den Erkenntnisprozessen, die in Ingenieuren ablaufen müssen, damit sie ein Problem in eine funktionierende Lösung transformieren können. Unter welchen Voraussetzungen kann eine Kommunikation zwischen Ingenieuren gelingen? Gibt es eine innere Logik in diesem Prozess? Und was ist mit den intelligenten Programmen und Maschinen, die immer mehr Teil dieses Prozesses sind und sein werden? Was ist eigentlich ‚Künstliche Intelligenz‘? Was kann sie wirklich? Könnte eine Maschine menschlich kommunizieren? Kann eine Maschine ein maschinelles Bewusstsein haben, das eine Kooperation mit Menschen im menschlichen Stil ermöglicht?

MASCHINELLES BEWUSSTEIN

  1. Dies sind einige der Fragen. Die Frage nach einem maschinellen Bewusstsein wurde in diesem Blog bisweilen schon angerissen. Damit zusammenhängend stellt sich – zumindest methodisch – sofort die Frage, was wir denn unter dem Begriff ‚Bewusstsein‘ verstehen können oder sollen? Macht es Sinn, von einem ‚maschinellen Bewusstsein‘ zu sprechen, wenn wir doch gar nicht wissen, was ein ‚Bewusstsein‘ sein soll? Hier stellen sich viele spannende Fragen; einige davon wurden in diesem Blog auch schon diskutiert.

BEWUSSTSEIN UND NEURONALE KORRELATE

  1. Speziell die Frage nach dem menschlichen Bewusstsein hat schon immer Philosophen beschäftigt, später, in der Neuzeit, auch Psychologen, und dann, noch später, seit einigen Jahrzehnten zunehmend die Neurowissenschaften bzw. die Neuropsychologie. Der Begriff der ’neuronalen Korrelate des Bewusstseins‘ ist mittlerweile weit verbreitet. Ganz allgemein werden damit Gehirnaktivitäten gemeint, die mit Bewusstseinsprozessen einhergehen sollen. Die Zahl der Publikationen zu diesem Thema geht in die Hunderte. Dennoch wird man sich schwer tun, in irgendeiner dieser Publikationen eine brauchbare Definition von ‚Bewusstsein‘ zu finden, die unabhängig von neurowissenschaftlichen Tatbeständen ist. Von daher bewegen sich diese Publikationen weitgehend in einem hermeneutischen Zirkel: sie versuchen neuronale Korrelate des Bewusstseins zu definieren, ohne dass sie den Begriff ‚Bewusstsein‘ unabhängig von Gehirnaktivitäten definieren. Vereinfacht wird ein Bündel von Gehirnaktivitäten genommen und erklärt, dass immer dann, wenn diese auftreten, bewusste Aktivitäten vorliegen, ohne dass diese bewussten Aktivitäten in einem selbständigen theoretischen Modell erklärt werden bzw. unabhängig von den neuronalen Aktivitäten gemessen werden.
  2. Die Methodendiskussionen im Kontext der Neurowissenschaften – auch unter Einbeziehung der Neuropsychologie – erscheinen von daher bislang eher unbefriedigend.

MACHINELLES BEWUSSTSEIN – KI

  1. Hier gibt es einen interessanten Nebenkriegsschauplatz, von dem man sich auf den ersten Blick vielleicht kaum Erkenntnisse für die Frage ‚Bewusstsein – Gehirn‘ erhofft. Das Gebiet des maschinellen Bewusstseins, einem Teilgebiet der künstlichen Intelligenz (Anmerkung: der heute oft anzutreffende Begriff der ‚Maschinellen Intelligenz‘ ist – wenn man sich an den veröffentlichten Texten orientiert – nur ein kleiner Teilbereich des weiten Gebietes der ‚Künstlichen Intelligenz‘. Allerdings ist der Sprachgebrauch von ‚Künstlicher Intelligenz‘, ‚Maschineller Intelligenz‘, ‚Computational Intelligence‘, ‚Cognitive Computation‘ usw. zur Zeit nicht sehr einheitlich.) fragt sich sehr speziell, ob und wie man das Phänomen des menschlichen Bewusstseins mittels einer Maschine soweit nachbauen könnte, dass sich alle Eigenschaften des menschlichen Bewusstseins damit reproduzieren lassen. Wie man dieses maschinelle Bewusstsein technisch realisiert ist bei dieser Fragestellung eigentlich offen, faktisch versucht aber die große Mehrheit der hier aktiven Forscher Anleihen bei der Gehirnwissenschaft und der Psychologie zu holen, weil nun mal der Prototyp eines menschlichen Bewusstseins in realen Menschen real vorliegt und es für viele einfacher erscheint, sich hier etwas abzugucken als alles aus dem Nichts neu zu erfinden.
  2. Einen der besten Überblicke, den ich zu diesem Forschungsgebiet kenne, stammt von James A.Reggia aus dem Jahr 2013 mit dem Titel „The rise of machine consciousness: Studying consciousness with computational models“ (erschienen in der Zeitschrift ‚Neural Networks‘ von Elsevier (URL: https://pdfs.semanticscholar.org/8333/603ff38df5fb8277f0ef945b3d4c6ccd672e.pdf ). In einem späteren Artikel aus 2017 hat er die grundlegende methodische Problematik unter dem Titel „Exploring the Computational Explanatory Gap‚ zusammen mit anderen nochmals weiter ausformuliert (in der Zeitschrift ‚Philosophies‘ (URL: doi:10.3390/philosophies2010005 ). Reggia zeigt viele der methodischen Schwachstellen der Rede von den neuronalen Korrelaten des Bewusstseins auf (auch sehr grundlegende Einwände) und kommt letztlich zum Ergebnis, dass die Forschung nicht wirklich weiter kommt, solange sie sich nicht dem Phänomen des ‚Bewusstseins‘ direkt stellt ohne den Umweg über Verhalten (Psychologie) oder Gehirnaktivität (Neurowissenschaft).

WIE DIE FRAGE STELLEN?

  1. Damit stellt sich die Frage, welche Chancen wir denn haben, uns direkt mit dem Bewusstsein zu beschäftigen. Die vielfachen Versuche der Philosophen aus mehr als 2000 Jahren, die der Psychologen seit ca. 150 Jahren bieten eine kaum überschaubare Fülle von Vorgehensweisen, von denen sich aber bislang keine wirklich durchsetzen konnte. Am meisten vielleicht noch (meine subjektive Einschätzungen) die Ansätze einer phänomenologischen Philosophie (Husserl, Heidegger, Merleau-Ponty…), aber so richtig durchsetzen konnten diese sich bislang auch nicht. Seit den 90iger Jahren gab es eine neue Welle von philosophischen Untersuchungen. Den Namen Thomas Metzinger kennen seitdem viele, die Zeitschrift ‚Journal of Consciousness Studies‘ bildete einen starken Impuls, in der Einbeziehung der Gehirnforschung sahen viele eine neue Option. In dem Maße aber, wie sich die Daten der Gehirnforschung mathematisch fassen und in neuartige Experimente umsetzen lassen, wird sichtbar, dass die Gehirnforschung als solche nicht automatisch jene Erkenntnisse liefert, nach denen wir fragen. Was also tun?

SYSTEMS ENGINEERING

  1. Mehr durch Zufall bin ich vor ca. 18 Jahren mit Menschen zusammen getroffen —  speziell mit einem –, die sich Ingenieure nennen, genauer, ‚Systems Engineers‘. Dies sind Menschen, die ein umfangreiches Training vorwiegend in Technologie, Mathematik und Management genommen haben, meist mindestens 20 – 25 Jahre, bis sie dann Raketen und Flugzeige planen und bauen können, Atomreaktoren mit Extremsicherheitsanforderungen, den Verkehrsfluss in Städten, die Grenzsicherung eines Landes, das Gesundheitssystem eines Landes, und vieles mehr. Systems Engineers sind gewohnt, komplex zu denken, in Prozessen, unter Einbeziehung des Faktors Mensch, und immer sehr konkret, überprüfbar, messbar, mit vielen mathematischen Modellen, unter Einbeziehung von hochentwickelten Softwarewerkzeugen.
  2. An dieser Stelle kann man mal die Frage aufwerfen, wie müsste eine Theorie des menschlichen Bewusstseins aussehen, so dass ein Systems Engineer sie real und praktisch benutzen könnte, um seine komplexen Aufgaben damit besser lösen zu können? Die meisten Publikationen zum Thema Bewusstsein reden in gewisser Weise ‚über‘ das Phänomen, eingebettet in viele spezielle Begriffe, deren Bedeutung nicht so ohne weiteres klar ist, ohne dass sich daraus ableiten lässt, wie man aus diesem Reden ‚über‘ das Bewusstsein zu konkreten Anleitungen und zu konkreten Methoden kommen kann, die geeignet sind, das reale Verhalten von Akteuren mit Bewusstsein sowohl zu beschreiben wie auch – soweit es die internen Freiheitsgrade von Akteuren erlauben – gewisse Prognosen über ihr Verhalten abzugeben. Für Ingenieure besonders wichtig sind brauchbare Erkenntnisse über die Wechselwirkung zwischen den Situationsgegebenheiten und den inneren Zuständen des Akteurs. Eine verhaltensorientierte Psychologie kann hier in der Regel von großer Hilfe sein, ersetzt aber keine ‚Theorie des Bewusstseins‘ im engeren Sinne.

ZURÜCK AUF START

  1. Die obigen Überlegungen im Hinterkopf, z.T. schon viele Jahrzehnte, habe ich mich jetzt entschlossen, die Frage nach einer geeigneten Theorie des Bewusstseins, die sich in Ingenieurkontexten praktisch nutzen lässt, nochmals neu anzugehen. Dieses Mal bewusst im Rahmen des methodischen Paradigmas des Systems Engineerings.
  2. Dabei trat die Notwendigkeit auf, die pragmatischen Umschreibungen und Handhabungen des Begriffs ‚Systems Engineering‘ im Modell einer ‚Empirischen Wissenschaft‘ mit einer ‚formalen Theorie‘ zu reformulieren und in diesem Kontext dann die Frage nach dem Bewusstsein empirisch und theoretisch zu verfolgen. Obgleich man davon ausgehen kann, dass die Ergebnisse der empirischen Psychologie, der empirischen Neurowissenschaften und einer empirischen Neuropsychologie wertvolle Korrelationen liefern können, so muss man methodisch festhalten, dass sie dies nur dann können, wenn es unabhängig vom Verhalten und den Gehirnaktivitäten eine brauchbare Theorie des Bewusstseins gibt, die sich korrelieren lässt. Ohne solch eine eigenständige Theorie des Bewusstseins bewegen sich Psychologie und Gehirnwissenschaft in einem hermeneutischen Zirkel, aus dem es keinen Notausgang gibt.
  3. Ein Ziel zu haben ist eines, den Weg zum Ziel zu finden etwas anderes.

START IM ALLTAG

  1. Nach zahllosen Versuchen in den letzten Jahren und den intensiven Diskussionen in der Fachliteratur habe ich mich entschieden, den Start der Untersuchung in den Alltag zu verlegen, in den Kontext jener Abläufe und Handlungen, die wir täglich vornehmen, die wir mehr oder weniger gemeinsam haben, und über die zwar nicht unbedingt theoretisch explizit aber dennoch pragmatisch unausgesprochen eine gewisse Einigkeit besteht.

KÖRPER ALS APRIORI

  1. Es besteht eine gewisse Wahrscheinlichkeit, dass jene Verhaltensweisen, die wir praktizieren, ohne darüber groß zu diskutieren, jene sind, die in der Dynamik und Struktur unseres Körpers, unseres Gehirns und unseres Bewusstsein biologisch angelegt sind, jene Plattform des Wahrnehmens, Fühlens, Erinnerns, Vorstellens, Entscheidens usw. bieten, mit der wir unser alltägliches Leben bestreiten, auch wenn wir über keinerlei theoretische Erkenntnisse verfügen, wie man dies alles genau verstehen kann bzw. sollte (So können Kinder lernen, sich zu bewegen und zu sprechen, ohne theoretische Kenntnisse).
  2. In der formalen Logik gibt es den Grundsatz, dass man nur jene Sachverhalte ‚beweisen‘ kann, die schon in den Voraussetzungen einer Theorie drin stecken. Im Fall unseres Alltagsverhaltens wäre dann das Alltagsverhalten zu verstehen als eine fortdauernde Manifestation von Voraussetzungen, die biologisch in unserem Körper angelegt sind. Die eigentliche theoretische Arbeit bestünde dann darin, jene Voraussetzungen sichtbar zu machen, die in unserem Körper so angelegt sind, dass wir genau zu dem beobachtbaren Verhalten fähig sind. Schwierig wird es dann nur, wenn wir in unserem beobachtbaren Verhalten nur einen Bruchteil von dem Potential ausnutzen, was ‚in uns‘ steckt. Wie wollen wir dann wissen, ‚wer‘ wir sind, wenn sich unsere potentielle Person – aus den unterschiedlichsten Gründen – nicht ‚zeigt‘? Die Geschichte der Menschheit ist voll von Beispielen, wie kulturelle Muster das Verhalten von Menschen unnötiger Weise in bestimmte Muster gepresst haben (und immer noch pressen), die die Entfaltung von Menschen behindern; umgekehrt haben immer wieder Menschen und Situationen neue Verhaltensweisen hervorgebracht, von denen man sich vorher gar nicht vorstellen konnte, dass es sie geben könnte.

BARRIEREN IM SELBST-ERKENNEN

  1. Dies zeigt, dass das ‚Erkennen unserer selbst‘ selbst wiederum in einem hermeneutischen Zirkel stattfindet, in dem wir möglicherweise nur deswegen vieles nicht erkennen, weil wir uns schlicht nicht vorstellen können,   dass es möglich ist, bzw.  dass wir als Menschen auch ganz anders sein könnten (die Art und Weise, wie noch heute in vielen Kulturen z.B. Kinder und Frauen gesehen und behandelt werden, zeigt überdeutlich, wie schwer sich der homo sapiens tut, seine Verhaltensmodelle zu ändern, und auszuweiten).

Fortsetzung folgt

 

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

MEMO: AUGE IN AUGE MIT DER KÜNSTLICHEN INTELLIGENZ. PHILOSOPHIESOMMER 2016 IN DER DENKBAR – Sitzung vom 12.Juni 2016

Entsprechend den vielfachen Wünschen der Teilnehmer war für die Sitzung am 12.Juni 2016 ein Experte für intelligente Maschinen eingeladen worden, eine kleine Einführung in die aktuelle Situation zu geben.

Ziel des Beitrags sollte es sein, anhand konkreter Beispiele ein wenig mehr zu verdeutlichen, was intelligente Maschinen wirklich leisten können. Im anschließenden Diskurs sollte es wieder darum gehen, diesen Beitrag als Ausgangspunkt zu nehmen, um die Fragen der anwesenden Teilnehmer und ihre Gedanken zu Worte kommen zu lassen.

Gedankenskizze von der Sitzung des Philosophiesommers 2016 in der DENKBAR vom 12.Juni 2016

Gedankenskizze von der Sitzung des Philosophiesommers 2016 in der DENKBAR vom 12.Juni 2016

Das Diagramm gibt einen ersten Überblick über die Struktur der Sitzung. Im Einstieg wurden in lockerer Form verschiedene Videos vorgestellt, immer wieder unterbrochen durch ad hoc Erläuterungen, die sehr konkrete Eindrücke von den agierenden Forschern und ihren Algorithmen vermittelten. Danach gab es ein sehr lebhaftes Gespräch, in dem weniger die Details der Algorithmen diskutiert wurden, sondern mehr die Gefühle, Befürchtungen und Fragen, die das Ganze bei allen auslöste.

KI DIREKT

Das Gebiet der KI ist ziemlich groß. An diesem Tag wurde von einem kleinen Ausschnitt berichtet, er sich aber zur Zeit im Zentrum größten Interesses befindet. Es ging vornehmlich um Bilderkennung und ein bisschen um Methoden des anfangshaften Verstehens von Sprache.

Bei der Bilderkennung wurden Beispiel gezeigt, wie Rechner heute Szenen analysieren und darin dann einzelne Objekte erkennen könne; wie dann in einer Folge von Szenen die erkannten Objekte räumliche Strukturen bilden können (Räume, Straßen, …), in denen man dann nach Pfaden/ Wegen suchen kann. Unter den Videos war auch eine künstlerische Anwendung, die zeigte, dass man diese Technologien auch ganz anders einsetzen kann. (Ergänzend kann man z.B. auch hinweisen auf Bereiche wie die Musik, in der KI mittlerweile komplexe Musikstücke analysieren und neu arrangieren kann, und sogar als eigenständiger Musiker in einer Band mitspielen kann, z.B. „Wunder der Technik Musikalische Drohnen ersetzen das Orchester „, oder „Neue Jobs für Roboter„).

Bei dem anfangshaften Verstehen von Sprache wurden Methoden vorgestellt, die aus den Verteilungen von Worten und Wortverbindungen zu Bedeutungsschätzungen kommen können, und auch hier wieder alltagspraktische Anwendungen wie jene, bei der Texte eines Politikers künstlerisch so abgewandelt werden konnten, dass sie wie die Texte dieses Politikers aussahen, aber vom Algorithmus produziert worden waren. Aber auch hier gilt, dass dies nur ein kleiner Ausschnitt von dem war, was heute schon im Einsatz ist (man denke an den sogenannten Roboter-Journalismus, wo die Nachrichten und Artikel ganzer Webseiten mittlerweile komplett durch Algorithmen erstellt werden, z.B. „Roboterjournalismus: Maschinen ohne Moral“ oder „Automatisierter Journalismus: Nehmen Roboter Journalisten den Job weg?)

GESPRÄCH : WIDERHALL IN UNS

Bei den Teilnehmern überwog die Skepsis die Faszination.

KI AKTEURE

Auffällig war den meisten, wie jung die Akteure in der Szene waren, selbst die Chefs und CEOs von milliardenschweren Unternehmen. Wie diese (scheinbar) unbekümmert die Vorzüge ihrer Technik priesen, begeistert, enthusiastisch; Nachdenklichkeiten, kritische Überlegungen sah man nicht (im Kontrast dazu vielleicht die Eindrücke, die man von deutschen Konzernen hat mit ihren schwerfälligen autoritären Strukturen, mit ihren zementierten Abläufen, der großen Risikoaversion…). Der Geist der KI-Akteure hingegen erzeugt Neues, Innovatives, bewegt die Welt. In Erinnerungen an den Bau der Atombombe mit den begeisterten Forschern für das technische faszinierend Machbare stellte sich mancher aber auch die Frage, ob diese Unbekümmertheit, diese emotionslose Technik, nicht auch gefährlich ist (je mehr Bilderkennung z.B. im öffentlichen Bereich, dann auch mehr umfassende Kontrolle, Überwachung. Das ‚System‘ weiß dann immer, wo man gerade ist und mit wem er zusammen ist (immerhin hat sich das US-Verteidigungsministerium den Chef von Alphabet (dazu gehört google) mittlerweile offiziell als Berater geholt)). Andere fragten sich, ob es in Zukunft eigentlich nur noch Informatiker gibt (quasi als allfällige Diener der KI), während alle anderen überflüssig werden.

OFFENE ZIELE

Sieht man die aktuelle Techniksituation als Momentaufnahme eines Prozesses mit einer Geschichte und möglichen Zukünften, dann kann (und muss?) man die Frage, nach dem darin wirkenden Fortschrittsbegriff stellen, nach den wirkenden Kriterien.

WAS IST INTELLIGENZ?

Ein Teilaspekt ist der Begriff der Künstlichen Intelligenz mit dem Teilbegriff Intelligenz. Was ist damit eigentlich gemeint? Auf welche Intelligenz bezieht man sich? In der Psychologie benutzt man seit ca. 100 Jahren einen operationalisierten Intelligenzbegriff zur Messung der Intelligenz (Binet). Doch diese Betrachtungsweise ist sehr quantifizierend und wird vielfach kritisiert, auch mit Verweis auf kulturelle Unterschiede. Im Unterschied zur Pschologie findet man im Bereich der KI selbst bzw. in der Informatik keine einheitliche Definition von Intelligenz (siehe z.B. KI ). Während die KI im klassischen Sinne sich an der Intelligenz von biologischen Systemen orientiert, die nachempfunden werden soll, findet sich heute vielfach ein engeres, ingenieurmäßiges Verstehen von KI als Maschinelles Lernen. Hier wird die Frage nach Intelligenz im allgemeinen gar nicht mehr gestellt. Stattdessen gibt es immer konkrete, spezielle Aufgabenstellungen, die technisch gelöst werden sollen, und die Lösung konzentriert sich dann ausschließlich auf diese eingeschränkten Aspekte.

SELBSTBESCHREIBUNG DES MENSCHEN ALS MASCHINE

Die Diskussion um den Intelligenzbegriff streift auch das Phänomen, dass die Menschen in nahezu allen Epochen dahin tendieren, sich selbst immer im Licht der neuesten Erkenntnisse und Techniken zu beschreiben, sozusagen auf der Suche nach sich selbst. Eigentlich weiß kein Mensch so richtig, wer er ist und ist dankbar für jedes Bild, was man ihm anbietet. So vergleichen sich Kinder heute häufig mit einem PC: ‚mein Kopf ist wie ein Computer‘; ‚ich habe das nicht abgespeichert‘; ‚meine Festplatte ist leer’…. Zu Zeiten eines La Mettrie (1709 – 1751)  wurde der Geist der Dualisten (vor allem repräseniert duch Descartes) aus dem Körper des Menschen verbannt; der Körper war nur noch eine Maschine (im damaligen Verständnis) ohne Geist.

VIRTUALITÄT ALS GEFAHR?

Mit Blick auf die KI und die enorme Zunahme an digitalen Räumen als virtuelle Welten wurde auch die Frage aufgeworfen, wieweit dies eine Gefahr darstellt? Verzetteln wir uns nicht? Wissen wir noch Virtuelles und Reales auseinander zu halten? Dazu sei angemerkt, dass sich das Erleben und Denken des Menschen ja primär in seinem Gehirn abspielt, das als Gehirn im Körper sitzt ohne direkten Weltbezug. D.h. schon das normale Denken des Menschen hat das Problem, dass es dem einzelnen zwar real erscheint, inhaltlich aber – bezogen auf eine unterstellte Außenwelt – mit der Außenwelt nicht automatisch übereinstimmen muss. Es gehört ja gerade zur Kulturgeschichte des Menschen, dass er mühsam lernen musste, dass die meisten Gedanken der Vergangenheit eben nur Gedanken waren und nicht die Welt beschrieben haben, wie sie wirklich (=empirisch überprüfbar) ist. Insofern stellen die neuen virtuellen Welten nichts wirklich Neues dar, wohl aber eine Modifikation der Situation, die neu verstanden und gelernt werden muss.

BRAUCHEN WIR NOCH MEHR EVOLUTION?

Greift man nochmals den Gedanken auf, dass die aktuelle Techniksituation als Momentaufnahme eines Prozesses mit einer Geschichte und möglichen Zukünften Teil der Evolution ist, wurde gefragt, ob wir noch mehr Evolution brauchen? Außerdem, welches Ziel hat diese Evolution?

Mit Blick auf den Blogeintrag vom 11.Juni 2016 wurde eingeblendet, dass sich die Frage nach der Evolution möglicherweise anders stellt. Schliesslich sind wir selbst, alle Menschen, alle Lebewesen, Produkt der Evolution, wir sind Teilnehmer, aber bislang nicht als Herren des Geschehens. Und vieles spricht dafür, dass alle Phänomene im Umfeld des Menschen auch nicht los lösbar sind von der Evolution. Sie gehören quasi dazu, wenn auch vielleicht in einem neuen qualitativen Sinn. Soweit wir heute erkennen können, ist es seit dem Auftreten des homo sapiens sapiens (hss) zum ersten Mal seit dem Auftreten des Lebens auf der Erde möglich, dass das Leben als Ganzes sich in Gestalt des hss sich quasi selbst anschauen kann, es kann sich mehr und mehr verstehen, es kann seine eigenen Baupläne lesen und mehr und mehr abändern. Dies eröffnet für das Leben auf der Erde (und damit im ganzen bekannten Universum) eine völlig neue und radikale Autonomie. Die allgemeine physikalische Entropie wird bislang dadurch zwar nur lokal aufgehoben, aber immerhin, dass es überhaupt möglich ist, über die bekannten Naturgesetze hinaus durch bestimmte Prozesse Strukturen zu erzeugen, die der Entropie zuwider laufen, ist ein bemerkenswertes Faktum, das bislang von der Physik so gut wie gar nicht zur Kenntnis genommen wird (und auch nicht von den Akteuren selbst, dem hss).

RADIKALE AUTONOMIE

Möglicherweise ist die fundamentale Tragweite der neuen radikalen Autonomie des Lebens auch deshalb noch nicht so recht ins Bewusstsein getreten, weil im Alltag, im konkreten Dasein, die körperlichen Grenzen sehr deutlich sind, die ganze Trieb-, Bedürfnis-, und Emotionsstruktur des Menschen in ihrer Konkretheit und Intensität vielfach als so stark empfunden wird, dass man die großen Linien, die geradezu kosmologische Dimension dieser radikalen Autonomie noch kaum wahrnimmt.

Dazu kommt, dass die Tatsache, dass sich fast alle interessanten Prozesse im Innern des Menschen abspielen, es notwendig macht, dass diese inneren Prozesse über Kommunikation miteinander koordiniert werden müssten. Dies ist aufwendig und schwierig. Viele (die meisten) Menschen scheitern hier, kapitulieren. So verharren sie – und damit ganze Generationen – in bestimmten Empfindungs-, Denk- und Handlungsmustern, die nicht weiter führen, die eher Rückschritt bedeuten.

Aktuell erscheint es offen, in welche der vielen möglichen Zukünfte wir uns bewegen werden. Werden demnächst die intelligenten Maschinen alles übernehmen, weil der hss ausgedient hat? Oder wird es doch bei einer Symbiose auf hohem Niveau bleiben, in der der hss die intelligenten Maschinen für sich nutzt und die intelligenten Maschinen durch den Menschen Räume erobern können, die ihnen sonst verschlossen wären? Oder – und diese dritte Möglichkeit sieht aktuell – soweit ich sehe – eigentlich noch niemand – wird er Mensch in den nächsten Jahren neu erwachen und begreifen, dass diese radikale Autonomie etwas radikal Neues darstellt, etwas, das es so noch nie zuvor in den 13.8 Mrd Jahren gegeben hatte?

Um die radikale Autonomie nutzen zu können, muss der Mensch erstmalig in der Geschichte des Lebens die Frage nach den Werten, nach den Zielen, wohin die Reise eigentlich gehen soll, selber stellen … und beantworten. Bis zum hss gab es keine Wertediskussion. Die Evolution stellte einen Prozess dar, in dem bestimmte Lebensformen im Kontext der Erde überlebt hatten; das waren die einzigen Werte im Nachhinein. Vor der Neuwerdung im Reproduktionsprozess gab es keine expliziten Werte. Es gab bisherige Erfolge und viel Zufall.

Einen Überblick über alle Beiträge zum Philosophiesommer/ zur Philosophiewerkstatt nach Titeln findet sich HIER.

EINLADUNG PHILOSOPHIESOMMER 2016 DENKBAR – KI DIREKT

Entsprechend dem Plan vom 9.Februar 2016 kommt hier die Einladung zum nächsten Treffen in der

DENKBAR Frankfurt

Spohrstrasse 46a

(Achtung: Parken schwierig! Man muss wirklich im Umfeld suche

NÄCHSTES THEMA

Da viele Teilnehmer beim letzten Treffen  sagten, dass sie sich unter intelligenten Maschinen immer noch nichts Rechtes vorstellen können, wurde ein anwesender Experte für intelligente Maschinen (aus der Gattung homo sapiens sapiens) gebeten, für das nächste Treffen am 12.6.2016 15:00 – 18:00h eine kleine Einführung in die aktuelle Situation zu geben.

Ziel des Beitrags sollte es sein, anhand konkreter Beispiele ein wenig mehr zu verdeutlichen, was intelligente Maschinen wirklich leisten können. Im anschließenden Diskurs sollte es wieder darum gehen, diesen Beitrag als Ausgangspunkt zu nehmen, um die Fragen der anwesenden Teilnehmer und ihre Gedanken zu Worte kommen zu lassen. Konkret ist folgendes geplant:

PROGRAMMVORSCHLAG

Moderation: Gerd Doeben-Henisch

15:00 Begrüßung

15:05 Einführung ins Thema durch einen KI-Experten

15:45 Gemeinsamer Diskurs I, Sichtbarmachung von Positionen

16:45 Blubberpause (Jeder kann mit jedem reden; Essen und Trinken)

17:00 Gemeinsamer Diskurs II, erste Zusammenfassungen, Tendenzen

17:45 Schlussstatements und Thema für das nächste Treffen

18:00 Ende

Langsames Wegdiffundieren der Teilnehmer ….

SONDERTREFFEN?

Eigentlich ist das Treffen am 12.Juni das letzte Treffen vor der Sommerpause. Da das Thema zur Zeit aber so spannend ist wird gefragt werden, wer für ein weiteres Treffen im Juli wäre. Sollten genügend Interessen zusammen kommen, könnte es am So 10.Juli 2016 noch ein letztes Treffen vor der Sommerpause geben.

 

Einen Überblick über alle bisherigen Themen des Philosophiesommers (und der Philosophiewerkstatt) nach Titeln  findet sich HIER.

 

 

 

 

PERSON OF INTEREST – SICHERHEIT STATT DEMOKRATIE – EVOLUTION IST ANDERS – Teil 2

KONTEXT

  1. In einem vorausgehenden Blogeintrag hatte ich die Fernsehserie Person of Interest mit diskutiert. Zu dem Zeitpunkt kannte ich nur Staffel 3; mittlerweile kenne ich auch Staffel 4, die aktuell letzte Staffel der Serie. Wie schon zuvor angemerkt, kann man eine Fernsehserie nicht mit einem normalen Kinofilm vergleichen; die Spielregeln für die Anordnung der Bilder und Inhalte sind anders. Eine Serie lebt von ihren Episoden, zwischen denen Pausen liegen, und eine Serie scheut ein klares Ende, lauern doch wirtschaftliche Interessen im Hintergrund, die ein Hinauszögern so lange wie möglich aufrechterhalten wollen. Neben der Story ist eine Serie ein Unterhaltungsmedium und eine Geldquelle, die möglichst lange erhalten bleiben soll.

MAKRO-MIKRO-EBENE

  1. Fragt man also nach dem möglichen Inhalt der Serie Person of Interest, muss man wenigstens zwischen einer Makro- und einem Mikroebene unterscheiden (schließt weitere Ebenen nicht aus): auf der Makroebene werden Geschichten erzählt, die sich über mehrere Episoden erstrecken; auf der Mikroebene liegt das Geschehen, was sich auf eine Episode beschränkt. Das Verhältnis zwischen Makro-Geschichte(n) und Mikro-Geschichten könnte man als einen Indikator für die Kompaktheit einer Serie ansehen: wie intensiv wird eine Geschichte erzählt. Im Fall von Person of Interest Staffeln 3+4 würde ich das Verhältnis von Makro zu Mikro-Geschichten auf etwa 1:3 bis 1:4 ansetzen. Die Kompaktheit kann auch etwas mit der Aufnahmefähigkeit der Zuschauer zu tun haben; je kompakter, um so ansruchsvoller.

MAKRO-GESCHICHTE

  1. In der Makrogeschichte, die nur häppchenweise enthüllt wird, geht es um zwei Computerprogramme, die die Datenströme in den verschiedenen Netzen aufnehmen und verarbeiten können; darüber hinaus konstruieren diese Programme eigene Modelle, mit denen diese Daten interpretiert werden und – vor allem – Schlüsse gezogen werden, was zu tun ist. Dieses Tun geschieht direkt über Manipulation von Datenströmen in den Netzen oder über Interaktion mit realen Menschen, die über die Kommunikation mit der Maschine ihre Meinungen bilden und sich in ihrem Verhalten beeinflussen lassen.
  2. Interessant ist der soziale-politische Kontext dieser Programme: das erste Programm, genannt die Maschine, wurde ursprünglich von der Regierung beauftragt und eingesetzt, um Bedrohungen für den Staat frühzeitig zu entdecken und abzuwehren. Sein Hauptentwickler E1 hatte es mit einigen ethischen Prinzipien ausgestattet, die den schlimmsten Missbrauch verhindern sollten. Das zweite Programm, parallel entwickelt von einem Freund von E1, nennen wir ihn E2, war unvollendet geblieben und besaß keine ethischen Vorgaben. Dieses Programm wurde von einem machtbewussten Geschäftsmann – nennen wir ihn G1 – gewaltsam in eigenen Besitz gebracht. Zusätzlich konnte er Regierungsvertreter überzeugen, dass er im Auftrag der Regierung – aber in eigener Regie – die verschiedenen Netze anzapfen durfte, um für die Regierung eine Überwachung der Welt durchführen zu können, deren Ergebnisse dann der Regierung übermittelt werden. Vorbereitend zum Start des neuen Programms mit Namen Samaritan hatte der Geschäftsmann G1 eine Terrorgruppe gesteuert, die die Regierung unter Druck gesetzt hatte, das alte Programm, die Maschine, zu stoppen. Wie sich im Verlaufe von Staffel 3+4 herausstellte, hatte es die Maschine aber geschafft, sich mittlerweile als verborgenes Add On in jeden Computer und in das öffentliche Stromnetz einzunisten. Dort war es für das neue Programm Samaritan lange Zeit unsichtbar und arbeitete parallel zum neuen Programm weiter.

MIKRO-GESCHICHTEN

  1. Der hohe Anteil an Mikro-Geschichten, oft sehr fragmentarisch, ist unterhaltsam gemacht, trägt aber wenig zur Hauptgeschichte bei. Allerdings bieten die Mikrogeschichten Raum um die Hauptpersonen häppchenweise ein wenig mehr auszuleuchten, die Verwicklungen ihrer Psyche, ihrer Motive und Emotionen sichtbar zu machen. Die dominierenden Muster von Gewalt, Action und Erschießung anderer Menschen werden hier ansatzweise durchbrochen, um die individuellen Menschen hinter den abstrakten Rollen etwas sichtbar zu machen. Doch ereignet sich die Handlung meistens in extremen Milieus mit extremen Typen; Normalität, Alltag, reale Gesellschaft kommt in dieser Serie so gut wie nicht vor. Die Mikrogeschichten könnten auch in jeder anderen Serie vorkommen.

MAKRO-GESCHICHTE: FRAGEN

  1. Die Makrogeschichte, sofern sie stattfindet, bietet viele interessante Fragestellungen. Die eine Frage (F1) ist jene nach der Reichweite einer autonomen selbstlernenden künstlichen Intelligenz [KI]: wie weit kann diese sich der Kontrolle von Menschen entziehen und sich vom Diener zum Herren des Geschehens entwickeln? Zusätzlich kann man fragen (F2), welche Ziele solch eine autonome selbstlernende KI entwickeln wird? Was werden die Präferenzen solcher Programme sein? Was finden sie gut, was schlecht? Dazu viele weitere spezielle Fragen im Detail.
  2. Während das erste Programm, die Maschine, den Eindruck erweckt, als ob es, trotz seiner Autonomie, gewisse ethische Prinzipien einhält (es ist nicht ganz klar, welche und warum), erweckt das zweite Programm, Samaritan, den Eindruck, als ob es sich sehr schnell zum Herren des Geschehens entwickelt und von einem reinen Dienstleister zum kreativen Machthaber mutiert, der nach einigen gezielten Experimenten planvoll in das Weltgeschehen eingreift. Am Schluss von Staffel 4 sieht es so aus, als ob Samaritan direkt eine Weltherrschaft in seinem Sinne anstrebt. Das erste Programm, die Maschine, wurde schließlich doch aufgespürt und in buchstäblich letzter Minute konnte es aus dem öffentlichen Stromnetz auf einen tragbaren Computer heruntergeladen und mit seinen Kernalgorithmen gesichert. Wie es jetzt weitergeht, ist offen.

DISKURS

  1. Die technischen Details dieses Plots sind nicht wichtig, wohl aber die großen Linien. Beide Computerprogramme entwickeln ihre Kraft erst, als ihre Algorithmen an entsprechende Netze mit Datenströmen angeschlossen wurden. Ohne Daten laufen alle Algorithmen leer, und ohne Daten würde auch ein menschliches Gehirn verkümmern und der Körper absterben.
  2. Da Algorithmen aus sich heraus nicht wissen können, was Wahr in der Welt ist, brauchen sie reale Daten der realen Welt, anhand deren sie entscheiden können, was Wahr in der Welt ist. Wenn diese Daten korrupt sind, gefälscht, Täuschungen, dann läuft der Algorithmus ins Leere (das geht unserem Gehirn nicht besser: unser Gehirn ist nur über Sinnesorgane mit der Welt da draußen verbunden; wenn wir die Welt falsch oder unvollständig wahrnehmen, sind auch die Weltbilder des Gehirns falsch oder unvollständig). Daher die Tendenz, immer mehr Datennetze anzuzapfen, immer mehr Überwachung von realen Personen zu ermöglichen, bis dahin, dass (für Samaritan) realen Personen Sonden einoperiert werden, die wichtige Zustände dieser Personen direkt an den Algorithmus übermitteln.
  3. Am Ende von Staffel 4 wird der Zuschauer in einer diffusen Vielfalt von technischen Möglichkeiten, potentiellen Bedrohungen, und vagen Heilsversprechen zurück gelassen. Was die Bedrohungen angeht, so sind diese heute schon sehr real. Nach verfügbaren Informationen muss man davon ausgehen, dass die US-Regierung seit mindestens fünf Jahren mit solchen totalen Überwachungsprogrammen experimentiert; komplementiert werden diese Algorithmen durch die geschäftlichen Interessen global operierender Firmen, die mit den Verhaltensdaten von Privatpersonen und Firmen real Geld verdienen. Um an diese Daten heran zu kommen, gibt es nicht nur die öffentliche Überwachung durch immer mehr Videokameras und Überwachung von Datenverkehr in den Netzen und durch Satelliten, sondern zusätzlich immer mehr Sensoren in den Alltagsgeräten und privaten Kommunikationsgeräten. Ergänzt um Datenbrillen bei jedem ist schon jetzt die Überwachung fast total.
  4. Sieht man diese Entwicklung parallel zur Tatsache, dass nur wenige Staaten dieser Erde demokratisch genannt werden können und dass diese wenigen demokratischen Staaten deutliche Tendenzen aufweisen, zur Aushöhlung aller demokratischen Mechanismen der Machtkontrolle, dann ist diese Entwicklung verheerend. Die Kontrolle des Datenraums ist mittlerweile weit schlimmer als der Einmarsch einer Armee mit Panzern. Bei den verantwortlichen Politikern kann man dafür praktisch kein Problembewusstsein erkennen. Speziell im Fall der US-Regierung muss man sich sogar fragen, ob die jeweiligen Präsidenten nicht schon längst nur Marionetten eines außer Kontrolle geratenen Sicherheitsapparates sind.
  5. Die Staffeln 3+4 illustrieren diese Tendenzen und Möglichkeiten durch Inszenierung entsprechender Situationen und Handlungssequenzen. Sie bieten aber keine wirkliche theoretisch-technische Erklärungen, liefern keine Denkansätze in Richtung politischer Systeme oder Wirtschaftsmodelle. Der Zuschauer verbleibt in der Rolle des passiven, dummen Konsumenten, dem das Schauspiel einer Machtübernahme geboten wird, ohne Ansatzpunkt, was er selber denn tun könnte. Die einzigen Hacker, die in der Serie auftauchen, waren böse und letztlich gesteuert von anderen Bösen. Die wenigen Guten, die zumindest das Wort Individuum und Wert des Einzelmenschen im Munde führen, wirken wie ein Häuflein verirrter Privatpersonen im Format von Profikillern, keine normalen Bürger, und die Moral von der Geschichte lautet eher: schließe dich dem allgemeinen Trend an. Widerstand zwecklos. Dann wäre das ganze ein Werbefilm für die Einführung der totalen Kontrolle zum angeblichen Nutzen für die ganze Menschheit.
  6. Betrachtet man den evolutionären Zusammenhang der Geschichte des Lebens auf der Erde, dann erscheint eine zunehmende Vernetzung und Einsatz von Algorithmen zur Unterstützung der Menschen in der rapide anwachsenden Komplexität in der Tat unausweichlich. Allerdings kann man sich fragen, ob dieser evolutionärer Schub darin bestehen soll, die fantastische Kreativität menschlicher Gehirne zu eliminieren durch Versklavung an einen unkontrollierten Algorithmus, dessen Dynamiken noch keiner wirklich erforscht hat, oder aber dass man diese neuen digitalen Technologien nutzen würde, um die Kreativität der Menschen für die Gesamtheit des Lebens noch mehr nutzen zu können. Bei ca. 100 x 10^9 Nervenzellen in einem einzelnen Gehirn würde eine Verknüpfung dieser Gehirne bei z.B. 7 x 10^9 Menschen auf der Erde zu einem Zusammenwirken – im optimalen Fall – von 7 x 10^20 Nervenzellen führen können. Diese können alle, wenn man es erlaubt und unterstützt, kreativ sein. Welch ungeheure Kraft um die Zukunft zu gestalten. Stattdessen hat man den Eindruck, dass viele Mächtige heute versuchen, diese große Kreativität zu normieren, zu eliminieren, unter Kontrolle zu bringen, nur, um die mehrfach beschränkten und auf Konkurrenz und Freund-Feind-Schema getrimmten Weltmodelle einzelner Sicherheitsleute, Militärs, Politiker und Kapitaleigner in den Köpfen der Menschen zu implantieren. Man kann nicht erkennen, dass irgendwelche Werte, geschweige den die Menschenrechte, dabei eine Rolle spielen.
  7. Unter dem Schlagwort Sicherheit ist mittlerweile alles erlaubt. Warum also noch Sicherheit, wenn gerade sie alles zerstört, was man vielleicht schützen wollte? Wie viel Sicherheit verträgt eine Demokratie?
  8. Die Geschichte des Lebens auf der Erde enthält eine klare unmissverständliche Botschaft: Leben kann es nachhaltig nur geben, wenn die die Kreativität stärker ist als die Sicherheit! Totale Sicherheit führt direkt zum Tod des Systems.