MATHEMATIK UND WIRKLICHKEIT – DISKUTIERT AM BEISPIEL DES BUCHES VON TEGMARK: Our Mathematical Universe (2014)

Max Tegmark (2014), Our Mathematical Universe. My Quest of the Ultimate Nature of Reality, New York: Alfred A.Knopf

KONTEXT

  1. Das Interesse an dem Buch resultiert aus der Einsicht der letzten Jahre, dass eine Beschäftigung mit den entwickelteren empirischen Theorien, hier insbesondere mit der Physik, ohne ein angemessenes Verständnis der benutzten mathematischen Strukturen und Modellen nur von begrenzter Reichweite ist. Ohne die mathematischen Ausdrücke geht heute nichts mehr in der Physik.
  2. Wie sich aber in vielen philosophischen Analysen zur Funktion von Sprache im Kontext von Wissens gezeigt hat, ist das benutzte Mittel, die jeweilige Sprache, nicht neutral: jede Sprache hat ihre eigene Struktur (Logik, Syntax, Semantik,…), die darüber entscheidet, was man wie mit einer Sprache ausdrücken kann. Dazu kommt unser Gehirn, das sowohl die erfassbaren Ereignisse wie auch die Sprache selbst (die auch eine bestimmte Ereignismenge darstellt) auch in einer sehr spezifischen Weise verarbeitet.
  3. [Anmerkung: ein Beispiel im Block zur Reflexion über die Funktion von logischer Sprache sind die Blogeinträge zur Logik von Avicenna. ]
  4. Es kann also von Interesse sein, sich die Funktionsweise der mathematischen Sprache im Kontext moderner physikalischer Theorien anzuschauen.

BUCH VON TEGMARK

Konzepte aus dem Kap.1 von Tegmark (2014) herausgezogen und neu zusammen gestellt

Konzepte aus dem Kap.1 von Tegmark (2014) herausgezogen und neu zusammen gestellt

  1. Als Einstieg zu dieser Frage bietet sich das Buch von Tegmark (2014) an. Denn hier beschreibt ein Vollblutphysiker seine Suche nach den richtigen Antworten auf Grundsatzfragen wie „Woher kam Alles? Wie wir alles enden? Wie groß ist alles?“ (S.7) oder „Was ist wirklich?“ (S.8) aus der Perspektive der modernen Physik, die sich der Sprache der Mathematik bedient.

PHYSIK PLUS

  1. Dabei lässt er mehrfach durchblicken, dass seine Art die Fragen zu stellen und zu beantworten ein wenig abweicht von dem Stil, der in den offiziellen physikalischen Publikationen üblich ist, und dass dies auch der Grund ist, warum er viele Jahre (mehr als 25) quasi ein Doppelleben führen musst: einerseits als Physiker, der in der üblichen Weise publiziert und denkt, und andererseits als philosophierender Physiker, der sich auch Gedanken über die Methode selbst und deren Auswirkungen macht.
  2. In Kapitel 1 deutet er den allgemeinen Rahmen an, in dem er sich in seinem Buch bewegt. (Siehe dazu das Schaubild)

FRAGEN UND METHODEN ZU ANTWORTEN

  1. Ausgehend von der verbreiteten zweifelnden Frage ob das, was wir real erleben, nicht vielleicht doch nur ein Traum oder eine Simulation sei, deutet er an, mit welchen Mitteln die Physik sich diesen Fragen stellt.
  2. Nach Tegmark geht die Physik von der Annahme der externen Realität eines Universums aus, in dem auch die biologische Evolution stattgefunden hat. Unser Körper mit dem Gehirn ist ein Ergebnis davon.
  3. Zu früheren Zeiten (vor der modernen Physik) haben Menschen auch schon die Fragen nach dem Ganzen, dem Woher, dem Wohin gehabt und auf ihre Weise zu beantworten versucht, in Form von Mythen, Legenden oder religiösen Lehren.
  4. Mit der modernen Physik wurde dies anders. In Wechselwirkung zwischen immer differenzierteren Messgeräten und immer komplexeren mathematischen Ausdrücken konnte die atomare Struktur des Universums enthüllt werden, man entdeckte die Unendlichkeit des Universums, schwarze Löcher und vieles mehr.
  5. Parallel zu den Makrostrukturen enthüllte man schrittweise auch die Mikrostrukturen der biologischen Systeme: Atome, die Synapsen einer Gehirnzelle beeinflussen können, diese wiederum können Prozesse im präfrontalen Cortex stimulieren, von dem aus es dann zu bestimmten Entscheidungen kommen kann, die zu konkreten Aktionen führen können.
  6. Das Gehirn im Körper hat seine eigene Wirklichkeit, die er interne Realität bezeichnet im Gegensatz zur äußeren Realität außerhalb des Gehirns.

DISKURS

  1. Neben Tegmark gab (und gibt) es auch viele andere Physiker, die über das physikalische Denken im engeren Sinne hinausgegangen sind. Zu nennen sind hier beispielsweise Erwin Schrödinger (1887 – 1961) (Diskussion zu Schrödingers ‚What is Life?), Werner Karl Heisenberg (1901 – 1976), Pascual Jordan (1902 – 1980), Carl Friedrich Freiherr von Weizsäcker (1912 – 2007), oder Paul Charles William
  2. Davies (1946 – …), (Diskussion zu Davies im Blog), um nur einige zu nennen.
  3. Was Tegmark von den anderen unterscheidet, ist vielleicht seine Fokussierung auf die Rolle der mathematischen Sprache und die – in den folgenden Kapiteln – erläuterte These, dass die Natur als Objekt der mathematischen Sprache selbst ein mathematisches Objekt sei.
  4. Ob sich diese These durchhalten lässt, wird sich zeigen.
  5. Von diesem Diskurs darf man eine weitere Klärung der Rolle der Mathematik im physikalischen Denken erhoffen.

Eine Fortsetzung zu Teil 1 findet sich HIER.

Einen Überblick über alle Beiträge des Autors cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themen des Blogs findet sich HIER.

K.G.DENBIGH: AN INVENTIVE UNIVERSE — Relektüre — Teil 4

K.G.Denbigh (1975), „An Inventive Universe“, London: Hutchinson & Co.

BISHER

Im Teil 1 der Relektüre von Kenneth George Denbighs Buch „An Inventive Universe“ hatte ich, sehr stark angeregt durch die Lektüre, zunächst eher mein eigenes Verständnis von dem Konzept ‚Zeit‘ zu Papier gebracht und eigentlich kaum die Position Denbighs referiert. Darin habe ich sehr stark darauf abgehoben, dass die Struktur der menschlichen Wahrnehmung und des Gedächtnisses es uns erlaubt, subjektiv Gegenwart als Jetzt zu erleben im Vergleich zum Erinnerbaren als Vergangen. Allerdings kann unsere Erinnerung stark von der auslösenden Realität abweichen. Im Lichte der Relativitätstheorie ist es zudem unmöglich, den Augenblick/ das Jetzt/ die Gegenwart objektiv zu definieren. Das individuelle Jetzt ist unentrinnbar subjektiv. Die Einbeziehung von ‚Uhren-Zeit’/ technischer Zeit kann zwar helfen, verschiedene Menschen relativ zu den Uhren zu koordinieren, das grundsätzliche Problem des nicht-objektiven Jetzt wird damit nicht aufgelöst.

In der Fortsetzung 1b von Teil 1 habe ich dann versucht, die Darlegung der Position von Kenneth George Denbighs Buch „An Inventive Universe“ nachzuholen. Der interessante Punkt hier ist der Widerspruch innerhalb der Physik selbst: einerseits gibt es physikalische Theorien, die zeitinvariant sind, andere wiederum nicht. Denbigh erklärt diese Situation so, dass er die zeitinvarianten Theorien als idealisierende Theorien darstellt, die von realen Randbedingungen – wie sie tatsächlich überall im Universum herrschen – absehen. Dies kann man daran erkennen, dass es für die Anwendung der einschlägigen Differentialgleichungen notwendig sei, hinreichende Randbedingungen zu definieren, damit die Gleichungen gerechnet werden können. Mit diesen Randbedingungen werden Start- und Zielzustand aber asymmetrisch.

Auch würde ich hier einen Nachtrag zu Teil 1 der Relektüre einfügen: in diesem Beitrag wurde schon auf die zentrale Rolle des Gedächtnisses für die Zeitwahrnehmung hingewiesen. Allerdings könnte man noch präzisieren, dass das Gedächtnis die einzelnen Gedächtnisinhalte nicht als streng aufeinanderfolgend speichert, sondern eben als schon geschehen. Es ist dann eine eigene gedankliche Leistungen, anhand von Eigenschaften der Gedächtnisinhalte eine Ordnung zu konstruieren. Uhren, Kalender, Aufzeichnungen können dabei helfen. Hier sind Irrtümer möglich. Für die generelle Frage, ob die Vorgänge in der Natur gerichtet sind oder nicht hilft das Gedächtnis von daher nur sehr bedingt. Ob A das B verursacht hat oder nicht, bleibt eine Interpretationsfrage, die von zusätzlichem Wissen abhängt.

Im Teil 2 ging es um den Anfang von Kap.2 (Dissipative Prozesse) und den Rest von Kap.3 (Formative Prozesse). Im Kontext der dissipativen (irreversiblen) Prozesse macht Denbigh darauf aufmerksam, dass sich von der Antike her in der modernen Physik eine Denkhaltung gehalten hat, die versucht, die reale Welt zu verdinglichen, sie statisch zu sehen (Zeit ist reversibel). Viele empirische Fakten sprechen aber gegen die Konservierung und Verdinglichung (Zeit ist irreversibel). Um den biologischen Phänomenen gerecht zu werden, führt Denbigh dann das Konzept der ‚Organisation‘ und dem ‚Grad der Organisiertheit‘ ein. Mit Hilfe dieses Konzeptes kann man Komplexitätsstufen unterscheiden, denen man unterschiedliche Makroeigenschaften zuschreiben kann. Tut man dies, dann nimmt mit wachsender Komplexität die ‚Individualität‘ zu, d.h. die allgemeinen physikalischen Gesetze gelten immer weniger. Auch gewinnt der Begriff der Entropie im Kontext von Denbighs Überlegungen eine neue Bedeutung. Im Diskussionsteil halte ich fest: Im Kern gilt, dass maximale Entropie vorliegt, wenn keine Energie-Materie-Mengen verfügbar sind, und minimale Entropie entsprechend, wenn maximal viele Energie-Materie-Mengen verfügbar sind. Vor diesem Hintergrund ergibt sich das Bild, dass Veränderungsprozesse im Universum abseits biologischer Systeme von minimaler zu maximaler Entropie zu führen scheinen (dissipative Prozesse, irreversible Prozesse, …), während die biologischen Systeme als Entropie-Konverter wirken! Sie kehren die Prozessrichtung einfach um. Hier stellen sich eine Fülle von Fragen. Berücksichtigt man die Idee des Organisationskonzepts von Denbigh, dann kann man faktisch beobachten, dass entlang einer Zeitachse eine letztlich kontinuierliche Zunahme der Komplexität biologischer Systeme stattfindet, sowohl als individuelle Systeme wie aber auch und gerade im Zusammenspiel einer Population mit einer organisatorisch aufbereiteten Umgebung (Landwirtschaft, Städtebau, Technik allgemein, Kultur, …). Für alle diese – mittlerweile mehr als 3.8 Milliarden andauernde – Prozesse haben wir bislang keine befriedigenden theoretischen Modelle

Im Teil 3 geht es um das Thema Determinismus und Emergenz. Ideengeschichtlich gibt es den Hang wieder, sich wiederholende und darin voraussagbare Ereignisse mit einem Deutungsschema zu versehen, das diesen Wiederholungen feste Ursachen zuordnet und darin eine Notwendigkeit sieht, dass dies alles passiert. Newtons Mechanik wird in diesem Kontext als neuzeitliche Inkarnation dieser Überzeugungen verstanden: mit klaren Gesetzen sind alle Bewegungen berechenbar. Denbigh zeigt dann anhand vieler Punkte dass die Annahme eines Determinismus wenig plausibel ist. Betrachtet man den Gang der Entwicklung dann kann man nach Denbigh etwa folgende Komplexitätsstufen unterscheiden: (i) Fundamentale Teilchen, (ii) Atome, (iii) Moleküle, (iv) Zellen, (v) Multizelluläre Systeme, (vi) Soziale Gruppen.(vgl. S.143) Aus wissenschaftlicher Sicht müssen sich alle diese ‚Stufen‘ (‚level‘) einheitlich erklären lassen.

KAPITEL 5: GIBT ES IRGENDWELCHE SCHÖPFERISCHEN PROZESSE? (149 – 178)

1. Nachdem Denbigh in den vorausgehenden 4 Kapiteln die Begrenztheit vieler Konzepte in der modernen Physik in den Fokus gerückt hatte (z.B.: dass die Welt nicht deterministisch ist; dass die Naturgesetze Gedankenbilder sind und nicht automatisch eine ontologische Geltung besitzen; dass alle bekannten Prozesse in der Natur irreversibel sind; dass das Konzept einer Symmetrie nicht empirisch gedeckt ist; dass die sogenannten Konservierungsgesetze postuliert wurden bevor sie überhaupt definiert wurden; dass alles darauf hindeutet, dass die Entropie zunimmt ), konzentriert er sich im letzten 5.Kapitel auf die Frage, ob es überhaupt schöpferische/ erfinderische (‚inventive‘) Prozesse gibt.
2. Mit schöpferisch meint er nicht einen Vorgang wie in den religiösen Schöpfungsmythen, in denen quasi aus dem Nichts ein unbekanntes Etwas genannt Gott/ Schöpfer etwas hervorbringt (die Welt), die dann völlig deterministisch abläuft, sondern eher einen abgeschwächten Hervorbringungsprozess, der ohne Notwendigkeit geschieht, nicht voraussagbar ist, etwas wirklich Neues bringt, und der alle Phänomene des bekannten Universums abdeckt. Er geht sogar soweit, zu sagen, dass alle die zuvor genannten Komplexitätsstufen (i) Fundamentale Teilchen, (ii) Atome, (iii) Moleküle, (iv) Zellen, (v) Multizelluläre Systeme, (vi) Soziale Gruppen.(vgl. S.143) sich als Momente an diesem generischen Innovationsprozess erweisen lassen müssten.

3. Dieser generische Innovationsprozess ist dann allgemeiner als der übliche Emergenz-Begriff. Emergenz beschreibt üblicherweise das Auftreten spezifischer Komplexitätsstufen bzw. -eigenschaften im engeren Sinne und nicht einen generischen Prozess für alle diese Phänomene.

4. In Anlehnung an das bekannte Schema der genetischen Algorithmen (hier ein knapper Überblick zur historischen Entwicklung des Konzepts Genetischer Algorithmus (GA) sowie Classifier Systeme) stellt Denbigh letztlich drei charakterisierende Momente für seine Idee eines Innovationsprozesses vor: 1) Die Ereignisse sind zufällig ; sie sind 2) selektiv (bei biologischen Systemen oft noch verstärkt durch sexuell bedingte Vermischung im Erbmaterial (crossover)(s.160)); schließlich 3) verstärkend aufgrund des anschließenden Erfolges.
5. Er illustriert dieses Schema beim Übergang vom BigBang zu den ersten Gaswolken, dann zu den Sternen und Galaxien, dann bei der Molekülbildung, bei der Zellbildung, usw. Wichtig ist ihm auch, dass dieses Ereignismodell nicht an biologische Substrate gebunden ist, sondern eben von nicht-biologischen Systemen allgemein auch befolgt werden kann, speziell auch von modernen programmgesteuerten Maschinen (Computern).
6. Eine noch allgemeinere Charakterisierung ist jene, die diese schöpferischen Prozesse ansiedelt zwischen Ordnung und Unordnung. Ein Beispiel für hohe Ordnung wären die kristallinen Strukturen (sie sind für schöpferische Prozesse zu starr), und ein Beispiel für Unordnung wäre gasförmige Strukturen (sie sind für schöpferische Prozesse zu instabil, zu flüchtig). (Vgl.S.162f) Mit anderen Worten, bei allem Aufbau von Ordnung muss es hinreichend viel Rest-Unordnung geben, ansonsten kommen alle Prozesse zum Stillstand, oder: gefordert ist ein Zustand unterhalb maximaler Entropie.
7. Wie Denbigh auch in den vorausgehenden Kapiteln schon angedeutet hatte, sieht er spirituelle/ geistige Phänomene einschließlich des Bewusstseins als normale Phänomene des Naturprozesses. (Z.B. S.168f)
8. So sieht er die 6 Komplexitätsstufen von oben auch als Ausprägungen eines allgemeineren 3-stufigen Schemas (i) unbelebt , (ii) belebt sowie (iii) belebt mit wachsendem Bewusstsein. (Vgl. S.171)
9. Unter Voraussetzung seines 3-stufigen Innovationsmodells kann er dann das Bewusstsein als einen Prozess interpretieren, der die Fähigkeit zur Selektion für ein biologisches System dramatisch verbessert. (Vgl. S.163-165)
10. Denbigh kommt in diesem Kapitel auch nochmals auf die Problematik der nichtwissenschaftlichen Voraussetzungen der Wissenschaft zu sprechen, die ich in einem vorhergehenden Beitrag schon angesprochen hatte (der Beitrag war angeregt von der Lektüre von Denbigh).
11. Mit Zitaten von einigen berühmten Forschern und Philosophen thematisiert Denbigh nicht nur allgemein die häufig unreflektierte Voraussetzungsbehaftetheit von Wissenschaft, sondern spricht auch speziell die Tendenz des menschlichen Denkens an, die Prozesse der Natur zu verdinglichen. Während Messgeräte und unsere menschliche Wahrnehmung primär nur isolierte Ereignisse registrieren können, setzt unser Denken diese individuellen Ereignisse automatisch (sprich: unbewusst) zu abstrakten Strukturen zusammen, zu sogenannten Objekten, denen wir dann Eigenschaften und Beziehungen zuordnen. (Vgl. S.164f und Anmk.14) Auf einer größeren Zeitskala gibt es diese Objekte aber nicht, sondern da gibt es nur kontinuierliche Zustandsänderungen eines alles umfassenden Prozesses, dem man zwar Eigenschaften zuordnen kann, aber letztlich nicht isolierte Objekte. Berücksichtigt man diese Artefakten unseres Denkens, dann legt sich der Gedanken nahe, die gesamte Physik von diesem veränderten Blickwinkel aus zu betrachten und zu re-analysieren. Hier verweist Denbigh explizit auf die theoretischen Arbeiten des berühmten Physikers David Bohm (später in Kooperation mit Basil J.Hiley), dessen Ergebnisse nach vielen Jahren Arbeit Eingang in das Buch The Undivided Universe: An Ontological Interpretation of Quantum Theory gefunden haben.

12. Denbigh fasst die manifeste Schizophrenie der modernen Wissenschaft in ihrer Haltung zum Menschen in folgendes Bild: „Die moderne Wissenschaft ist ein gedankliches System, das zwar die kreative Kraft der Menschen umfassend dokumentiert, und doch macht sie den Menschen selbst zu einer Sache/ zu einem Ding (‚thing‘) – also zu einem Objekt, von dem die Wissenschaft annimmt, dass es über eine solche schöpferische Kraft gar nicht verfügt.“ (Anmk.22, S.173)

DISKUSSION

  1. Dieses Buch habe ich als extrem anregend empfunden. Es taucht viele bekannte Positionen in ein neues Licht.
  2. Erkenntnistheoretisch liegt es auf der Linie, die bislang im Blog vertreten wurde, nämlich dass man bei der Diskussion der verschiedenen Phänomene und Positionen die jeweiligen Bedingungen des Erkennens beachten sollte, wenn man zu einer Einschätzung kommen möchte. Und dazu reicht keine klassische Erkenntnistheorie, sondern man muss die  modernen Erkenntnisse aus Psychologie und Biologie einbeziehen. Die Warnung vor einer falschen Verdinglichung der Weltereinisse sollte ernst genommen werden.
  3. Ferner ist der bisherige Erklärungsansatz dieses Blogs über einen generellen Evolutionsbegriff in Übereinstimmung mit dem generellen Innovationsansatz von Denbigh. Tatsächlich erscheint Denbighs Ansatz noch radikaler, generischer.  Dies soll im weiteren mehr bedacht werden.
  4. Die klare Subsumierung alles Geistigen unter den allgemeinen Naturprozess entspricht auch der Linie im Blog. Dieses führt aber nicht — wie Denbigh auch klar herausstellt — zu einer Vereinfachung oder Abwertung des Geistigen sondern zu einem vertieften Verständnis  der potentiellen Vielfalt und Komplexität der Energie-Materie. Mit der unterschiedlichen Einordnung geht ja nicht das Phänomen verloren, sondern die begriffliche Einordnung muss neu justiert werden. Dies verlangt nicht nur eine Neupositionierung der bisherigen Geisteswissenschaften, sondern genauso auch eine Neupositionierung der Naturwissenschaften. Diese erweisen sich bislang aber als nicht minder dogmatisch wie die oft gescholtenen Geisteswissenschaften.

QUELLEN

  1. Kenneth George Denbigh (1965 – 2004), Mitglied der Royal Society London seit 1965 (siehe: https://en.wikipedia.org/wiki/List_of_Fellows_of_the_Royal_Society_D,E,F). Er war Professor an verschiedenen Universitäten (Cambridge, Edinbugh, London); sein Hauptgebet war die Thermodynamik. Neben vielen Fachartikeln u.a. Bücher mit den Themen ‚Principles of Chemical Equilibrium, ‚Thermodynamics of th Steady State‘ sowie ‚An Inventive Universe‘.
  2. David Joseph Bohm FRS[1] (December 20, 1917 – October 27, 1992) was an American scientist who has been described as one of the most significant theoretical physicists of the 20th century[2] and who contributed innovative and unorthodox ideas to quantum theory, neuropsychology and the philosophy of mind.
  3. Basil J. Hiley (born 1935), is a British quantum physicist and professor emeritus of the University of London. He received the Majorana Prize „Best person in physics“ in 2012.
  4. Review von: „The Undivided Universe: An Ontological Interpretation of Quantum Theory“ von David Bohm and Basil J. Hiley, Routledge, London and New York, 1993. 397 pp. hc, ISBN 0–415–06588–7 durch Sheldon Goldstein, Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA(July 28, 1994)

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Buch: Die andere Superintelligenz. Oder: schaffen wir uns selbst ab? – Kapitel 5 – neu – Version 2

Journal: Philosophie Jetzt – Menschenbild, ISSN 2365-5062, 27.August 2015
URL: cognitiveagent.org
Email: info@cognitiveagent.org

Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

VORBEMERKUNG: Der folgende Text ist ein Vorabdruck zu dem Buch Die andere Superintelligenz. Oder: schaffen wir uns selbst ab?, das im November 2015 erscheinen soll.

Was ist Leben?

Erst die Erde

Etwa 9.2 Mrd Jahre nach dem sogenannten Big Bang kam es zur Entstehung unseres Sonnensystems mit der Sonne als wichtigstem Bezugspunkt. Nur ca. 60 Mio Jahre später gab es unsere Erde. Die Zeitspanne, innerhalb der Spuren von Leben auf der Erde bislang identifiziert wurden, liegt zwischen -4 Mrd Jahre von heute zurück gerechnet bis ca. -3.5 Mrd Jahre. Oder, vom Beginn der Erde aus gesehen, ca. 540 Mio Jahre bis ca. 1 Mrd Jahre nach der Entstehung der Erde.

Alte Bilder vom Leben

Wenn man vom Leben spricht, von etwas Belebtem im Gegensatz zum Unbelebtem, fragt man sich sofort, wie man ‚Leben‘ definieren kann? In der zurückliegenden Geschichte gab es viele Beschreibungs- und Definitionsversuche. Einer, der heute noch begrifflich nachwirkt, ist die Sicht der Philosophie der Antike (ca. -600 bis 650) . Hier wurde das ‚Atmen‘ (gr. ‚pneo‘) als charakteristisches Merkmal für ‚Lebendiges‘ genommen, wodurch es vom ‚Unbelebtem‘ abgegrenzt wurde. Aus dem ‚Atmen‘ wurde zugleich ein allgemeines Lebensprinzip abgeleitet, das ‚Pneuma‘ (im Deutschen leicht missverständlich als ‚Geist‘ übersetzt, im Lateinischen als ’spiritus‘), das sich u.a. im Wind manifestiert und ein allgemeines kosmologisches Lebensprinzip verkörpert, das sowohl die Grundlage für die psychischen Eigenschaften eines Lebewesens bildet wie auch für seine körperliche Lebendigkeit. In der Medizin gab es vielfältige Versuche, das Pneuma im Körper zu identifizieren (z.B. im Blut, in der Leber, im Herzen, im Gehirn und den Nerven). Im philosophischen Bereich konnte das Pneuma ein heißer Äther sein, der die ganze Welt umfasst. Eine andere Auffassung sieht das Pneuma zusammengesetzt aus Feuer und Luft, woraus sich alle Körper der Welt bilden. Das Pneuma wird auch gesehen als die ‚Seele‘, die allein das Leben des Körpers ermöglicht. Bei den Stoikern wird das Pneuma-Konzept zum allumfassenden Begriff einer Weltseele gesteigert. Mit der Zeit vermischte sich der Pneuma-Begriff mit dem Begriff ’nous‘ (Kurzform für ’noos‘)(Englisch als ‚mind‘ übersetzt; Deutsch ebenfalls als ‚Geist‘), um darin die kognitiv-geistige Dimension besser auszudrücken. Weitere einflussreiche begriffliche Koordinierungen finden statt mit dem lateinischen ‚mens‘ (Deutsch auch übersetzt mit ‚Geist‘) und dem hebräischen ‚ruach‘ (im Deutschan ebenfalls mit ‚Geist‘ übersetzt; bekannt in der Formulierung ‚Der Geist Gottes (= ‚ruach elohim‘) schwebte über den Wassern‘; in der Septuaginta, der griechischen Übersetzung der hebräischen Bibel, heißt es ‚pneuma theou‘ (= der Geist Gottes)) (Anmerkung: Diese Bemerkungen sind ein kleiner Extrakt aus der sehr ausführlichen begriffsgeschichtlichen Herleitung in Sandkühler 2010)

Die Zelle im Fokus

War es für die antiken Philosophen, Mediziner und Wissenschaftler noch praktisch unmöglich, die Frage nach den detaillierten Wirkprinzipien des ‚Lebens‘ genauer zu beantworten, erarbeitete sich die moderne Naturwissenschaft immer mehr Einsichten in die Wirkprinzipien biologischer Phänomene (bei Tieren, Pflanzen, Mikroben, molekularbiologischen Sachverhalten), so dass im Laufe des 20.Jahrhunderts klar wurde, dass die Gemeinsamkeit aller Lebensphänomene auf der Erde in jener Superstruktur zu suchen ist, die heute (biologische) Zelle genannt wird.

Alle bekannten Lebensformen auf der Erde, die mehr als eine Zelle umfassen (wir als Exemplare der Gattung homo mit der einzigen Art homo sapiens bestehen aus ca. 10^13 vielen Zellen), gehen zu Beginn ihrer körperlichen Existenz aus genau einer Zelle hervor. Dies bedeutet, dass eine Zelle über alle notwendigen Eigenschaften verfügt, sich zu reproduzieren und das Wachstum eines biologischen Systems zu steuern.

So enthält eine Zelle (Anmerkung: Für das Folgende benutze ich B.Alberts et.al (2008)) alle Informationen, die notwendig sind, um sowohl sich selbst zu organisieren wie auch um sich zu reproduzieren. Die Zelle operiert abseits eines chemischen Gleichgewichts, was nur durch permanente Aufnahme von Energie realisiert werden kann. Obwohl die Zelle durch ihre Aktivitäten die Entropie in ihrer Umgebung ‚erhöht‘, kann sie gegenläufig durch die Aufnahme von Energie auch Entropie verringern. Um einen einheitlichen Prozessraum zu gewährleisten, besitzen Zellen eine Membran, die dafür sorgt, dass nur bestimmte Stoffe in die Zelle hinein- oder herauskommen.

Keine Definition für außerirdisches Leben

Obgleich die Identifizierung der Zelle samt ihrer Funktionsweise eine der größten Errungenschaften der modernen Wissenschaften bei der Erforschung des Phänomens des Lebens darstellt, macht uns die moderne Astrobiologie darauf aufmerksam, dass eine Definition der Lebensphänomene mit Einschränkung des Blicks auf die speziellen Bedingungen auf der Erde nicht unproblematisch ist. Wunderbare Bücher wie „Rare Earth“ von Peter Douglas Ward (Geboren 1949) und Donald Eugene Brownlee (Geboren 1943) „ASTROBIOLOGY. A Multidisciplinary Approach“ von Jonathan I.Lunine (Geb. 1959) machen zumindest sichtbar, wo die Probleme liegen könnten. Lunine diskutiert in Kap.14 seines Buches die Möglichkeit einer allgemeineren Definition von Leben explizit, stellt jedoch fest, dass es aktuell keine solche eindeutige allgemeine Definition von Leben gibt, die über die bekannten erdgebundenen Formen wesentlich hinausgeht. (Vgl. ebd. S.436)

Schrödingers Vision

Wenn man die Charakterisierungen von Leben bei Lunine (2005) in Kap.14 und bei Alberts et.al (2008) in Kap.1 liest, fällt auf, dass die Beschreibung der Grundstrukturen des Lebens trotz aller Abstraktionen tendenziell noch sehr an vielen konkreten Eigenschaften hängen.

Erwin Rudolf Josef Alexander Schrödinger (1887-1961), der 1944 sein einflussreiches Büchlein „What is Life? The Physical Aspect of the Living Cell“ veröffentlichte, kannte all die Feinheiten der modernen Molekularbiologie noch nicht . Schrödinger unterzog das Phänomen des Lebens einer intensiven Befragung aus Sicht der damaligen Physik. Auch ohne all die beeindruckenden Details der neueren Forschung wurde ihm klar, dass das hervorstechendste Merkmal des ‚Biologischen‘, des ‚Lebendigen‘ die Fähigkeit ist, angesichts der physikalisch unausweichlichen Zunahme der Entropie einen gegensätzlichen Trend zu realisieren; statt wachsender Unordnung als Entropie diagnostizierte er eine wachsende Ordnung als negative Entropie, also als etwas, was der Entropie entgegen wirkt.

Diesen Gedanken Schrödingers kann man weiter variieren und in dem Sinne vertiefen, dass der Aufbau einer Ordnung Energie benötigt, mittels der Freiheitsgrade eingeschränkt und Zustände temporär ‚gefestigt‘ werden können.

Fragt sich nur, warum?

Alberts et.al (2008) sehen das Hauptcharakteristikum einer biologischen Zelle darin, dass sie sich fortpflanzen kann, und nicht nur das, sondern dass sie sich selbstmodifizierend fortpflanzen kann. Die Realität biologischer Systeme zeigt zudem, dass es nicht nur um ‚irgendeine‘ Fortpflanzung ging, sondern um eine kontinuierlich optimierende Fortpflanzung.

Metastrukturen

Nimmt man diese Eckwerte ernst, dann liegt es nahe, biologische Zellen als Systeme zu betrachten, die einerseits mit den reagierenden Molekülen mindestens eine Objektebene [O] umfasst und in Gestalt der DNA eine Art Metaebene [M]; zwischen beiden Systemen lässt sich eine geeigneten Abbildung [R] in Gestalt von Übersetzungsprozessen realisieren, so dass die Metaebene M mittels Abbildungsvorschrift R in eine Objektebene O übersetzt werden kann (R: M \longmapsto O). Damit eine Reproduktion grundsätzlich gelingen kann, muss verlangt werden, dass das System mit seiner Struktur ‚lang genug‘ stabil ist, um solch einen Übersetzungsprozess umsetzen zu können. Wie diese Übersetzungsprozesse im einzelnen vonstatten gehen, ist letztlich unwichtig. Wenn in diesem Modell bestimmte Strukturen erstmals realisiert wurden, dann fungieren sie als eine Art ‚Gedächtnis‘: alle Strukturelemente von M repräsentieren potentielle Objektstrukturen, die jeweils den Ausgangspunkt für die nächste ‚Entwicklungsstufe‘ bilden (sofern sie nicht von der Umwelt ‚aussortiert‘ werden).

Die Rolle dieser Metastrukturen lässt sich letztlich nicht einfach mit den üblichen chemischen Reaktionsketten beschreiben; tut man es dennoch, verliert man die Besonderheit des Phänomens aus dem Blick. Eine begriffliche Strategie, um das Phänomen der ‚wirkenden Metastrukturen‘ in den Griff zu bekommen, war die Einführung des ‚Informationsbegriffs‘.

Information

Grob kann man hier mindestens die folgenden sprachlichen Verwendungsweisen des Begriffs ‚Information‘ im Kontext von Informationstheorie und Molekularbiologie unterscheiden:

  1. Unreflektiert umgangssprachlich (‚Information_0‘)
  2. Anhand des Entscheidungsaufwandes (Bit) (‚Information_1‘)
  3. Rein statistisch (a la Shannon 1948) (‚Information_2‘)
  4. Semiotisch informell (ohne die Semiotik zu zitieren) (‚Semantik_0‘)
  5. Als komplementär zur Statistik (Deacon) (‚Semantik_1‘)
  6. Als erweitertes Shannonmodell (‚Semantik_2‘)

Information_0

Die ‚unreflektiert umgangssprachliche‘ Verwendung des Begriffs ‚Information‘ (hier: ‚Information_0‘) brauchen wir hier nicht weiter zu diskutieren. Sie benutzt den Begriff Information einfach so, ohne weitere Erklärungen, Herleitungen, Begründungen. (Ein Beispiel Küppers (1986:41ff))

Information_1

Die Verwendung des Begriffs Information im Kontext eines Entscheidungsaufwandes (gemessen in ‚Bit‘), hier als ‚Information_1‘ geht auf John Wilder Tukey (1915-2000) zurück.

Information_2

Shannon (1948) übernimmt zunächst diesen Begriff Information_1, verzichtet dann aber im weiteren Verlauf auf diesen Informationsbegriff und führt dann seinen statistischen Informationsbegriff ein (hier: ‚Information_2‘), der am Entropiekonzept von Boltzmann orientiert ist. Er spricht dann zwar immer noch von ‚Information‘, bezieht sich dazu aber auf den Logarithmus der Wahrscheinlichkeit eines Ereignisses, was alles und jedes sein kann. Ein direkter Bezug zu einem ’speziellen‘ Informationsbegriff (wie z.B. Information_1) besteht nicht. Man kann die logarithmierte Wahrscheinlichkeit eines Ereignisses als ‚Information‘ bezeichnen (hier: ‚Information_2‘), aber damit wird der Informationsbegriff inflationär, dann ist alles eine Information, da jedes Ereignis mindestens eine Wahrscheinlichkeit besitzt. (Leider benutzt auch Carl Friedrich von Weizsäcker (1971:347f) diesen inflationären Begriff (plus zusätzlicher philosophischer Komplikationen)). Interessanterweise ist es gerade dieser inflationäre statistische Informationsbegriff Information_2, der eine sehr starke Resonanz gefunden hat.

Semantik 0

Nun gibt es gerade im Bereich der Molekularbiologie zahlreiche Phänomene, die bei einer Beschreibung mittels eines statistischen Informationsbegriffs wichtige Momente ihres Phänomens verlieren. (Dazu eine kleine Übersicht bei Godfrey-Smith, Kim Sterelny (2009)) Ein Hauptkritikpunkt war und ist das angebliche Fehlen von Bedeutungselementen im statistischen Modell von Shannon (1948). Man spricht auch vom Fehlen einer ‚Semantik‘. Allerdings wird eine Diskussion der möglichen Bedeutungsmomente von Kommunikationsereignissen unter Verwendung des Begriffs ‚Semantik‘ auch oft unreflektiert alltagssprachlich vorgenommen (hier: Semantik_0′), d.h. es wird plötzlich von Semantik_0 gesprochen (oft noch erweitert um ‚Pragmatik‘), ohne dass die Herkunft und Verwendung dieses Begriffs in der Wissenschaft der Semiotik weiter berücksichtigt wird. (Ein Beispiel für solch eine verwirrende Verwendungsweise findet sich z.B. wieder bei Weizsäcker (1971:350f), wo Information_0, Information_2 sowie Semantik_0 miteinander frei kombiniert werden, ohne Berücksichtigung der wichtigen Randbedingungen ihrer Verwendung; ganz ähnlich Küppers (1986:61ff); zur Semiotik siehe Noeth (2000)). Ein anderes neueres Beispiel ist Floridi (2015:Kap.3+4) Er benutzt zwar den Begriff ‚Semantik‘ extensiv, aber auch er stellt keinen Bezug zur semiotischen Herkunft her und verwendet den Begriff sehr speziell. Seine Verwendung führt nicht über den formalen Rahmen der statistischen Informationstheorie hinaus.

Semantik 1

Sehr originell ist das Vorgehen von Deacon (2007, 2008, 2010). Er diagnostiziert zwar auch einen Mangel, wenn man die statistische Informationstheorie von Shannon (1948) auf biologische Phänomene anwenden will, statt sich aber auf die schwierige Thematik einer expliziten Semantik einzulassen, versucht er über die Ähnlichkeit des Shannonschen statistischen Informationsbegriffs mit dem von Boltzmann einen Anschluss an die Thermodynamik zu konstruieren. Von dort zum Ungleichgewicht biologischer Systeme, die durch Arbeit und Energieaufnahme ihr Gleichgewicht zu halten versuchen. Diese Interaktionen des Systems mit der Umgebung modifizieren die inneren Zustände des Systems, die wiederum dann das Verhalten des Systems ‚umweltgerecht‘ steuern. Allerdings belässt es Deacon bei diesen allgemeinen Annahmen. Die ‚Abwesenheit‘ der Bedeutung im Modell von Shannon wird über diese frei assoziierten Kontexte – so vermutet man als Leser – mit den postulierten internen Modifikationen des interagierenden Systems begrifflich zusammengeführt. Wie dies genau gedacht werden kann, bleibt offen.

Semantik 2

So anregend die Überlegungen von Deacon auch sind, sie lassen letztlich offen, wie man denn – auch unter Berücksichtigung des Modells von Shannon – ein quasi erweitertes Shannonmodell konstruieren kann, in dem Bedeutung eine Rolle spielt. Hier eine kurze Skizze für solch ein Modell.

Ausgehend von Shannons Modell in 1948 besteht die Welt aus Sendern S, Empfängern D, und Informationskanälen C, über die Sender und Empfänger Signale S eingebettet in ein Rauschen N austauschen können (<S,D,S,N,C> mit C: S —> S x N).

Ein Empfänger-Sender hat die Struktur, dass Signale S in interne Nachrichten M dekodiert werden können mittels R: S x N —> M. Umgekehrt können auch Nachrichten M in Signale kodiert werden mit T: M —> S. Ein minimaler Shannon Sender-Empfänger hat dann die Struktur <M, R, T>. So gesehen funktionieren R und T jeweils als ‚Schnittstellen‘ zwischen dem ‚Äußeren‘ und dem ‚Inneren‘ des Systems.

In diesem minimalen Shannonmodell kommen keine Bedeutungen vor. Man kann allerdings annehmen, dass die Menge M der Nachrichten eine strukturierte Menge ist, deren Elemente Paare der Art (m_i,p_i) in M mit ‚m_i‘ als Nachrichtenelement und ‚p_i‘ als Wahrscheinlichkeit, wie oft dieses Nachrichtenelement im Kanal auftritt. Dann könnte man Shannons Forml H=-Sum(p_i * log2(p_i)) als Teil des Systems auffassen. Das minimale Modell wäre dann <M, R, T, H>.

Will man ‚Bedeutungen‘ in das System einführen, dann muss man nach der Semiotik einen Zeichenbegriff für das System definieren, der es erlaubt, eine Beziehung (Abbildung) zwischen einem ‚Zeichenmaterial‚ und einem ‚Bedeutungsmaterial‚ zu konstruieren. Nimmt man die Signale S von Shannon als Kandidaten für ein Zeichenmaterial, fragt sich, wie man das Bedeutungsmaterial B ins Spiel bringt.

Klar ist nur, dass ein Zeichenmaterial erst dann zu einem ‚Zeichen‘ wird, wenn der Zeichenbenutzer in der Lage ist, dem Zeichenmaterial eine Bedeutung B zuzuordnen. Eine einfache Annahme wäre, zu sagen, die dekodierten Nachrichten M bilden das erkannte Zeichenmaterial und der Empfänger kann dieses Material irgendwelchen Bedeutungen B zuordnen, indem er das Zeichenmaterial M ‚interpretiert‚, also I : M —> B. Damit würde sich die Struktur erweitern zu <B, M, R, T, H, I>. Damit nicht nur ein Empfänger ‚verstehen‘ kann, sondern auch ‚mitteilen‘, müsste der Empfänger als Sender Bedeutungen auch wieder ‚umgekehrt lesen‘ können, also -I: B —> M. Diese Nachrichten könnten dann wieder mittels T in Signale übersetzt werden, der Kanal sendet diese Signale S angereichert mit Rauschen N zum Empfänger, usw. Wir erhalten also ein minimal erweitertes Shannon Modell mit Bedeutung als <B, M, R, T, H, I, -I>. Ein Sender-Empfänger kann also weiterhin die Wahrscheinlichkeitsstruktur seiner Nachrichten auswerten; zusätzlich aber auch mögliche Bedeutungsanteile.

Bliebe als Restfrage, wie die Bedeutungen B in das System hineinkommen bzw. wie die Interpretationsfunktion I entsteht?

An dieser Stelle kann man die Spekulationen von Deacon aufgreifen und als Arbeitshypothese annehmen, dass sich die Bedeutungen B samt der Interpretationsbeziehung I (und -I) in einem Adaptionsprozess (Lernprozess) in Interaktion mit der Umgebung entwickeln. Dies soll an anderer Stelle beschrieben werden.

Für eine komplette Beschreibung biologischer Phänomene benötigt man aber noch weitere Annahmen zur Ontogense und zur Phylogense. Diese seien hier noch kurz skizziert. (Eine ausführliche formale Darstellung wird anderswo nachgeliefert).

Ontogenese

Von der Lernfähigkeit eines biologischen Systems muss man die Ontogenese unterscheiden, jenen Prozess, der von der Keimzelle bis zum ausgewachsenen System führt.

Die Umsetzung der Ontogenese in einem formalen Modell besteht darin, einen Konstruktionsprozess zu definieren, das aus einem Anfangselement Zmin das endgültige System Sys in SYS erstellen würde. Das Anfangselement wäre ein minimales Element Zmin analog einer befruchteten Zelle, das alle Informationen enthalten würde, die notwendig wären, um diese Konstruktion durchführen zu können, also Ontogenese: Zmin x X —> SYS. Das ‚X‘ stünde für alle die Elemente, die im Rahmen einer Ontogenese aus der Umgebung ENV übernommen werden müssten, um das endgültige system SYS = <B, M, R, T, H, I, -I> zu konstruieren.

Phylogenese

Für die Reproduktion der Systeme im Laufe der Zeiten benötigte man eine Population von Systemen SYS, von denen jedes System Sys in SYS mindestens ein minimales Anfangselement Zmin besitzt, das für eine Ontogenese zur Verfügung gestellt werden kann. Bevor die Ontogenese beginnen würde, würden zwei minimale Anfangselemente Zmin1 und Zmin2 im Bereich ihrer Bauanleitungen ‚gemischt‘. Man müsste also annehmen, dass das minimale System um das Element Zmin erweitert würde SYS = <B, M, Zmin, R, T, H, I, -I>.

Erstes Zwischenergebnis

Auffällig ist also, dass das Phänomen des Lebens

  1. trotz Entropie über dynamische Ungleichgewichte immer komplexere Strukturen aufbauen kann.
  2. innerhalb seiner Strukturen immer komplexere Informations- und Bedeutungsstrukturen aufbaut und nutzt.

So wie man bislang z.B. die ‚Gravitation‘ anhand ihrer Wirkungen erfasst und bis heute erfolglos zu erklären versucht, so erfassen wir als Lebende das Leben anhand seiner Wirkungen und versuchen bis heute auch erfolglos, zu verstehen, was hier eigentlich passiert. Kein einziges physikalisches Gesetzt bietet auch nur den leisesten Anhaltspunkt für dieses atemberaubende Geschehen.

In dieser Situation den Menschen als eine ‚vermutlich aussterbende Art‘ zu bezeichnen ist dann nicht einfach nur ‚gedankenlos‘, sondern im höchsten Maße unwissenschaftlich, da es letztlich einer Denkverweigerung nahe kommt. Eine Wissenschaft, die sich weigert, über die Phänomene der Natur nachzudenken, ist keine Wissenschaft.

Fortsetzung Folgt.

QUELLEN

  1. H.J. Sandkühler (Hg.), 2010, „Enzyklopädie Philosophie“, Hamburg: Felix Meiner Verlag, Band 1: Von A bis H, Kapitel: Geist, SS.792ff
  2. B.Alberts et.al (Hg.), 2008, „Molecular Biology of the CELL“, Kap.1, 5.Aufl., New York: Garland Science, Taylor & Francis Group
  3. Peter Douglas Ward und `Donald Eugene Brownlee (2000),“Rare Earth: Why Complex Life Is Uncommon in the Universe“, New York: Copernikus/ Springer,
  4. Jonathan I.Lunine (2005), „ASTROBIOLOGY. A Multidisciplinary Approach“, San Francisco – Boston – New York et al.: Pearson-Addison Wesley
  5. Zu Schroedinger 1944: Based on Lectures delivered under the auspices of the Institute at Trinity College, Dublin, in February 1943, Cambridge: University Press. 1944. Ich selbst habe die Canto Taschenbuchausgabe der Cambridge University von 1992 benutzt. Diese Ausgabe enthält ‚What is Life?‘, ‚Mind from Matter‘, sowie autobiographischen Angaben und ein Vorwort von Roger Penrose
  6. Anmerkung zu Schroedinger 1944: Sowohl James D. Watson (2003) wie auch ähnlich Francis Crick (1990) berichten, dass Schrödingers Schrift (bzw. einer seiner Vorträge) sie für ihre Erforschung der DNA stark angeregt hatte.
  7. James D.Watson und A.Berry(2003), „DNA, the Secret of Life“, New York: Random House
  8. Francis Crick (1990),„What Mad Pursuit: A Personal View of Scientific Discovery“, Reprint, Basic Books
  9. Peter Godfrey-Smith und Kim Sterelny (2009) Biological Information“, in: Stanford Enyclopedia of Philosophy
  10. Carl Friedrich von Weizsäcker (1971), „Die Einheit der Natur“, München: Carl Hanser Verlag
  11. Bernd-Olaf Küppers (1986), „Der Ursprung biologischer Information. Zur Naturphilosophie der Lebensentstehung“, München – Zürich: Piper Verlag.
  12. Claude E. Shannon, A mathematical theory of communication. Bell System Tech. J., 27:379-423, 623-656, July, Oct. 1948
  13. Claude E. Shannon; Warren Weaver (1949) „The mathematical theory of communication“. Urbana – Chicgo: University of Illinois Press.
  14. Noeth, W., Handbuch der Semiotik, 2. vollst. neu bearb. und erw. Aufl. mit 89 Abb. Stuttgart/Weimar: J.B. Metzler, xii + 668pp, 2000
  15. Luciano Floridi (2015) Semantic Conceptions of Information, in: Stanford Enyclopedia of Philosophy
  16. Deacon, T. (2007), Shannon-Boltzmann-Darwin: Redfining information. Part 1. in: Cognitive Semiotics, 1: 123-148
  17. Deacon, T. (2008), Shannon-Boltzmann-Darwin: Redfining information. Part 2. in: Cognitive Semiotics, 2: 167-194
  18. Terrence W.Deacon (2010), „What is missing from theories of information“, in: INFORMATION AND THE NATURE OF REALITY. From Physics to Metaphysics“, ed. By Paul Davies & Niels Henrik Gregersen, Cambridge (UK) et al: Cambridge University Press, pp.146 – 169

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

EMERGING MIND PROJECT – SICHTBARMACHUNG DES GEISTES PROJEKT – Erste Lebenszeichen

VORGESCHICHTE

1) In der Vergangenheit wurde in diesem Blog schon öfters über das Emerging Mind Project gesprochen; zu Beginn noch unter einem anderen Namen. Wobei letztlich – wer diesen Blog intensiv liest, wird es merken bzw. gemerkt haben – der ganze Blog im Grunde auf dieses Projekt hingeführt hat – was sich natürlich erst im Nachhinein so feststellen lässt.
2) Einige Blogeinträge, die einen besonders deutlichen Bezug haben zum Emerging Mind Project sind etwa die folgenden: Erste öffentliche Idee zu einem Projekt; damals noch ‚Reengineering Goethes Faust‘ genannt.; Treffen im Cafe Siesmayer; die Projekt-Idee gewinnt weiter an Fahrt. Überlegungen zu ein paar theoretischen Begriffen; Im Anschluss an die Brasilienvorträge erste Konkretisierungen des ‚Geist‘-Begriffs im Kontext der Evolution; das zog weitere Kreise; die ausführliche Reflexion zu Kauffmans Buch brachte an vielen Punkten wertvolle Anregungen; Beobachtungen im Kontext des Komplexitätsbegriffs und seiner Verdichtung in der globalen Evolution; weitere Präzisierung zur Beschleunigung der Komplexitätsentwicklung.

ROLLE DES BLOGS FÜR EMP

3) Im Blog geht es auf der persönlichen Seite um die Klärung der eigenen Fragen und Gedanken; auf der offiziellen Ebene geht es um eine philosophische Auseinandersetzung mit dem heute verfügbaren Wissen um unsere gemeinsame Welt. Dabei kam es bislang schon zu erstaunlichen Umakzentuierungen. Aus meiner Sicht besonders stimulierend ist die Klärung des Verhältnisses von Philosophie und Wissenschaft (Wissenschaft als Untergebiet der Philosophie), Philosophie und Kunst (Kunst ist der kreative Teil des Denkens), Philosophie und Theologie (Theologie als jener Teil der Philosophie, der sich speziell mit der Frage der möglichen ‚Botschaft in allem‘ beschäftigt und den sich daraus ergebenden spezifischen Anforderungen an den einzelnen (Spiritualität)). Eine Konsequenz vom letzten Punkt scheint zu sein, dass alle bisherigen Religionen damit in einer einzigen Religion münden, in einem Universum, mit einem Sinn für alle (was nicht heißt, dass alle den einen Sinn in gleicher Weise ‚interpretieren‘).

EMERGING MIND PROJECT – INM 11.Juni 2013

4) Am 11.Juni 2013 gab es im Institut für neue Medien (INM)(Frankfurt) eine erste öffentliche Veranstaltung im Rahmen der unplugged heads Reihe, die sich offiziell dem Emerging Mind Projekt widmete. Michael Klein (Mitgründer und Direktor des INMs), Gerd Doeben-Henisch (Professur für ‚Dynamisches Wissen‘ an der FH Frankfurt, Mitgründer und Vorstand des INM), Manfred Faßler (Professor am Institut für Kulturanthropologie und Europäische Ethnologie an der Johann Wolfgang Goethe-Universität in Frankfurt am Main. Seine Forschungs- und Lehrbereiche sind die Medienevolution und medienintegrierte Wissenskulturen. )
5) Dieses Treffen diente dem Zweck, das öffentliche Gespräch zum Projekt zu eröffnen und war – auch entsprechend der offenen Gesprächskultur der unplugged heads Reihe – sehr locker. Im Folgenden folgt keine Beschreibung dieses Gesprächs sondern ein paar Gedanken, die der Autor des Blogs im Anschluss an dieser Veranstaltung hatte.

EXPERIMENTELLE MUSIK

6) Wer rechtzeitig da war, konnte zur Einstimmung ein Stück experimentelle Musik hören mit dem Titel They Appear and Disappear von cagentArtist. Gegen Ende wurde auch noch das Stück Another Pattern-Cloud Exercise, extended aufgeführt, ebenfalls von cagentArtist. Bei dieser Musik handelt es sich nicht um Musik für den Konzertsaal, sondern um ‚Labormusik‘, die nach der ‚Radically Unplugged‘ Methode im Labor erzeugt wird zur Erforschung des Klangraums unter spezifischen Randbedingungen.

IDEENGESCHICHTLICHER WENDEPUNKT?

7) An diesem Abend kamen in sehr intensiven 3 Stunden sehr viele interessante Aspekte zur Sprache. Mir selbst wurde im Laufe des Abends bewusst, dass man die Geschichte der Ideen möglicherweise neu strukturieren könnte bzw. müsste. Der große ‚Umschaltpunkt‘ wäre dann die Zeit des Auftretens der neuen experimentellen und formalen Wissenschaften (ungefähr ab der Renaissance) bis zum Emerging Mind project. Denn bis zum Aufkommen und zur gesellschaftlich relevanten Etablierung der neueren Wissenschaften konnotierten die Menschen das ‚Lebendige‘ im Gegensatz um ‚Nichtlebendigen‘ mit etwas Besonderem, schrieben im besondere Eigenschaften zu, und einer der dabei benutzten Begriffe (mit jeweils anderen Worten in anderen Sprachen) war der Begriff ‚Geist‘, der insbesondere dem Lebewesen Mensch inne zu wohnen schien.

‚GEIST‘ FRÜHER

8) Der Begriff ‚Geist‘ ist aber – wie sich jeder in den Zeugnissen der Geschichte überzeugen kann – alles andere als klar und gebunden an eine Vielzahl von ‚Manifestationen‘, die alle Bereiche überdecken: normales Leben, Rhetorik, Handwerk, Kunst, Philosophie usw. Man kann diesen Begriff wie so eine Art ‚imaginären Fluchtpunkt aller Projektionen‘ ansehen, die man auf den Menschen aufgrund seines erfahrbaren Verhaltens richten konnte. Mit neuzeitlichen Begriffen könnte man mit Kant vielleicht von einer allgemeinen ‚transzendentalen Bedingung‘ sprechen, die man annehmen muss, um die verschiedenen Erscheinungsweisen des Menschen zu verstehen. Noch moderner könnte man von einer ‚Funktion‘ sprechen, die dem ‚Körper‘ des Menschen eben jene charakteristischen Eigenschaften verleiht, die wir als spezifisch ‚Menschlich‘ ansehen gelernt haben.
9) Nebenbei: Es gibt ein starkes Wechselverhältnis zwischen diesen Auffassungen von ‚Geist‘ und der Annahme einer menschlichen ‚Seele‘. Ich habe aber nicht den Eindruck, dass dieses Verhältnis bislang abschließend geklärt wurde. Dies mag darin begründet sein, dass beide Begriffe ‚geist‘ und ‚Seele‘ in sich weitgehend unbestimmt sind; sie leben von ‚Randbedingungen‘, von ‚Konnotationen‘, von ‚Manifestationen‘, von begrifflich-logischen Schlüssen, die wenig Anhaltspunkte in der Realität haben.

AUSTREIBUNG DES BEGRIFFES ‚GEIST‘

10) Für den Gesamtzusammenhang wichtig ist es, dass diese über viele tausend Jahre anhaltende vage Sprechweise von ‚Geist‘ mit der Entwicklung der experimentellen und formalen Wissenschaften immer mehr an Anhaltspunkten verloren hat. Die Erforschung der realen Natur und des Weltalls konnte zunächst nirgends ‚Geist‘ entdecken und trugen damit zum Bilde eines ‚toten, leeren Weltalls‘ bei. Parallel führten die Untersuchungen der Entstehung der Lebensformen und des Körpers dazu, dass man zwar immer mehr Details der Körper und ihres ‚Formenwandels‘ entdeckte, aber auch nirgends ‚Geist‘ dingfest machen konnte. Im Körper fand man über all nur Zellen; auch isolierte Zellen im Gehirn (ca. 100*10^6), und jede Zelle zerfällt in Moleküle, diese in Atome, diese in Quanten, usw. Nirgends traf man auf ‚Geist‘. Damit geriet das Selbstbild des Menschen, seine Besonderheiten immer mehr in einen Erklärungsnotstand. Theologische Interpretationen verlieren weitgehend ihre rationale Basis; sie hängen quasi ‚in der Luft‘.
11) Betrachtet man die verschiedenen einzelwissenschaftlichen Erkenntnisse, dann sind sie alle transparent, nachvollziehbar, wirken sie rational. Allerdings leiden nahezu alle diese Erkenntnisse an der einzelwissenschaftlichen Zersplitterung; keine Disziplin hat mehr die Zusammenhänge im Blick.

RÜCKKEHR DES ‚GEISTES‘ – MENS REDIVIVUS?

12) Die massivste Erschütterung dieses trostlosen Blicks auf unendlich viele Einzelteile, die sich im Dunst der Quanten und primären Anfangsenergie zu verlieren scheinen, kommt nun aber ausgerechnet nicht von den Geisteswissenschaften (dazu sind ihre Elfenbeintürme doch ein bisschen zu hermetisch geworden), auch nicht von der Anatomie und den Neurowissenschaften, sondern von jener Disziplin, die die Entzauberung des alten Weltbildes als erste begonnen hatte: von der Physik.
13) Es sind letztlich Physiker, die auf unterschiedliche Weise die Ungereimtheiten der Strukturbildungen seit dem Energieausbruch des Big Bang bemerken und beim Namen nennen. Schon der Übergang von reiner Energie zu Quanten gibt fundamentale Fragen auf. Während das Gesetz von der Entropie bei Vorliegen von Energieungleichheiten (sprich Strukturen) einen großen Teil von Vorgängen des gerichteten Ausgleichs beschreiben kann, versagt das Entropiegesetz vollständig für den umgekehrten Vorgang, für die Erklärung einer anhaltenden Strukturbildung, und nicht nur einer ‚Strukturbildung einfach so‘, sondern einer Strukturbildung mit einer sich exponentiell beschleunigten Komplexität.
14) Angestoßen von diesen drängenden Fragen der Physiker kann man beginnen, die verschiedenen Evolutionen (chemische, biologische, soziale, usw.) als ‚Hervorbringungen von immer komplexeren Strukturen‘ zu sehen, für die bestimmte ‚Strukturbildungsfunktionen‘ zu unterstellen sind, die weitab vom ‚Zufall‘ operieren.
15) Erste Indizien deuten darauf hin, dass die exponentielle Beschleunigung daraus resultiert, dass die zum Zeitpunkt t entstandenen Strukturen S mitursächlich dafür sind, dass die nächsten noch komplexeren Strukturen S‘ zum Zeitpunkt t+n gebildet werden können. Wir haben also eine Art Zusammenhang S'(t+n) = f(S(t)) mit ‚f‘ als der unbekannten Funktionalität, die dies ermöglicht.
16) Wenn man jetzt weiß, dass Funktionen (man denke nur an einfache Additionen oder Subtraktionen) nicht an den Elementen ablesbar sind (also man hat ‚4‘, ‚2‘, und nach der Addition hat man ‚6‘), sondern als Funktionszusammenhang in einem ‚anderen Medium‘ vorausgesetzt werden müssen, dann ist klar, dass die Analyse der Bestandteile von Körpern oder Zellen oder Atomen usw. niemals das zutage fördern, was eigentlich interessant ist, nämlich deren Funktionalität. Wenn nun also das mit ‚Geist‘ Gemeinte mit solchen zu unterstellenden (da sich in Ereignissen manifestierende) Funktionen konnotieren würde, dann wäre klar, dass die vielen einzelwissenschaftlichen Detailanalysen so gut wie keine interessanten Zusammenhänge enthüllen können; die ‚Unsichtbarkeit‘ von ‚Geist‘ wäre dann nicht der Tatsache geschuldet, dass es so etwas wie ‚Geist‘ nicht gäbe, sondern der Tatsache, dass wir nur ‚falsch hinschauen‘.
17) Hier bleibt einiges zu tun.

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.

SUCHE NACH DEM URSPRUNG UND DER BEDEUTUNG DES LEBENS. Reflexionen zum Buch von Paul Davies “The fifth Miracle”

Paul Davies, The FIFTH MIRACLE: The Search for the Origin and Meaning of Life, New York:1999, Simon & Schuster

 Start: 20.Aug.2012

Letzte Fortsetzung: 26.Aug.2012

  1. Mein Interesse an der Astrobiologie geht zurück auf das wundervolle Buch von Peter Ward und Donald Brownlee (2000) „Rare Earth: Why Complex Life is Uncommon in the Universe“. Obwohl ich zum Thema aus verschiedenen Gebieten schon einiges gelesen hatte war es doch dieses Buch, das all die verschiedenen Fakten für mich in einen Zusammenhang stellte, der das Phänomen ‚Leben‘ in einen größeren Zusammenhang erscheinen lies, der Zusammenhang mit der Geschichte des ganzen Universums. Dinge, die zuvor merkwürdig und ungereimt erschienen, zeigten sich in einem neuen Licht. Neben anderen Büchern war es dann das berühmte Büchlein „What Is Life?“ von Erwin Schroedinger (1944), das half, manche Fragen zu verschärfen Neben anderen Publikationen fand ich hier das Buch von von Horst Rauchfuß (2005) „Chemische Evolution und der Ursprung des Lebens“ sehr erhellend (hatte früher dazu andere Bücher gelesen wie z.B. Manfred Eigen (1993, 3.Aufl.) „Stufen zum Leben. Die frühe Evolution im Visier der Molekularbiologie“). Einen weiteren Schub erhielt die Fragestellung durch das – nicht so gut lesbare, aber faktenreiche – Buch von J. Gale (2009) „Astrobiology of Earth: The Emergence, Evolution and Future of Life on a Planet in Turmoil“. Gegenüber ‚Rare Earth‘ ergibt es keine neuen grundsätzlichen Erkenntnisse, wohl aber viele aktuelle Ergänzungen und z.T. Präzisierungen. Dass ich bei diesem Sachstand dann noch das Buch von Paul Davies gelesen habe, war eher systematische Neugierde (parallel habe ich noch angefangen Christian de Duve (1995) „Vital Dust. The origin and Evolution of Life on Earth“ sowie Jonathan I.Lunine (2005) „Astrobiology. A multidisciplinary Approach“).

  2. Der Titel des Buchs „Das fünfte Wunder“ (The 5th Miracle) wirkt auf den ersten Blick leicht ‚esoterisch‘ und für sachlich orientierte Leser daher eher ein wenig abschreckend, aber Paul Davies ist ein angesehener Physiker und hat hier ein Buch geschrieben, das auf der Basis der Physik und Chemie die grundlegende Frage zum Ursprung und der Bedeutung des Lebens systematisch und spannend aufrollt. Hier wird man nicht einfach mit Fakten überschüttet (obgleich er diese hat), sondern anhand von Beobachtungen, daraus sich ergebenden Fragen und Hypothesen beschreibt er einen gedanklichen Prozess, der über Fragen zu Antworten führt, die wiederum neue Fragen entstehen lassen. Es gibt wenige wissenschaftliche Bücher, die so geschrieben sind. Ich halte es für ein glänzendes Buch, wenngleich manche Hypothesen sich durch die weitere Forschung als nicht so ergiebig erwiesen haben. Seine grundsätzlichen Überlegungen bleiben davon unberührt.

  3. Den leicht irritierenden Titel erklärt Davies auf S.22 als Anspielung auf den biblischen Schöpfungsbericht, wo in Vers 11 vom ersten Buch Mose (= Buch Genesis) (abgekürzt Gen 1:11) beschrieben wird, dass Gott die Pflanzen geschaffen habe. Nach Davies war dies das fünfte Wunder nachdem zuvor laut Davies das Universeum (universe), das Licht (light), der Himmel (firmament) und das trockene Land (dry land) geschaffen worden seien. Einer bibelwissenschaftlichen Analyse hält diese einfache Analyse von Davies sicher nicht stand. Sie spielt auch für den gesamten restlichen Text überhaupt keine Rolle. Von daher erscheint mir dieser Titel sehr unglücklich und wenig hilfreich. Für mich beschreibt der Untertitel des Buches den wahren Inhalt am besten: „Die Suche nach dem Ursprung und der Bedeutung des Lebens“.

  4. Im Vorwort (Preface, pp.11-23) formuliert Davies seine zentralen Annahmen. Mit einfachen Worten könnte man es vielleicht wie folgt zusammen fassen: Das Phänomen des Lebens zu definieren bereitet große Schwierigkeiten. Es zu erklären übersteigt die bisher bekannten physikalischen Gesetze. Dass Leben irgendwann im Kosmos aufgetreten ist und der ungefähre Zeitraum wann, das ist Fakt. Nicht klar ist im Detail, wie es entstehen konnte. Ferner ist nicht klar, ob es ein außergewöhnlicher Zufall war oder ob es im Raum der physikalischen Möglichkeiten einen favorisierten Pfad gibt, der durch die ‚inhärenten‘ Eigenschaften von Energie (Materie) dies ‚erzwingt‘. Nur im letzteren Fall wäre es sinnvoll, anzunehmen, dass Leben überall im Universum entstehen kann und – höchstwahrscheinlich – auch entstanden ist.

  5. Dies sind dürre trockene Worte verglichen mit dem Text von Davies, der mit den zentralen Aussagen auch gleich ein bischen Forschungs- und Ideengeschichte rüberbringt (verwoben mit seiner eigenen Lerngeschichte) und der einen exzellenten Schreibstil hat (von daher kann ich jedem nur empfehlen, das Buch selbst zu lesen).

  6. Für Davies ist die Frage der Entstehung des Lebens (Biogenese, engl. Biogenesis) nicht ‚irgend ein anderes‘ Problem, sondern repräsentiert etwas ‚völlig Tieferes‘, das die Grundlagen der gesamten Wissenschaft und des gesamten Weltbildes herausfordert (vgl. S.18). Eine Lösung verlangt radikal neue Ideen, neue Ansätze gegenüber dem Bisherigen (vgl. S.17). Das Phänomen des Lebens entzieht sich eindeutig dem zweiten Hauptsatz der Thermodynamik (der einen Ausgleich aller Energieunterschiede impliziert) und seine Besonderheiten ergeben sich nicht einfach durch bloßen Aufweis seiner chemischen Bestandteile (vgl. S.19). Er vermutet die Besonderheit des Phänomen Lebens in der ‚Organisation von Information‘, was dann die Frage aufwirft, wo diese Information herkommt (vgl.S.19). Als informationsgetriebene Objekte entziehen sich die Phänomene des Lebens allen bekannten Gesetzen der Physik und Chemie (und der Biologie, sofern sie diesen Aspekt nicht als Leitthema hat?).

  7. Davies zieht aus diesen Annahmen den Schluß, dass kein bekanntes Naturgesetz solche hochkomplexe Strukturen von zusammenhanglosen chemischen Bestandteilen induzieren konnte. Er sieht in dem ganzen Entstehungsprozess ein ‚atemberaubendes geniales (ingeniuos)‘ lebens-freundliches Universum, das zu verstehen, wir ganz am Anfang stehen. (vgl. S.20).

  8. Dass Davies aufgrund der atemberaubenden Komplexität von lebensfreundlichen Strukturen eine Interaktion der Erde mit anderen Planeten (z.B. dem Mars) in früheren Phasen nicht ausschließt und im weiteren Verlauf auch akribisch das Für und Wider untersucht, sei hier nur angemerkt. Ein eindeutiges Ergebnis gibt es aufgrund der komplizierten Zusammenhänge – soweit ich sehe – bis heute nicht. Ob spezielle Moleküle, die Bestandteile von lebenskonstituierenden Strukturen geworden sind, teilweise von außerhalb der Erde gekommen sind oder nicht, berührt die wichtigen Grundfragen nach der Struktur und der ‚Bedeutung‘ von Leben im Universum nicht.

  9. Das erste Kapitel (SS.25-47) überschreibt er mit ‚Die Bedeutung des Lebens‘. Er beginnt nochmals mit der Feststellung, dass die Wissenschaft bislang nicht mit Sicherheit weiß, wie das Phänomen des Lebens tatsächlich begann (auf der Erde? mit Unterstützung aus dem Weltall,… ?)(vgl. S.26), um dann nochmals an die bekannten Fakten zu erinnern, wann in der zurückliegenden Zeit Lebensphänomene dokumentiert sind: das älteste gut dokumentierte Tierfossil datiert auf -560 Mio Jahren und findet sich in Australien (Flinders Ranges, nördlich von Adelaide). Etwa 15 Mio Jahre später findet man eine Artenexplosion, die vom Meer ausgehend das Land mit Pflanzen und Tieren ‚kolonisierte‘. Davor aber, ab etwa -1 Milliarde Jahre rückwärts, gab es nur einzellige Organismen. Alle Evidenzen sprechen nach Davies dafür, dass alle späteren komplexen Lebensformen sich aus diesen einfachen, einzelligen Formen entwickelt haben.(vgl.S.29)

  10. Von diesen einzelligen Lebewesen (‚Mikroorganismen‘, ‚Bakterien‘ genannt) weiß man, dass Sie seit mindestens -3.5 Milliarden Jahre existieren [Ergänzung, kein Zitat bei Davies: nach Christian de Duve gibt es auf der ganzen Erde aus allen Zeiten Ablagerungen von Mikroorganismen, die sich versteinert haben und als Stromatolithen Zeugnis geben von diesen Lebensformen, vgl. Duve S.4f] (vgl. S.45)(laut Davies kann ein Löffel Erde bester Qualität 10 Billionen (10*10^12) Mikroorganismen enthalten, die 10.000 verschiedene Arten repräsentieren!(vgl. S.45). Die Verbindungen zwischen den verschiedenen Lebensformen werden durch Vergleiche ihrer Biochemie (auch Metabolismus) und über ihr genetisches Material identifiziert.(vgl. S.46) Von den heute bekannten Mikroorganismen leben diejenigen, die den ältesten Formen von Mikroorganismen am ähnlichsten sind, in großen Meerestiefen am Fuße unterseeischer Vulkane.(vgl. S.47)

  11. Zugleich weiß man nach Davies, dass die lebenden Zelle in ihrer Größe das komplexeste System darstellen, was wir Menschen kennen. (vgl.S.29) Und genau dies bereitet ihm Kopfzerbrechen: Wie ist es möglich, dass ‚geistlose Moleküle‘, die letztlich nur ihre unmittelbaren Nachbarn ’stoßen und ziehen‘ können, zu einer ingeniösen Kooperation zusammenfinden, wie sie eine lebende Zelle verkörpert? (vgl. S.30)

  12. Welche Eigenschaften sind letztlich charakteristisch für eine lebende Zelle? Davies listet oft genannte Eigenschaften auf (Autonomie, Reproduktion, Metabolismus, Ernährung , Komplexität, Organisation, Wachstum und Entwicklung, Informationsgehalt, Hardware/ Software Einheit , Permanenz und Wechsel (vgl.SS.33-36)) und stellt dann fest, dass es offensichtlich keine einfache Eigenschaft ist, die ‚Lebendes‘ von ‚Nicht-Lebendem‘ trennt. (vgl. S.36) Auch scheint eine ‚rein mechanistische‘ Erklärung der chemischen Kausalketten nicht ausreichend zu sein. Es gibt das Moment der ‚Selbstbestimmung‘ (self-determination) bei jeder Zelle, eine Form von ‚Autonomie‘, die sich von keinen physikalischen Eigenschaften herleiten lassen. (vgl. S.33) Biologische Komplexität ist offensichtlich ‚instruierte Komplexität‘, die auf Information basiert (information-based). (vgl. S.31)

  13. Damit würde sich andeuten, dass die beiden Eigenschaften ‚Metabolismus‘ und ‚Reproduktion‘ zwei Kerneigenschaften darstellen (vgl. S.36f), die sich in dem Vorstellungsmodell ‚Hardware (= Metabolismus)‘ und ‚Software (= Reproduktion)‘ wiederfinden.

  14. An dieser Stelle lenkt Davies den Blick nochmals auf ein zentrales Faktum des ganzen Phänomen Lebens, auf das außergewöhnlichste Molekül, das wir kennen, bestehend aus vielen Milliarden sequentiell angeordneten Atomen, bezeichnet als Desoxyribonukleinsäure (deoxyribonucleic acid) (DNA), eine Ansammlung von ‚Befehlen‘, um damit Organismen (Pflanzen, Tiere inklusiv Menschen) ‚hervorbringen‘ zu können. Und dieses Molekül ist unvorstellbar alt, mindestens 3.5 Milliarden Jahre. (vgl. S.41)

  15. Wenn Davies dann weiter schreibt, dass diese DNA die Fähigkeit hat, sich zu Vervielfältigen (to replicate) (vgl. S.41f), dann ist dies allerdings nicht die ganze Wahrheit, denn das Molekül als solches kann strenggenommen garnichts. Es benötigt eine spezifische Umgebung, damit ein Vervielfältigungsprozess einsetzen kann, an den sich dann ein höchst komplexer Umsetzungsprozeß anschliesst, durch den die DNA-Befehle in irgendwelche dynamischen organismischen Strukturen überführt werden. D.h. dieses ‚Wunder‘ an Molekül benötigt zusätzlich eine geeignete ebenfalls höchst komplexe Umgebung an ‚Übersetzern‘ und ‚Machern, die aus dem ‚Bauplan‘ (blueprint) ein lebendes Etwas generieren. Das zuvor von Davies eingeführte Begriffspaar ‚Hardware’/ ‚Software‘ wäre dann so zu interpretieren, dass die DNA eine Sequenz von Ereignissen ist, die als ‚Band‘ einer Turingmaschine einen möglichen Input darstellen und die Umgebung einer DNA wäre dann der ausführende Teil, der einerseits diese DNA-Ereignisse ‚lesen‘ kann, sie mittels eines vorgegebenen ‚Programms‘ ‚dekodiert‘ und in ‚Ausgabeereignisse‘ (Output) überführt. Folgt man dieser Analogie, dann ist der eigentliche ‚berechnende‘ Teil, die ‚rechnende Maschine‘ eine spezifisch beschaffene ‚Umgebung‘ eines DNA-Moleküls (COMPUTER_ENV)! In der ‚Natur‘ ist diese rechnende Maschine realisiert durch Mengen von spezifischen Molekülen, die miteinander so interagieren können, dass ein DNA-Molekül als ‚Input‘ eine Ereigniskette auslöst, die zum ‚Aufbau‘ eines Organismus führt (minimal einer einzelnen Zelle (COMPUTER_INDIVIDUAL)), der dann selbst zu einer ‚rechnenden Maschine‘ wird, also (vereinfacht) COMPUTER_ENV: DNA x ENV —> COMPUTER_INDIVIDUAL.

  16. Die von Davies erwähnte Vervielfältigung (Replikation) wäre dann grob eine Abbildung entweder von einem individuellen System (COMPUTER_INDIVIDUAL) zu einem neuen DNA-Molekül, das dann wieder zu einem Organismus führen kann, oder – wie später dann weit verbreitet – von zwei Organismen, die ihre DNA-Informationen ‚mischen‘ zu einer neuen DNA, vereinfachend REPLICATION: COMPUTER_INDIVIDUAL [x COMPUTER_INDIVIDUAL] x ENV —> DNA.

  17. Sobald in der Entwicklung des Lebens die Brücke von ‚bloßen‘ Molekülen zu einem Tandem aus (DNA-)Molekül und Übersetzer- und Bau-Molekülen – also COMPUTER_ENV und COMPUTER_INDIVUDAL — geschlagen war, ab dann begann die ‚biologische Evolution‘ (wie Darwin und Vorläufer) sie beschrieben haben ‚zu laufen‘. Dieser revolutionäre Replikationsmechanismus mit DNA-Molekülen als Informationsformat wurde zum Generator aller Lebensformen, die wir heute kennen. (vgl.S.42)

  18. Aus der Kenntnis dieses fundamentalen Replikationsmechanismus folgt aber keinerlei Hinweis, wie es zu diesem hochkomplexen Mechanismus überhaupt kommen konnte, und das vor mehr als 3.5 Milliarden Jahren irgendwo unter der Erdoberfläche [Eigene Anmerkung: eine Frage, die auch im Jahr 2012 noch nicht voll befriedigend beantwortet ist!]. (vgl.S.44)

  19. Im Kapitel 2 ‚Against the Tide‘ (S.49-67) greift Davies nochmals den Aspekt des zweiten Hauptsatzes der Thermodynamik auf, nachdem in einem geschlossenen System die Energie erhalten bleibt und vorhandene Ungleichheiten in der Verteilung der Energie (geringere Entropie, geringere Unordnung = höhere Ordnung) auf Dauer ausgeglichen werden, bis eine maximale Gleichverteilung vorliegt (maximale Entropie, maximale Unordnung, minimale Ordnung). [Anmerkung: Dies setzt implizit voraus, dass Energieverdichtungen in einer bestimmten Region des geschlossenen Systems prinzipiell ‚auflösbar‘ sind. Materie als einer Zustandsform von Energie realisiert sich (vereinfacht) über Atome und Verbindungen von Atomen, die unter bestimmten Randbedingungen ‚auflösbar‘ sind. Verbindungen von Atomen speichern Energie und stellen damit eine höhere ‚Ordnung‘ dar als weniger verbundene Atome.]

  20. Wie oben schon festgestellt, stellt die Zusammenführung von Atomen zu komplexen Molekülen, und eine Zusammenfügung von Molekülen zu noch komplexeren Strukturen, wie sie das Phänomen des Lebens auszeichnet, lokal begrenzt eine ‚Gegenbewegung‘ zum Gesetz der Zunahme von Entropie dar. Das Phänomen des Lebens widersetzt sich darin dem allgemeinen Trend (‚against the tide‘). Dies ist nur möglich, weil die biologischen Strukturen (Moleküle, Molekülverbände, Zellen, Replikation…) für ihre Zwecke Energie einsetzen! Dies bedeutet, sie benötigen ‚frei verfügbare Energie‘ (free energy) aus der Umgebung. Dies sind entweder Atomverbindungen, deren Energie sich mittels eines geringen Energieaufwandes teilweise erschließen lässt (z.B. Katalyse mittels Enzymen), oder aber die Nutzung von ‚Wärme‘ (unterseeische Vulkane, Sonnenlicht,…). Letztlich ist es die im empirischen Universum noch vorhandene Ungleichverteilungen von Energie, die sich partiell mit minimalem Aufwand nutzen lässt, die biologische Strukturen ermöglicht. Aufs Ganze gesehen führt die Existenz von biologischen Strukturen auf Dauer aber doch auch zum Abbau eben dieser Ungleichheiten und damit zum Anwachsen der Entropie gemäß dem zweiten Hauptsatz. (vgl. 49-55) [Anmerkung: durch fortschreitende Optimierungen der Energienutzungen (und auch der organismischen Strukturen selbst) kann die Existenz von ‚Leben‘ im empirischen Universum natürlich ’sehr lange‘ andauern.]

  21. Davies weist an dieser Stelle ausdrücklich darauf hin, dass die scheinbare Kompatibilität des Phänomens Leben mit dem zweiten Hauptsatz der Thermodynamik nicht bedeutet, dass die bekannten Gesetze der Physik damit auch schon ‚erklären‘ würden, wie es überhaupt zur Ausbildung solcher komplexer Ordnungen im Universum kommen kann, wie sie die biologischen Strukturen darstellen. Sie tun es gerade nicht.(vgl. S.54) Er zitiert hier u.a. auch Erwin Schroedinger mit den Worten ‚Wir müssen damit rechnen, einen neuen Typ von physikalischem Gesetz zu finden, das damit klarkommt‘ (vgl. S.52)

  22. Davies macht hier auch aufmerksam auf die strukturelle Parallelität zwischen dem physikalischen Begriff der Entropie, dem biologischen Begriff der Ordnung und dem von Shannon geprägten Begriff der Information. Je mehr ‚Rauschen‘ (noise) wir in einer Telefonverbindung haben, um so weniger können wir die gesprochenen Worte des Anderen verstehen. Rauschen ist ein anderes Wort für ‚Unordnung = Entropie‘. Je geringer die Entropie heißt, d.h. umso höher die ‚Ordnung‘ ist, um so höher ist der Informationsgehalt für Sender und Empfänger. Shannon hat daher ‚Information‘ als ‚Negentropie‘, als ’negative Entropie‘ definiert. Biologische ‚Ordnung‘ im Sinne von spezifisch angeordneten Atomen und Molekülen würde im Sinne der Shannonschen Informationstheorie dann einen hohen Informationsgehalt repräsentieren, wie überhaupt jede Form von Ordnung dann als ‚Information‘ aufgefasst werden kann, da diese sich von einer ‚gleichmachenden Unordnung‘ ‚abhebt‘.(vgl. S.56)

  23. Wie kann aus einem Rauschen (Unordnung) Information (Ordnung) entstehen? Davies (im Einklang mit Schroedinger) weist darauf hin, dass die Ordnung aus der frei verfügbaren Energie aus der Umgebung stammt.(vgl. S.56f). Das DNA-Molekül repräsentiert in diesem Sinne als geordnete Struktur auch Information, die durch ‚Mutationen‘ (= Rauschen!) verändert werden kann. Es werden aber nur jene Organismen in einer bestimmten Umgebung überleben, deren in der DNA-gespeicherten Information für die jeweilige Umgebung ‚hinreichend gut‘ ist. D.h. in der Interaktion zwischen (DNA, Replikationsmechanismus, Umgebung) filtert die Umgebung jene Informationen heraus, die ‚geeignet‘ sind für eine fortdauernde Interaktion [Anmerkung: salopp könnte man auch sagen, dass die Umgebung (bei uns die Erde) sich genau jene biologischen Strukturen ‚heranzüchtet‘, die für eine Kooperation ‚geeignet‘ sind, alle anderen werden aussortiert.](vgl. S.57)

  24. Ein anderer Aspekt ist der Anteil an ‚Fehlern‘ in der DNA-Bauanleitung bzw. während des Replikationsprozesses. Ab einem bestimmten Anteil können Fehler einen funktionstüchtigen Organismus verhindern. Komplexe Organismen setzen entsprechend leistungsfähige Fehlervermeidungsmechanismen voraus. (vgl. SS.58-60)

  25. Weiterhin ist zu beachten, dass ‚Information‘ im Sinne von Shannon eine rein statistische Betrachtung von Wahrscheinlichkeiten im Auftreten von bestimmten Kombinationen von Elementen einer Grundmenge darstellt. Je ’seltener‘ eine Konfiguration statistisch auftritt, umso höher ist ihr Informationsgehalt (bzw.  ‚höhere Ordnungen‘ sind ’seltener‘). Dies Betrachtungsweise lässt die Dimension der ‚Bedeutung‘ ganz außer Acht.

  26. Eine Bedeutung liegt immer dann vor, wenn ein Sender/ Empfänger von einer Entität (z.B. von einem DNA-Molekül oder von einem Abschnitt eines DNA-Moleküls) auf eine andere Entität (z.B. anderen Molekülen) ’schließen‘ kann. Im Falle der biologischen Strukturen wäre dies z.B. der Zusammenhang zwischen einem DNA-Molekül und jenen organismischen Strukturen, die aufgrund der Information im DNA-Molekül ‚gebaut‘ werden sollen. Diese zu bauenden organismischen Strukturen würden dann die ‚Bedeutung‘ darstellen, die mit einem DNA-Molekül zu verbinden wäre.

  27. Shannonsche Information bzw. biologische Ordnung haben nichts mit dieser ‚(biologischen) Bedeutung‘ zu tun. Die biologische Bedeutung in Verbindung mit einem DNA-Molekül wäre damit in dem COMPUTER_ENV zu lokalisieren, der den ‚Input‘ DNA ‚umsetzt/ verwandelt/ übersetzt/ transformiert…‘ in geeignete biologische Strukturen.(vgl.S.60) [Anmerkung: Macht man sich hier die Begrifflichkeit der Semiotik zunutze, dann könnte man auch sagen, dass die spezifische Umgebung COMPUTER_ENV eine semiotische Maschine darstellt, die die ‚Syntax‘ der DNA übersetzt in die ‚Semantik‘ biologischer Organismen. Diese semiotische Maschine des Lebens ist ‚implementiert‘ als ein ‚chemischer Computer‘, der mittels diverser chemischer Reaktionsketten arbeitet, die auf den Eigenschaften unterschiedlicher Moleküle und Umgebungseigenschaften beruhen.]

  28. Mit den Begriffen ‚Entropie‘, ‚Ordnung‘ und ‚Information‘ erwächst unweigerlich die Frage, wie konnte Ordnung bzw. Information im Universum entstehen, wo doch der zweite Hauptsatz eigentlich nur die Entropie favorisiert? Davies lenkt den Blick hier zurück auf den Ursprung des bekannten Universums und folgt dabei den Eckwerten der Big-Bang Theorie, die bislang immer noch die überzeugendste empirische Beschreibung liefert. In seiner Interpretation fand zu Beginn eine Umwandlung von Energie sowohl in die uns bekannte ‚Materie‘ statt (positive Energie), zugleich aber auch in ‚Gravitation‘ (negative Energie). Beide Energien heben sich gegenseitig auf. (vgl. S.61f)

  29. Übernimmt man die übliche Deutung, dass die ‚kosmische Hintergrundstrahlung‘ einen Hinweis auf die Situation zu Beginn des Universums liefert, dann war das Universum zu Beginn ’nahezu strukturlos‘, d.h. nahe bei der maximalen Entropie, mit einer minimale Ordnung, nahezu keiner Information. (vgl. S.62f) Wie wir heute wissen, war es dann die Gravitation, die dazu führte, dass sich die fast maximale Entropie schrittweise abbaute durch Bildung von Gaswolken und dann von Sternen, die aufgrund der ungeheuren Verdichtung von Materie dann zur Rückverwandlung von Materie in Energie führte, die dann u.a. als ‚freie Energie‘ verfügbar wurde. [Anmerkung: der andere Teil führt zu Atomverbindungen, die energetisch ‚höher aufgeladen‘ sind. Diese stellt auch eine Form von Ordnung und Information dar, also etwa INF_mat gegenüber der INF_free.] Davies sieht in dieser frei verfügbare Energie die Quelle für Information. (vgl. S.63)

  30. Damit wird auch klar, dass der zweite Hauptsatz der Thermodynamik nur eine Seite des Universums beschreibt. Die andere Seite wird von der Gravitation bestimmt, und diese arbeitet der Entropie diametral entgegen. Weil es die Gravitation gibt, gibt es Ordnung und Information im Universum. Auf dieser Basis konnten und können sich biologische Strukturen entwickeln. (vgl. S.64)

  31.  [Anmerkung: In dieser globalen Perspektive stellt die Biogenese letztlich eine folgerichtige Fortsetzung innerhalb der ganzen Kosmogenese dar. Aktuell bildet sie die entscheidende Phase, in der die Information als freie Energie die Information als gebundene Energie zu immer komplexeren Strukturen vorantreibt, die als solche einer immer mehr ‚verdichtete‘ (= komplexere) Information verkörpern. Biologische Strukturen bilden somit eine neue ‚Zustandsform‘ von Information im Universum.]

  32. Mit den Augen der Quantenphysik und der Relativitätstheorie zeigt sich noch ein weiterer interessanter Aspekt: die einzelnen Teilchen, aus denen sich die bekannte Materie konstituiert, lassen ‚an sich‘, ‚individuell‘ keine ‚Kontexte‘ erkennen; jedes Teilchen ist wie jedes andere auch. Dennoch ist es so, dass ein Teilchen je nach Kontext etwas anderes ‚bewirken‘ kann. Diese ‚Beziehungen‘ zwischen den Teilchen, charakterisieren dann ein Verhalten, das eine Ordnung bzw. eine Information repräsentieren kann. D.h. Ordnung bzw. Information ist nicht ‚lokal‘, sondern eine ‚globale‘ Eigenschaft. Biologische Strukturen als Repräsentanten von Information einer hochkomplexen Art sind von daher wohl kaum durch physikalische Gesetze beschreibbar, die sich auf lokale Effekte beschränken. Man wird sicher eine neue Art von Gesetzen benötigen. (vgl. S.67)

  33. [Anmerkung: Eine strukturell ähnliche Situation haben wir im Falle des Gehirns: der einzelnen Nervenzelle im Verband von vielen Milliarden Zellen kann man als solche nicht ansehen, welche Funktion sie hat. Genauso wenig kann man einem einzelnen neuronalen Signal ansehen, welche ‚Bedeutung‘ es hat. Je nach ‚Kontext‘ kann es von den Ohren kommen und einen Aspekt eines Schalls repräsentieren, oder von den Augen, dann kann es einen Aspekt des Sehfeldes repräsentieren, usw. Dazu kommt, dass durch die immer komplexere Verschaltung der Neuronen ein Signal mit zahllosen anderen Signalen ‚vermischt‘ werden kann, so dass die darin ‚kodierte‘ Information ’semantisch komplex‘ sein kann, obgleich das Signal selbst ‚maximal einfach‘ ist. Will man also die ‚Bedeutung‘ eines neuronalen Signals verstehen, muss man das gesamte ‚Netzwerk‘ von Neuronen betrachten, die bei der ‚Signalverarbeitung‘ zusammen spielen. Und das würde noch nicht einmal ausreichen, da der komplexe Signalfluss als solcher seine eigentliche ‚Bedeutung‘ erst durch die ‚Wirkungen im Körper‘ ‚zeigt‘. Die Vielzahl der miteinander interagierenden Neuronen stellen quasi nur die ‚Syntax‘ eines neuronalen Musters dar, dessen ‚Bedeutung‘ (die semantische Dimension) in den vielfältigen körperlichen Prozessen zu suchen ist, die sie auslösen bzw. die sie ‚wahrnehmen‘. Tatsächlich ist es sogar noch komplexer, da für die ‚handelnden Organismen‘ zusätzlich noch die ‚Umgebung‘ (die Außenwelt zum Körper) berücksichtigen müssen.]

  34. Davies erwähnt im Zusammenhang der Gravitation als möglicher Quelle für Information auch Roger Penrose und Lee Smolin. Letzterer benutzt das Konzept der ‚Selbstorganisation‘ und sieht zwischen der Entstehung von Galaxien und biologischen Populationen strukturelle Beziehungen, die ihn zum Begriff der ‚eingebetteten Hierarchien von selbstorganisierenden Systemen führen. (vgl. S.65)

     

Fortsetzung Teil 2

Einen Überblick über alle bisherigen Themen findet sich HIER

 

Jenseits des Wärmetods?

  1. Ich mache immer wieder die Erfahrung, dass bei unklaren Fragestellungen der Rückgang auf die ‚Klassiker‘ zu Klarheiten verhilft, die die neue und neueste Literatur nicht bieten kann. Die neuere Fachliteratur ist oft schon so fortgeschritten im Detailwissen, dass man sich als ‚Neuling‘ sehr schwer tut, zu verstehen, warum all dieser Aufwand getrieben wird. In den letzten Monaten war es z.B. die Lektüre von Schrödingers ‚What is Life‘ oder Heisenbergs ‚Physics and Philosophy‘ gewesen, die wertvolle Einsichten vermittelt hatten.

  2. Nach einiger Mühe ist es mir gelungen, die ‚Populären Schriften‘ von Ludwig Boltzmann (publiziert 1905) zu bekommen. Allein schon die ersten Beiträge waren sehr erhellend. Wunderbar finde ich seinen Vortrag ‚Der zweite Hauptsatz der mechanischen Wärmetheorie‘, den er 1886 in einer feierlichen Sitzung vor der kaiserlichen Akademie der Wissenschaften vorgetragen hatte. Zu sehr vielen grundlegenden Fragestellungen, die uns noch heute bewegen, erhellt er Grundlegendes; dies aber auf einer Weise formuliert, die von großer Klarheit und Verständlichkeit ist.

  3. Er nimmt sich in diesem Vortrag sogar etwas Zeit, um die besondere Rolle der Naturforschung gegenüber allgemeiner Philosophie und Alltagswissen zu verdeutlichen. Mit Anspielung auf Herbarth lokalisiert er die Rolle des Bewusstsein zwar an der Quelle unseres Weltzuganges (im Sinne dass wir ‚Empfindungen‘ haben), aber der primäre Inhalt dieses Bewusstseins kann uns aus sich heraus nichts darüber sagen, wie sich diese Inhalte zusammensetzen, wie sie entstehen (vgl. S.48f). Und, wie wir heute wissen, sind diese Bewusstseinsinhalte komplexe Produktionen unseres Gehirns, u.a. auf der Basis sensorischer Daten, die sich aus den energetischen Ereignissen der Umwelt speisen. Die Naturforschung kann — und muss wohl — die bewusste Wahrnehmung als Ausgangspunkt nehmen, beginnt ihre eigentliche Arbeit aber dort, wo sie versucht mittels ‚Hypothesen‘ und ‚Messungen‘ hinter diese Phänomene zu schauen.

  4. Eine dieser — mittlerweile komplexen — Hypothesen ist die von der ‚atomistischen‘ Struktur der Materie, aus der sich dann die weitere Hypothese der mechanischen Wärmelehre herleitet, dass nämlich die ‚Elemente der Körperwelt‘ beständig in ‚reger Bewegung begriffen sind‘ (S.32) Hierher gehört der von Robert Mayer begründete erste Hauptsatz von der Erhaltung der Energie, wobei Energie nach Mayer in den drei Formen ’sichtbare Bewegung‘, ‚Wärme‘ oder ‚Arbeit‘ auftreten kann. Währen die Gesamtmenge der Energie in einem geschlossenen System bei Umwandlung einer Energieform in die andere unverändert bleiben soll, so sagt der zweite Hauptsatz, dass zwar Bewegung und Arbeit bedingungslos ineinander und in Wärme übergehen können, Wärme kann aber höchstens partiell in Bewegung oder Arbeit zurückverwandelt werden (vgl. S.33). In dieser Eigenschaft erscheint Wärme ‚dissipativ‘, als ‚degradierte‘ Energie (Unter Verwendung des von Clausius eingeführten Begriffs der ‚Entropie‘ kann man auch sagen, dass mit Zunahme der Degradation nicht nur die Wahrscheinlichkeit des Zustandes zunimmt, sondern auch seine Entropie (vgl. S.37)). Der zweite Hauptsatz induziert damit eine Art Richtung im Prozess, der schlussendlich zu einer völligen Degradierung von Energie führt oder — in der bekannten Formulierung — zum ‚Wärmetod des Universums‘ (vgl. S.33). Letzterer Schluss gilt aber nur, solange die Annahme eines geschlossenen Systems gilt (vgl. S.48).

  5. Das Prinzip hinter dem Prinzip des 1. und 2. Hauptsatzes ist, dass sich Energie grundsätzlich vom unwahrscheinlicheren Zustand in den wahrscheinlicheren Zustand verändert. So ist die höhere Energiekonzentration in der Sonne im Vergleich zur Erde ‚unwahrscheinlicher‘. Auf dem Weg der ‚Degradation‘ gelangt Energie von der Sonne zur Erde und kann auf diesem Weg und auf der Erde unterschiedliche Zwischenzustände durchlaufen, bis sie als Wärme ‚verschwindet‘. Es sind die Pflanzen, die diesen Energiefluss aufgreifen und ihn mittels chemischer Prozesse in solche Energieformen verwandeln, die anderen biologischen Lebensformen als ‚Nahrung‘ dienen können, bevor der Zustand höherer Entropie weiter angenähert wird (vgl. S.40).

  6. Boltzmann wagt einige Spekulationen zur möglichen ‚Erklärung‘ der Lebensformen, des erfahrbaren Geistes, indem er die Hypothese anformuliert, dass sich die komplexen bekannten biologischen Formen eventuell doch aus den allereinfachsten Atomen durch immer komplexere Konfigurationen herausgebildet haben (vgl.S.49). Heute haben wir so viele Indizien sammeln können, dass diese Hypothese zu großen Teilen als ‚gewiss‘ gelten kann, wenngleich noch nicht vollständig.

  7. Vor dem Hintergrund der Hautsätze der Wärmelehre sieht es dann so aus, als ob sich die komplexen biologischen Lebensformen nur gestützt auf den Energiefluss von Seiten der Sonne bilden konnten. Unter Ausnutzung dieser Energieformen konnten sich immer komplexere molekulare Strukturen herausbilden, die schließlich — Zwischenstand 2011 — in der Lage sind, anhand der energetischen Ereignisse in der Welt sich ‚intern‘ in einem Körper ‚Bilder‘, ‚Modelle‘ der ‚Welt da draußen‘ zu generieren, die auch ‚Selbstbilder‘ mit einschließen. Die Allokierung von Energie in Form von biologischen Strukturen ermöglicht das ‚Sichtbarwerden‘ all jener Dynamiken und Strukturen, die den physikalischen Kosmos auszeichnen. Allerdings sind diese biologischen Strukturen grundsätzlich limitiert durch den Bedarf an ‚freier‘ Energie. Versiegt der Strom von Energie in einer Form, die sich ’nutzen‘ lässt, dann verlieren die biologischen Lebensformen ihre ‚Seele‘; sie versinken im ‚Nichts‘ nahe der maximalen Entropie.

  8. Aus dieser allgemeinen Perspektive kann man den Eindruck gewinnen, dass die entscheidende Eigenschaft, die die biologischen Lebensformen in das bekannte Universum einbringen, jene ist, dass sie ’sichtbar machen können‘, dass sie ‚erkennen‘ können, dass sie ein ‚Bewusstsein von‘ den Dingen entwickeln können. Durch die Verfügbarkeit von Wissen innerhalb des Kosmos gewinnt der Kosmos eine eigentümliche ‚Handlungsfähigkeit‘ ’sich selbst gegenüber‘. Mit der Entstehung, Verfügbarkeit und Ausbreitung von ‚Erkenntnis‘ kann der Kosmos im Prinzip ‚zu sich selbst‘ kommen und darin und dadurch seine Strukturen dazu nutzen, ‚etwas‘ ‚zu tun‘. Fragt sich natürlich: was?

  9. Nach den bisherigen Erkenntnissen entsteht in den biologischen Strukturen Wissen durch ‚Verdichtungen’/ ‚Abstraktionen‘, durch das Finden von Beziehungen/ Relationen, durch die die Wechselwirkungen unterschiedlicher Beziehungen (verstehbar als Netzwerk/ Modell/ Theorie), durch unterschiedlichste Assoziationen zwischen Wissensmomenten und allen möglichen Zuständen (auch Bedürfnissen, Emotionen, Gefühlen,…). Ferner haben wir gelernt, dass sich Wissen wesentlich auch nur im Austausch zwischen unterschiedlichen Gehirnen ereignet/ bilden kann. Für solch eine Kommunikation benötigt man symbolische Mittel, Sprachen, speziell formale Sprache wie z.B. die Sprache der Mathematik oder heute die algorithmischen Formen von Computersprachen und Simulationen.

  10. Ein anderer wesentlicher Aspekt ist die Kooperation als Bedingung für Kommunikation. Eine ‚hinreichende‘ Kooperation wiederum benötigt eine ‚hinreichende‘ Öffentlichkeit: ohne funktionierende Öffentlichkeit keine gute Kommunikation, ohne gute Kommunikation nur partielle, schlechte Erkenntnis.

  11. Berücksichtigt man all dies, stellt sich natürlich die Frage nach dem ‚Sinn‘ des Ganzen. Klar ist, dass die Frage wer am meisten Geld hat, die größte politische Macht, wie berühmt jemand ist, wie ’schön‘ usw. relativ bedeutungslos sind gemessen an der globalen Aufgabe, die verfügbare Energie in jenes Wissen zu verwandeln, das den ‚Wärmetod‘ ‚überlebt‘. Militärische Macht kann punktuell und regional eventuell entscheiden, welche Gruppeninteressen sich für eine kurze Zeit ‚durchsetzen‘, doch auch militärische Macht entkommt nicht der globalen Herausforderung, wie das biologische Leben als solches sich angesichts seiner fragilen Lage innerhalb des verfügbaren Zeitfensters auf Dauer den Kosmos so umgestaltet, dass aus der ‚Anfangsübung‘ ‚Leben auf der Erde‘ ‚mehr‘ wird. Vielleicht müssen wir uns auch gar nicht physikalisch behaupten; vielleicht besteht der ‚Sinn‘ dieses Lebens auf der Erde/ in diesem Kosmos nur darin, die ‚Hoffnung auf Mehr‘ zu schmecken, um dann im/ nach dem körperlichen Tod den ‚eigentlichen‘ Zustand zu erleben. Wer kann dies so genau sagen. Ich persönlich halte allerdings den ‚Aufwand‘, der bislang getrieben wurde, um biologisches Leben überhaupt zu ermöglichen und über all die Milliarden Jahre zu immer komplexeren Formen heran zu reifen für so immens, dass es nicht so recht einleuchten will, dass darin kein spezieller ‚Auftrag‘ gegeben ist. Zu sagen, wir sind ’nur‘ Menschen übersieht, dass dieses ’nur‘ genau den Punkt verpasst, der das zentrale Drama der ganzen Erde, des ganzen Sonnensystems auszeichnet. Natürlich wäre es unbequem, zuzugeben, dass der Erfolg dieses Lebens wichtig ist…

Quelle: Ludwig Boltzmann, „Populäre Schriften“, Leipzig: Verlag Johann Ambrosius Barth, 1905