SEMIOTIK UND KÜNSTLICHE INTELLIGENZ. EIN VIELVERSPRECHENDES TEAM. Nachschrift eines Vortrags an der Universität Passau am 22.Okt.2015

KONTEXT

  1. Im Rahmen der interdisziplinären Ringvorlesung Grenzen (Wintersemester 2015/16) an der Universität Passau (organisiert von der Deutsche Gesellschaft für Semiotik (DGS) e.V. in Kooperation mit der Professur für Neuere deutsche Literaturwissenschaft und Mediensemiotik (Prof. Dr. Jan-Oliver Decker und Dr. Stefan Halft) hatte ich einen Vortrag angenommen mit dem Titel Semiotik und künstliche Intelligenz. Ein vielversprechendes Team. Wie immer halte ich Vorträge immer zu Fragen, die ich bis dahin noch nicht ausgearbeitet hatte und nutze diese Herausforderung, es dann endlich mal zu tun.
  2. Die Atmosphäre beim Vortrag war sehr gut und die anschließenden Gespräche brachte viele interessanten Aspekte zutage, was wir im Rahmen der DGS noch tun sollten/ könnten, um das Thema weiter zu vertiefen.

MOTIV – WARUM DIESES THEMA

  1. Angesichts der vielfältigen Geschichte der Semiotik könnte man natürlich ganze Abende nur mit Geschichten über die Semiotik füllen. Desgleichen im Fall der künstlichen Intelligenz [KI]. Der Auslöser für das Thema war dann auch der spezielle Umstand, dass im Bereich der KI seit etwa den 80iger Jahren des 20.Jahrhunderts in einigen Forschungsprojekten das Thema Semiotik ganz neu auftaucht, und nicht als Randthema sondern verantwortlich für die zentralen Begriffe dieser Forschungen. Gemeint sind die berühmten Roboterexperimente von Luc Steels (ähnlich auch aufgegriffen von anderen, z.B. Paul Vogt) (siehe Quellen unten).
  2. Unter dem Eindruck großer Probleme in der klassischen KI, die aus einem mangelnden direkten Weltbezug resultierten (das sogenannte grounding Problem) versuchte Steels, Probleme des Zeichen- und Sprachlernens mit Hilfe von Robotern zu lösen, die mit ihren Sensoren direkten Kontakt zur empirischen Welt haben und die mit ihren Aktoren auch direkt auf die Welt zurück wirken können. Ihre internen Verarbeitungsprozesse können auf diese Weise abhängig gemacht werden (eine Form von grounding) von der realen Welt (man spricht hier auch von embodied intelligence).
  3. Obwohl Steels (wie auch Vogt) auf ungewöhnliche Weise grundlegende Begriffe der Semiotik einführen, wird dieser semiotische Ansatz aber nicht weiter reflektiert. Auch findet nicht wirklich eine Diskussion des Gesamtansatzes statt, der aus dieser Kombination von Semiotik und Robotik/ KI entsteht bzw. entstehen könnte. Dies ist schade. Der Vortrag Semiotik und künstliche Intelligenz. Ein vielversprechendes Team stellt einen Versuch dar, heraus zu arbeiten, warum die Kombination Semiotik und KI nicht nur Sinn macht, sondern eigentlich das Zeug hätte, zu einem zentralen Forschungsparadigma für die Zukunft zu werden. Tatsächlich liegt dem Emerging Mind Projekt, das hier im Blog schon öfters erwähnt wurde und am 10.November 2015 offiziell eröffnet werden wird, genau dieses Semiotik-KI-Paradigma zugrunde.

WELCHE SEMIOTIK?

  1. Wer Wörterbücher zur Semiotik aufschlägt (z.B. das von Noeth 2000), wird schnell bemerken, dass es eine große Vielfalt von Semiotikern, semiotischen Blickweisen, Methoden und Theorieansätze gibt, aber eben nicht die eine große Theorie. Dies muss nicht unbedingt negativ sein, zumal dann nicht, wenn wir ein reiches Phänomen vor uns haben, das sich eben einer einfachen Theoriebildung widersetzt. Für die Praxis allerdings, wenn man Semiotik in einer realen Theoriebildung einsetzen möchte, benötigt man verbindliche Anknüpfungspunkte, auf die man sich bezieht. Wie kann man solch eine Entscheidung motivieren?
  2. Aus der Sicht der Wissenschaftsphilosophie biete es sich an, die unterschiedlichen Zugangsweisen zur Erfahrung und und Beschreibung von Wirklichkeit als quasi Koordinatensystem zu wählen, diesem einige der bekanntesten semiotischen Ansätze zu zuordnen und dann zu schaue, welche dieser semiotischen Positionen der Aufgabenstellung am nächsten kommen. Von einer Gesamttheorie her betrachtet sind natürlich alle Ansätze wichtig. Eine Auswahl bzw. Gewichtung kann nur pragmatische Gründe haben.

ZUGÄNGE ZUR WIRKLICHKEIT

  1. Grundsätzlich gibt es aus heutiger Sicht zwei Zugangsweisen: über den intersubjektiven (empirischen) Bereich und über das subjektive Erleben.
  2. Innerhalb des empirischen Bereichs gab es lange Zeit nur den Bereich des beobachtbaren Verhaltens [SR] (in der Psychologie) ohne die inneren Zustände des Systems; seit ca. 50-60 Jahren eröffnen die Neurowissenschaften auch einen Zugriff auf die Vorgänge im Gehirn. Will man beide Datenbereiche korrelieren, dann gerät man in das Gebiet der Neuropsychologie [NNSR].
  3. Der Zugang zur Wirklichkeit über den subjektiven Bereich – innerhalb der Philosophie auch als phänomenologischer Zugang bekannt – hat den Vorteil einer Direktheit und Unmittelbarkeit und eines großen Reichtums an Phänomenen.
  4. Was den meisten Menschen nicht bewusst ist, ist die Tatsache, dass die empirischen Phänomene nicht wirklich außerhalb des Bewusstseins liegen. Die Gegenstände in der Zwischenkörperzone (der empirische Bereich) sind als Gegenstände zwar (was wir alle unterstellen) außerhalb des Bewusstseins, aber die Phänomene, die sie im Bewusstsein erzeugen, sind nicht außerhalb, sondern im Bewusstsein. Das, was die empirischen Phänomene [PH_em] von den Phänomenen, unterscheidet, die nicht empirisch [PH_nem] sind, ist die Eigenschaft, dass sie mit etwas in der Zwischenkörperwelt korrespondieren, was auch von anderen Menschen wahrgenommen werden kann. Dadurch lässt sich im Falle von empirischen Phänomenen relativ leicht Einigkeit zwischen verschiedenen Kommunikationsteilnehmern über die jeweils korrespondierenden Gegenstände/ Ereignisse erzielen.
  5. Bei nicht-empirischen Phänomenen ist unklar, ob und wie man eine Einigkeit erzielen kann, da man nicht in den Kopf der anderen Person hineinschauen kann und von daher nie genau weiß, was die andere Person meint, wenn sie etwas Bestimmtes sagt.
  6. Die Beziehung zwischen Phänomenen des Bewusstseins [PH] und Eigenschaften des Gehirns – hier global als NN abgekürzt – ist von anderer Art. Nach heutigem Wissensstand müssen wir davon ausgehen, dass alle Phänomene des Bewusstseins mit Eigenschaften des Gehirns korrelieren. Aus dieser Sicht wirkt das Bewusstsein wie eine Schnittstelle zum Gehirn. Eine Untersuchung der Beziehungen zwischen Tatsachen des Bewusstseins [PH] und Eigenschaften des Gehirns [NN] würde in eine Disziplin fallen, die es so noch nicht wirklich gibt, die Neurophänomenologie [NNPH] (analog zur Neuropsychologie).
  7. Der Stärke des Bewusstseins in Sachen Direktheit korrespondiert eine deutliche Schwäche: im Bewusstsein hat man zwar Phänomene, aber man hat keinen Zugang zu ihrer Entstehung! Wenn man ein Objekt sieht, das wie eine Flasche aussieht, und man die deutsche Sprache gelernt hat, dann wird man sich erinnern, dass es dafür das Wort Flasche gibt. Man konstatiert, dass man sich an dieses Wort in diesem Kontext erinnert, man kann aber in diesem Augenblick weder verstehen, wie es zu dieser Erinnerung kommt, noch weiß man vorher, ob man sich erinnern wird. Man könnte in einem Bild sagen: das Bewusstsein verhält sich hier wie eine Kinoleinwand, es konstatiert, wenn etwas auf der Leinwand ist, aber es weiß vorher nicht, ob etwas auf die Leinwand kommen wird, wie es kommt, und nicht was kommen wird. So gesehen umfasst das Bewusstsein nur einen verschwindend kleinen Teil dessen, was wir potentiell wissen (können).

AUSGEWÄHLTE SEMIOTIKER

  1. Nach diesem kurzen Ausflug in die Wissenschaftsphilosophie und bevor hier einzelne Semiotiker herausgegriffen werden, sei eine minimale Charakterisierung dessen gegeben, was ein Zeichen sein soll. Minimal deshalb, weil alle semiotischen Richtungen, diese minimalen Elemente, diese Grundstruktur eines Zeichens, gemeinsam haben.
  2. Diese Grundstruktur enthält drei Komponenten: (i) etwas, was als Zeichenmaterial [ZM] dienen kann, (ii) etwas, das als Nichtzeichenmaterial [NZM] fungieren kann, und (iii) etwas, das eine Beziehung/ Relation/ Abbildung Z zwischen Zeichen- und Nicht-Zeichen-Material in der Art repräsentiert, dass die Abbildung Z dem Zeichenmaterial ZM nicht-Zeichen-Material NZM zuordnet. Je nachdem, in welchen Kontext man diese Grundstruktur eines Zeichens einbettet, bekommen die einzelnen Elemente eine unterschiedliche Bedeutung.
  3. Dies soll am Beispiel von drei Semiotikern illustriert werden, die mit dem zuvor charakterisierten Zugängen zur Wirklichkeit korrespondieren: Charles William Morris (1901 – 1979), Ferdinand de Saussure (1857-1913) und Charles Santiago Sanders Peirce (1839 – 1914) .
  4. Morris, der jüngste von den Dreien, ist im Bereich eines empirischen Verhaltensansatzes zu positionieren, der dem verhaltensorientierten Ansatz der modernen empirischen Psychologie nahe kommt. In diesem verhaltensbasierten Ansatz kann man die Zeichengrundstruktur so interpretieren, dass dem Zeichenmaterial ZM etwas in der empirischen Zwischenwelt korrespondiert (z.B. ein Laut), dem Nicht-Zeichen-Material NZM etwas anderes in der empirischen Außenwelt (ein Objekt, ein Ereignis, …), und die Zeichenbeziehung Z kommt nicht in der empirischen Welt direkt vor, sondern ist im Zeichenbenutzer zu verorten. Wie diese Zeichenbeziehung Z im Benutzer tatsächlich realisiert ist, war zu seiner Zeit empirische noch nicht zugänglich und spielt für den Zeichenbegriff auch weiter keine Rolle. Auf der Basis von empirischen Verhaltensdaten kann die Psychologie beliebige Modellannahmen über die inneren Zustände des handelnden Systems machen. Sie müssen nur die Anforderung erfüllen, mit den empirischen Verhaltensdaten kompatibel zu sein. Ein halbes Jahrhundert nach Morris kann man anfangen, die psychologischen Modellannahmen über die Systemzustände mit neurowissenschaftlichen Daten abzugleichen, sozusagen in einem integrierten interdisziplinären neuropsychologischen Theorieansatz.
  5. Saussure, der zweit Jüngste von den Dreien hat als Sprachwissenschaftler mit den Sprachen primär ein empirisches Objekt, er spricht aber in seinen allgemeinen Überlegungen über das Zeichen in einer bewusstseinsorientierten Weise. Beim Zeichenmaterial ZM spricht er z.B. von einem Lautbild als einem Phänomen des Bewusstseins, entsprechend von dem Nicht-Zeichenmaterial auch von einer Vorstellung im Bewusstsein. Bezüglich der Zeichenbeziehung M stellt er fest, dass diese außerhalb des Bewusstseins liegt; sie wird vom Gehirn bereit gestellt. Aus Sicht des Bewusstseins tritt diese Beziehung nur indirekt in Erscheinung.
  6. Peirce, der älteste von den Dreien, ist noch ganz in der introspektiven, phänomenologischen Sicht verankert. Er verortet alle drei Komponenten der Zeichen-Grundstruktur im Bewusstsein. So genial und anregend seine Schriften im einzelnen sind, so führt diese Zugangsweise über das Bewusstsein zu großen Problemen in der Interpretation seiner Schriften (was sich in der großen Bandbreite der Interpretationen ausdrückt wie auch in den nicht selten geradezu widersprüchlichen Positionen).
  7. Für das weitere Vorgehen wird in diesem Vortrag der empirische Standpunkt (Verhalten + Gehirn) gewählt und dieser wird mit der Position der künstlichen Intelligenz ins Gespräch gebracht. Damit wird der direkte Zugang über das Bewusstsein nicht vollständig ausgeschlossen, sondern nur zurück gestellt. In einer vollständigen Theorie müsste man auch die nicht-empirischen Bewusstseinsdaten integrieren.

SPRACHSPIEL

  1. Ergänzend zu dem bisher Gesagten müssen jetzt noch drei weitere Begriffe eingeführt werden, um alle Zutaten für das neue Paradigma Semiotik & KI zur Verfügung zu haben. Dies sind die Begriffe Sprachspiel, Intelligenz sowie Lernen.
  2. Der Begriff Sprachspiel wird auch von Luc Steels bei seinen Roboterexperimenten benutzt. Über den Begriff des Zeichens hinaus erlaubt der Begriff des Sprachspiels den dynamischen Kontext des Zeichengebrauchs besser zu erfassen.
  3. Steels verweist als Quelle für den Begriff des Sprachspiels auf Ludwig Josef Johann Wittgenstein (1889-1951), der in seiner Frühphase zunächst die Ideen der modernen formalen Logik und Mathematik aufgriff und mit seinem tractatus logico philosophicus das Ideal einer am logischen Paradigma orientierten Sprache skizzierte. Viele Jahre später begann er neu über die normale Sprache nachzudenken und wurde sich selbst zum schärfsten Kritiker. In jahrelangen Analysen von alltäglichen Sprachsituationen entwickelte er ein facettenreiches Bild der Alltagssprache als ein Spiel, in dem Teilnehmer nach Regeln Zeichenmaterial ZM und Nicht-Zeichen-Material NZM miteinander verknüpfen. Dabei spielt die jeweilige Situation als Kontext eine Rolle. Dies bedeutet, das gleiche Zeichenmaterial kann je nach Kontext unterschiedlich wirken. Auf jeden Fall bietet das Konzept des Sprachspiels die Möglichkeit, den ansonsten statischen Zeichenbegriff in einen Prozess einzubetten.
  4. Aber auch im Fall des Sprachspielkonzepts benutzt Steels zwar den Begriff Sprachspiel, reflektiert ihn aber nicht soweit, dass daraus ein explizites übergreifendes theoretisches Paradigma sichtbar wird.
  5. Für die Vision eines neuen Forschungsparadigmas Semiotik & KI soll also in der ersten Phase die Grundstruktur des Zeichenbegriffs im Kontext der empirischen Wissenschaften mit dem Sprachspielkonzept von Wittgenstein (1953) verknüpft werden.

INTELLIGENZ

  1. Im Vorfeld eines Workshops der Intelligent Systems Division des NIST 2000 gab es eine lange Diskussion zwischen vielen Beteiligten, wie man denn die Intelligenz von Maschinen messen sollte. In meiner Wahrnehmung verhedderte sich die Diskussion darin, dass damals nach immer neuen Klassifikationen und Typologien für die Architektur der technischen Systeme gesucht wurde, anstatt das zu tun, was die Psychologie schon seit fast 100 Jahren getan hatte, nämlich auf das Verhalten und dessen Eigenschaften zu schauen. Ich habe mich in den folgenden Jahren immer wieder mit der Frage des geeigneten Standpunkts auseinandergesetzt. In einem Konferenzbeitrag von 2010 (zusammen mit anderen, insbesondere mit Louwrence Erasmus) habe ich dann dafür argumentiert, das Problem durch Übernahme des Ansatzes der Psychologie zu lösen.
  2. Die Psychologie hatte mit Binet (1905), Stern (1912 sowie Wechsler (1939) eine grundsätzliche Methode gefunden hatte, die Intelligenz, die man nicht sehen konnte, indirekt durch Rückgriff auf Eigenschaften des beobachtbaren Verhaltens zu messen (bekannt duch den Begriff des Intelligenz-Quotienten, IQ). Die Grundidee bestand darin, dass zu einer bestimmten Zeit in einer bestimmten Kultur bestimmte Eigenschaften als charakteristisch für ein Verhalten angesehen werden, das man allgemein als intelligent bezeichnen würde. Dies impliziert zwar grundsätzlich eine gewisse Relativierung des Begriffs Intelligenz (was eine Öffnung dahingehend impliziert, dass zu anderen Zeiten unter anderen Umständen noch ganz neue Eigenschaftskomplexe bedeutsam werden können!), aber macht Intelligenz grundsätzlich katalogisierbar und damit messbar.
  3. Ein Nebeneffekt der Bezugnahme auf Verhaltenseigenschaften findet sich in der damit möglichen Nivellierung der zu messenden potentiellen Strukturen in jenen Systemen, denen wir Intelligenz zusprechen wollen. D.h. aus Sicht der Intelligenzmessung ist es egal ob das zu messende System eine Pflanze, ein Tier, ein Mensch oder eine Maschine ist. Damit wird – zumindest im Rahmen des vorausgesetzten Intelligenzbegriffs – entscheidbar, ob und in welchem Ausmaß eine Maschine möglicherweise intelligent ist.
  4. Damit eignet sich dieses Vorgehen auch, um mögliche Vergleiche zwischen menschlichem und maschinellem Verhalten in diesem Bereich zu ermöglichen. Für das Projekt des Semiotk & KI-Paradigmas ist dies sehr hilfreich.

LERNEN

  1. An dieser Stelle ist es wichtig, deutlich zu machen, dass Intelligenz nicht notwendigerweise ein Lernen impliziert und Lernen nicht notwendigerweise eine Intelligenz! Eine Maschine (z.B. ein schachspielender Computer) kann sehr viele Eigenschaften eines intelligenten Schachspielers zeigen (bis dahin, dass der Computer Großmeister oder gar Weltmeister besiegen kann), aber sie muss deswegen nicht notwendigerweise auch lernfähig sein. Dies ist möglich, wenn erfahrene Experten hinreichend viel Wissen in Form eines geeigneten Programms in den Computer eingeschrieben haben, so dass die Maschine aufgrund dieses Programms auf alle Anforderungen sehr gut reagieren kann. Von sich aus könnte der Computer dann nicht dazu lernen.
  2. Bei Tieren und Menschen (und Pflanzen?) gehen wir von einer grundlegenden Lernfähigkeit aus. Bezogen auf das beobachtbare Verhalten können wir die Fähigkeit zu Lernen dadurch charakterisieren, dass ein System bis zu einem Zeitpunkt t bei einem bestimmten Reiz s nicht mit einem Verhalten r antwortet, nach dem Zeitpunkt t aber dann plötzlich doch, und dieses neue Verhalten über längere Zeit beibehält. Zeigt ein System eine solche Verhaltensdynamik, dann darf man unterstellen, dass das System in der Lage ist, seine inneren Zustände IS auf geeignete Weise zu verändern (geschrieben: phi: I x IS —> IS x O (mit der Bedeutung I := Input (Reize, Stimulus s), O := Output (Verhaltensantworten, Reaktion r), IS := interne Zustände, phi := Name für die beobachtbare Dynamik).
  3. Verfügt ein System über solch eine grundlegende Lernfähigkeit (die eine unterschiedlich reiche Ausprägung haben kann), dann kann es sich im Prinzip alle möglichen Verhaltenseigenschaften aneignen/ erwerben/ erlernen und damit im oben beschriebenen Sinne intelligent werden. Allerdings gibt es keine Garantie, dass eine Lernfähigkeit notwendigerweise zu einer bestimmten Intelligenz führen muss. Viele Menschen, die die grundsätzliche Fähigkeit besitzen, Schachspielen oder Musizieren oder Sprachen zu lernen,  nutzen diese ihre Fähigkeiten niemals aus; sie verzichten damit auf Formen intelligenten Verhaltens, die ihnen aber grundsätzlich offen stehen.
  4. Wir fordern also, dass die Lernfähigkeit Teil des Semiotik & KI-Paradigmas sein soll.

LERNENDE MASCHINEN

  1. Während die meisten Menschen heute Computern ein gewisses intelligentes Verhalten nicht absprechen würden, sind sie sich mit der grundlegenden Lernfähigkeit unsicher. Sind Computer im echten Sinne (so wie junge Tiere oder menschliche Kinder) lernfähig?
  2. Um diese Frage grundsätzlich beantworten zu können, müsste man ein allgemeines Konzept von einem Computer haben, eines, das alle heute und in der Zukunft existierende und möglicherweise in Existenz kommende Computer in den charakteristischen Eigenschaften erschöpfend beschreibt. Dies führt zur Vor-Frage nach dem allgemeinsten Kriterium für Computer.
  3. Historisch führt die Frage eigentlich direkt zu einer Arbeit von Turing (1936/7), in der er den Unentscheidbarkeitsbeweis von Kurt Gödel (1931) mit anderen Mitteln nochmals nachvollzogen hatte. Dazu muss man wissen, dass es für einen formal-logischen Beweis wichtig ist, dass die beim Beweis zur Anwendung kommenden Mittel, vollständig transparent sein müssen, sie müssen konstruktiv sein, was bedeutet, sie müssen endlich sein oder effektiv berechenbar. Zum Ende des 19.Jh und am Anfang des 20.Jh gab es zu dieser Fragestellung eine intensive Diskussion.
  4. Turing wählte im Kontrast zu Gödel keine Elemente der Zahlentheorie für seinen Beweis, sondern nahm sich das Verhalten eines Büroangestellten zum Vorbild: jemand schreibt mit einem Stift einzelne Zeichen auf ein Blatt Papier. Diese kann man einzeln lesen oder überschreiben. Diese Vorgabe übersetze er in die Beschreibung einer möglichst einfachen Maschine, die ihm zu Ehren später Turingmaschine genannt wurde (für eine Beschreibung der Elemente einer Turingmaschine siehe HIER). Eine solche Turingmaschine lässt sich dann zu einer universellen Turingmaschine [UTM] erweitern, indem man das Programm einer anderen (sekundären) Turingmaschine auf das Band einer primären Turingmaschine schreibt. Die primäre Turingmaschine kann dann nicht nur das Programm der sekundären Maschine ausführen, sondern kann es auch beliebig abändern.
  5. In diesem Zusammenhang interessant ist, dass der intuitive Begriff der Berechenbarkeit Anfang der 30ige Jahre des 20.Jh gleich dreimal unabhängig voneinander formal präzisiert worden ist (1933 Gödel und Herbrand definierten die allgemein rekursiven Funktionen; 1936 Church den Lambda-Kalkül; 1936 Turing die a-Maschine für ‚automatische Maschine‘, später Turing-Maschine). Alle drei Formalisierungen konnten formal als äquivalent bewiesen werden. Dies führte zur sogenannten Church-Turing These, dass alles, was effektiv berechnet werden kann, mit einem dieser drei Formalismen (also auch mit der Turingmaschine) berechnet werden kann. Andererseits lässt sich diese Church-Turing These selbst nicht beweisen. Nach nunmehr fast 80 Jahren nimmt aber jeder Experte im Feld an, dass die Church-Turing These stimmt, da bis heute keine Gegenbeispiele gefunden werden konnten.
  6. Mit diesem Wissen um ein allgemeines formales Konzept von Computern kann man die Frage nach der generellen Lernfähigkeit von Computern dahingehend beantworten, dass Computer, die Turing-maschinen-kompatibel sind, ihre inneren Zustände (im Falle einer universellen Turingmaschine) beliebig abändern können und damit die Grundforderung nach Lernfähigkeit erfüllen.

LERNFÄHIGE UND INTELLIGENTE MASCHINEN?

  1. Die Preisfrage stellt sich, wie eine universelle Turingmaschine, die grundsätzlich lernfähig ist, herausfinden kann, welche der möglichen Zustände interessant genug sind, um damit zu einem intelligenten Verhalten zu kommen?
  2. Diese Frage nach der möglichen Intelligenz führt zur Frage der verfügbaren Kriterien für Intelligenz: woher soll eine lernfähige Maschine wissen, was sie lernen soll?
  3. Im Fall biologischer Systeme wissen wir mittlerweile, dass die lernfähigen Strukturen als solche dumm sind, dass aber durch die schiere Menge an Zufallsexperimenten ein Teil dieser Experimente zu Strukturen geführt hat, die bzgl. bestimmter Erfolgskriterien besser waren als andere. Durch die Fähigkeit, die jeweils erfolgreichen Strukturen in Form von Informationseinheiten zu speichern, die dann bei der nächsten Reproduktion erinnert werden konnten, konnten sich die relativen Erfolge behaupten.
  4. Turing-kompatible Computer können speichern und kodieren, sie brauchen allerdings noch Erfolgskriterien, um zu einem zielgerichtete Lernen zu kommen.

LERNENDE SEMIOTISCHE MASCHINEN

  1. Mit all diesen Zutaten kann man jetzt lernende semiotische Maschinen konstruieren, d.h. Maschinen, die in der Lage sind, den Gebrauch von Zeichen im Kontext eines Prozesses, zu erlernen. Das dazu notwendige Verhalten gilt als ein Beispiel für intelligentes Verhaltens.
  2. Es ist hier nicht der Ort, jetzt die Details solcher Sprach-Lern-Spiele auszubreiten. Es sei nur soviel gesagt, dass man – abschwächend zum Paradigma von Steels – hier voraussetzt, dass es schon mindestens eine Sprache L und einen kundigen Sprachteilnehmer gibt (der Lehrer), von dem andere Systeme (die Schüler), die diese Sprache L noch nicht kennen, die Sprache L lernen können. Diese Schüler können dann begrenzt neue Lehrer werden.
  3. Zum Erlernen (Training) einer Sprache L benötigt man einen definierten Kontext (eine Welt), in dem Lehrer und Schüler auftreten und durch Interaktionen ihr Wissen teilen.
  4. In einer Evaluationsphase (Testphase), kann dann jeweils überprüft werden, ob die Schüler etwas gelernt haben, und wieviel.
  5. Den Lernerfolge einer ganzen Serie von Lernexperimenten (ein Experiment besteht aus einem Training – Test Paar) kann man dann in Form einer Lernkurve darstellen. Diese zeigt entlang der Zeitachse, ob die Intelligenzleistung sich verändert hat, und wie.
  6. Gestaltet man die Lernwelt als eine interaktive Softwarewelt, bei der Computerprogramme genauso wie Roboter oder Menschen mitwirken können, dann kann man sowohl Menschen als Lehrer benutzen wie auch Menschen im Wettbewerb mit intelligenten Maschinen antreten lassen oder intelligente Maschinen als Lehrer oder man kann auch hybride Teams formen.
  7. Die Erfahrungen zeigen, dass die Konstruktion von intelligenten Maschinen, die menschenähnliche Verhaltensweisen lernen sollen, die konstruierenden Menschen dazu anregen, ihr eigenes Verhalten sehr gründlich zu reflektieren, nicht nur technisch, sondern sogar philosophisch.

EMERGING MIND PROJEKT

  1. Die zuvor geschilderten Überlegungen haben dazu geführt, dass ab 10.November 2015 im INM Frankfurt ein öffentliches Forschungsprojekt gestartet werden soll, das Emerging Mind Projekt heißt, und das zum Ziel hat, eine solche Umgebung für lernende semiotische Maschinen bereit zu stellen, mit der man solche semiotischen Prozesse zwischen Menschen und lernfähigen intelligenten Maschinen erforschen kann.

QUELLEN

  • Binet, A., Les idees modernes sur les enfants, 1909
  • Doeben-Henisch, G.; Bauer-Wersing, U.; Erasmus, L.; Schrader,U.; Wagner, W. [2008] Interdisciplinary Engineering of Intelligent Systems. Some Methodological Issues. Conference Proceedings of the workshop Modelling Adaptive And Cognitive Systems (ADAPCOG 2008) as part of the Joint Conferences of SBIA’2008 (the 19th Brazilian Symposium on Articial Intelligence); SBRN’2008 (the 10th Brazilian Symposium on Neural Networks); and JRI’2008 (the Intelligent Robotic Journey) at Salvador (Brazil) Oct-26 – Oct-30(PDF HIER)
  • Gödel, K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, In: Monatshefte Math.Phys., vol.38(1931),pp:175-198
  • Charles W. Morris, Foundations of the Theory of Signs (1938)
  • Charles W. Morris (1946). Signs, Language and Behavior. New York: Prentice-Hall, 1946. Reprinted, New York: George Braziller, 1955. Reprinted in Charles Morris, Writings on the General Theory of Signs (The Hague: Mouton, 1971), pp. 73-397. /* Charles William Morris (1901-1979) */
  • Charles W. Morris, Signication and Signicance (1964)
  • NIST: Intelligent Systems Division: http://www.nist.gov/el/isd/
  • Winfried Noth: Handbuch der Semiotik. 2., vollständig neu bearbeitete Auflage. Metzler, Stuttgart/Weimar 2000
  • Charles Santiago Sanders Peirce (1839-1914) war ein US-amerikanischer Mathematiker, Philosoph und Logiker. Peirce gehort neben William James und John Dewey zu den maßgeblichen Denkern des Pragmatismus; außerdem gilt er als Begründer der modernen Semiotik. Zur ersten Einführung siehe: https://de.wikipedia.org/wiki/Charles Sanders Peirce Collected Papers of Charles Sanders Peirce. Bände I-VI hrsg. von Charles Hartshorne und Paul Weiss, 1931{1935; Bände VII-VIII hrsg. von Arthur W. Burks 1958. University Press, Harvard, Cambridge/Mass. 1931{1958
  • Writings of Charles S. Peirce. A Chronological Edition. Hrsg. vom Peirce Edition Project. Indiana University Press,Indianapolis, Bloomington 1982. (Bisher Bände 1{6 und 8, geplant 30 Bände)
  • Saussure, F. de. Grundfragen der Allgemeinen Sprachwissenschaft, 2nd ed., German translation of the original posthumously publication of the Cours de linguistic general from 1916 by H.Lommel, Berlin: Walter de Gruyter & Co., 1967
  • Saussure, F. de. Course in General Linguistics, English translation of the original posthumously publication of the Cours de linguistic general from 1916, London: Fontana, 1974
  • Saussure, F. de. Cours de linguistique general, Edition Critique Par Rudolf Engler, Tome 1,Wiesbaden: Otto Harrassowitz, 1989 /*This is the critical edition of the dierent sources around the original posthumously publication of the Cours de linguistic general from 1916. */
  • Steels, Luc (1995): A Self-Organizing Spatial Vocabulary. Articial Life, 2(3), S. 319-332
  • Steels, Luc (1997): Synthesising the origins of language and meaning using co-evolution, self-organisation and level formation. In: Hurford, J., C.Knight und M.Studdert-Kennedy (Hrsg.). Edinburgh: Edinburgh Univ. Press.

  • Steels, Luc (2001): Language Games for Autonomous Robots. IEEE Intelligent Systems, 16(5), S. 16-22. Steels, Luc (2003):

  • Evolving grounded Communication for Robots. Trends in Cognitive Science, 7(7), S. 308-312.

  • Steels, Luc (2003): Intelligence with Representation. Philosophical Transactions of the Royal Society A, 1811(361), S. 2381-2395.

  • Steels, Luc (2008): The symbol grounding problem has been solved, so what’s next?. In M. de Vega, Symbols and Embodiment: Debates on Meaning and Cognition. Oxford: Oxford University Press, S. 223-244.
  • Steels, Luc (2012): Grounding Language through Evolutionary Language Games. In: Language Grounding in Robots. Springer US, S. 1-22.

  • Steels, Luc (2015), The Talking Heads experiment: Origins of words and meanings, Series: Computational Models of Language Evolution 1. Berlin: Language Science Press.
  • Stern, W., Die psychologischen Methoden der Intelligenzprüfung und deren Anwendung an Schulkindern, Leipzig: Barth, 1912

  • Turing, A. M. On Computable Numbers with an Application to the Entscheidungsproblem. In: Proc. London Math. Soc., Ser.2, vol.42(1936), pp.230-265; received May 25, 1936; Appendix added August 28; read November 12, 1936; corr. Ibid. vol.43(1937), pp.544-546. Turing’s paper appeared in Part 2 of vol.42 which was issued in December 1936 (Reprint in M.DAVIS 1965, pp.116-151; corr. ibid. pp.151-154).(an online version at: http://www.comlab.ox.ac.uk/activities/ieg/elibrary/sources/tp2-ie.pdf, last accesss Sept-30, 2012)

  • Turing, A.M. Computing machinery and intelligence. Mind, 59, 433-460. 1950

  • Turing, A.M.; Intelligence Service. Schriften, ed. by Dotzler, B.; Kittler, F.; Berlin: Brinkmann & Bose, 1987, ISBN 3-922660-2-3

  • Vogt, P. The physical symbol grounding problem, in: Cognitive Systems Research, 3(2002)429-457, Elsevier Science B.V.
  • Vogt, P.; Coumans, H. Investigating social interaction strategies for bootstrapping lexicon development, Journal of Articial Societies and Social Simulation 6(1), 2003

  • Wechsler, D., The Measurement of Adult Intelligence, Baltimore, 1939, (3. Auage 1944)

  • Wittgenstein, L.; Tractatus Logico-Philosophicus, 1921/1922 /* Während des Ersten Weltkriegs geschrieben, wurde das Werk 1918 vollendet. Es erschien mit Unterstützung von Bertrand Russell zunächst 1921 in Wilhelm Ostwalds Annalen der Naturphilosophie. Diese von Wittgenstein nicht gegengelesene Fassung enthielt grobe Fehler. Eine korrigierte, zweisprachige Ausgabe (deutsch/englisch) erschien 1922 bei Kegan Paul, Trench, Trubner und Co. in London und gilt als die offizielle Fassung. Die englische Übersetzung stammte von C. K. Ogden und Frank Ramsey. Siehe einführend Wikipedia-DE: https://de.wikipedia.org/wiki/Tractatus logicophilosophicus*/

  • Wittgenstein, L.; Philosophische Untersuchungen,1936-1946, publiziert 1953 /* Die Philosophischen Untersuchungen sind Ludwig Wittgensteins spätes, zweites Hauptwerk. Es übten einen außerordentlichen Einfluss auf die Philosophie der 2. Hälfte des 20. Jahrhunderts aus; zu erwähnen ist die Sprechakttheorie von Austin und Searle sowie der Erlanger Konstruktivismus (Paul Lorenzen, Kuno Lorenz). Das Buch richtet sich gegen das Ideal einer logik-orientierten Sprache, die neben Russell und Carnap Wittgenstein selbst in seinem ersten Hauptwerk vertreten hatte. Das Buch ist in den Jahren 1936-1946 entstanden, wurde aber erst 1953, nach dem Tod des Autors, veröffentlicht. Siehe einführend Wikipedia-DE: https://de.wikipedia.org/wiki/Philosophische Untersuchungen*/

Eine Übersicht über alle Blogeinträge des Autors cagent nach Titeln findet sich HIER

IST DIE SELBSTVERSKLAVUNG DER MENSCHEN UNTER DIE MASCHINEN EVOLUTIONÄR UNAUSWEICHLICH?

  1. In diesem Blog gab es in der Vergangenheit schon mehrere Einträge (z.B. den ersten großen Beitrag Kann es doch einen künstlichen Geist geben?), die sich mit der Frage beschäftigt haben, inwieweit Maschinen die Lernfähigkeit und die Intelligenz von Menschen erreichen oder sogar übertreffen können.
  2. In vielen wichtigen Punkten muss man diese Frage offensichtlich bejahen, obgleich es bis heute keine Maschine gibt, die das technische Potential voll ausnutzt.
  3. Umso bemerkenswerter ist es, welche Wirkungen Maschinen (Computer) auf die Gesellschaft erzielen können, obgleich sie noch weitab von ihrem Optimum agieren.
  4. In einem Blogeintrag anlässlich eines Vortrags Über Industrie 4.0 und Transhumanismus. Roboter als Volksverdummung? Schaffen wir uns selbst ab? hatte ich noch eine grundsätzlich positive Grundstimmung bzgl. dessen, was auf uns zukommt. Ich schrieb damals:
  5. Das Ganze endet in einem glühenden Plädoyer für die Zukunft des Lebens in Symbiose mit einer angemessenen Technik. Wir sind nicht das ‚Endprodukt‘ der Evolution, sondern nur eine Durchgangsstation hin zu etwas ganz anderem!
  6. Mittlerweile beschleicht mich der Verdacht, dass wir aktuellen Menschen die nächste Phase der Evolution möglicherweise unterschätzen.
  7. Auslöser war der persönliche Bericht eines Managers in einem weltweiten IT-Konzern, der – von Natur aus ein Naturwissenschaftler, ‚knochentrocken‘, immer sachlich, effizient – zum ersten Mal nach vielen Jahren Ansätze von Emotionen zeigte, was die Entwicklung seiner Firma angeht. Die Firma (und nicht nur diese Firma, s.u.) entwickelt seit vielen Jahren ein intelligentes Programm, das eine Unzahl von Datenbanken auswerten kann, und zwar so, dass die Anfrage von Menschen ‚interpretiert‘, die Datenbanken daraufhin gezielt abgefragt und dem anfragenden Menschen dann mitgeteilt werden. Das Ganze hat die Form eines passablen Dialogs. Das Verhalten dieses intelligenten Programms ist mittlerweile so gut, dass anfragende Menschen nicht mehr merken, dass sie ’nur‘ mit einer Maschine reden, und dass die Qualität dieser Maschine mittlerweile so gut ist, dass selbst Experten in vielen (den meisten?) Fällen schlechter sind als diese Maschine (z.B. medizinische Diagnose!). Dies führt schon jetzt dazu, dass diese Beratungsleistung nicht nur nach außen als Dienstleistung genutzt wird, sondern mehr und mehr auch in der Firma selbst. D.h. die Firma beginnt, sich von ihrem eigenen Produkt – einem in bestimmtem Umfang ‚intelligenten‘ Programm – ‚beraten‘ (und damit ‚führen‘?) zu lassen.
  8. Wenn man sich in der ‚Szene‘ umhört (man lese nur den erstaunlichen Wikipedia-EN-Eintrag zu deep learning), dann wird man feststellen, dass alle großen global operierenden IT-Firmen (Google, Microsoft, Apple, Facebook, Baidu und andere), mit Hochdruck daran arbeiten, ihre riesigen Datenbestände mit Hilfe von intelligenten Maschinen (im Prinzip intelligenten Algorithmen auf entsprechender Hardware) dahingehend nutzbar zu machen, dass man aus den Nutzerdaten nicht nur möglichst viel vom Verhalten und den Bedürfnissen der Nutzer zu erfahren, sondern dass die Programme auch immer ‚dialogfähiger‘ werden, dass also Nutzer ’natürlich (= menschlich)‘ erscheinende Dialoge mit diesen Maschinen führen können und die Nutzer (= Menschen) dann zufrieden genau die Informationen erhalten, von denen sie ‚glauben‘, dass es die ‚richtigen‘ sind.
  9. Auf den ersten Blick sieht es so aus, als ob die Manager dieser Firmen dank ihrer überlegenen Fähigkeiten die Firmen technologisch aufrüsten und damit zum wirtschaftlichen Erfolg führen.
  10. Tatsache ist aber, dass allein aufgrund der Möglichkeit, dass man ein bestimmtes Informationsverhalten von Menschen (den aktuellen ‚Kunden‘!) mit einer neuen Technologie ‚bedienen‘ könnte, und dass derjenige, der dies zu ‚erschwinglichen Preisen‘ als erster schafft, einen wirtschaftlichen Erfolg erzielen kann (zu Lasten der Konkurrenz), diese rein gedachte Möglichkeit einen Manager zwingt (!!!), von dieser Möglichkeit Gebrauch zu machen. Tut der Manager es nicht läuft er Gefahr, dass die Konkurrenz es tut, und zwar vor ihm, und dass er dadurch möglicherweise auf dem Markt so geschwächt wird, dass die Firma sich davon u.U. nicht mehr erholt. Insofern ist der Manager (und die ganze Firma) ein Getriebener (!!!). Er kann gar nicht anders!
  11. Das, was den Manager ‚treibt‘, das ist die aktuelle technische Möglichkeit, die sich aufgrund der bisherigen technischen Entwicklung ergeben hat. Für die bisherige technische Entwicklung gilt aber für jeden Zeitpunkt die gleiche Logik: als die Dampfmaschine möglich wurde, hatte nur noch Erfolg, wer sie als erster und konsequent eingesetzt hat; als die Elektrizität verfügbar, nicht anders, dann Radio, Fernsehen, Auto, Computer, ….
  12. Die ‚Manager‘ und ‚Unternehmensgründer‘, die wir zurecht bewundern für ihre Fähigkeiten und ihren Mut (nicht immer natürlich), sind trotz all dieser hervorstechenden Eigenschaften und Leistungen dennoch nicht autonom, nicht freiwillig; sie sind und bleiben Getriebene einer umfassenderen Logik, die sich aus der Evolution als Ganzer ergibt: die Evolution basiert auf dem bis heute nicht erklärbaren Prinzip der Entropie-Umkehr, bei dem freie Energie dazu genutzt wird, den kombinatorischen Raum möglicher neuer Zustände möglichst umfassend abzusuchen, und in Form neuer komplexer Strukturen in die Lage zu versetzen, noch mehr, noch schneller, noch effizienter zu suchen und die Strukturen und Dynamiken der vorfindlichen Welt (Universum) darin zu verstehen.
  13. Während wir im Falle von Molekülen und biologischen Zellen dazu tendieren, diese eigentlich ungeheuren Vorgänge eher herunter zu spielen, da sie quasi unter unserer Wahrnehmungsschwelle liegen, wird uns heute vielleicht dann doch erstmalig, ansatzweise, etwas mulmig bei der Beobachtung, dass wir Menschen, die wir uns bislang für so toll halten, dazu ganze riesige globale Firmen, die für Außenstehende beeindruckend wirken und für Firmenmitglieder wie überdimensionale Gefängnisse (? oder Irrenanstalten?), dass wir ‚tollen‘ Menschen also ansatzweise spüren, dass die wahnwitzige Entwicklung zu immer größeren Metropolen und zu immer intelligenteren Maschinen, die uns zunehmen die Welt erklären (weil wir es nicht mehr schaffen!?), uns dies alles tun lassen, weil der einzelne sich machtlos fühlt und die verschiedenen Chefs auf den verschiedenen Hierarchieebenen total Getriebene sind, die ihre Position nur halten können, wenn sie hinreichend effizient sind. Die Effizienz (zumindest in der freien Wirtschaft) wird jeweils neu definiert durch das gerade Machbare.
  14. Politische Systeme haben zwar immer versucht – und versuchen es auch heute – sich ein wenig vor dem Monster der Innovation abzuschotten, aber dies gelingt, wenn überhaupt, in der Konkurrenz der Gesellschaftssysteme nur für begrenzte Zeiten.
  15. Was wir also beobachten ist, dass die immense Informationsflut, die das einzelne Gehirn hoffnungslos überfordert, Lösungen mit intelligente Maschinen auf den Plan ruft, die das Sammeln, Sortieren, Klassifizieren, Aufbereiten usw. übernehmen und uns Menschen dann auf neue Weise servieren. So betrachtet ist es hilfreich für alle, nützlich, praktisch, Lebensfördernd.
  16. Beunruhigend ist einmal die Art und Weise, das Wie: statt dass es wirklich allen hilft, hat man den Eindruck, dass es die globalen Konzerne sind, die einseitig davon Vorteile haben, dass das bisherige Ideal der Privatheit, Freiheit, Selbstbestimmung, Würde usw. aufgelöst wird zugunsten einer völlig gläsernen Gesellschaft, die aber nur für einige wenige gläsern ist. Demokratische Gesellschaften empfinden dies u.U, stärker als nicht-demokratische Gesellschaften.
  17. Beunruhigend ist es auch, weil wir als Menschen erstmalig merken, dass hier ein Prozess in Gang ist, der eine neue Qualität im Verhältnis Mensch – Technik darstellt. In primitiveren Gesellschaften (und auch noch in heutigen Diktaturen) war es üblich , dass wenige Menschen die große Masse aller anderen Menschen quasi ‚versklavt‘ haben. Unter absolutistischen Herrschern hatten alle einem Menschen zu gehorchen, ob der nun Unsinn redete oder Heil verkündete. Nach den verschiedenen demokratischen Revolutionen wurde dieser Schwachsinn entzaubert und man wollte selbst bestimmen, wie das Leben zu gestalten ist.
  18. In der fortschreitenden Komplexität des Alltags merken wir aber, dass das sich selbst Bestimmen immer mehr vom Zugang zu Informationen abhängig ist und von der kommunikativen Abstimmung mit anderen, die ohne erheblichen technischen Aufwand nicht zu leisten sind. Die dazu notwendigen technischen Mittel gewinnen aber im Einsatz, im Gebrauch eine solche dominante Rolle, dass sie immer weniger nur die neutralen Vermittler von Informationen sind, sondern immer mehr ein Eigenleben führen, das sich ansatzweise und dann immer mehr auch von denen abkoppelt, die diese vermittelnden Technologien einsetzen. Kunden und Dienstleister werden werden gleichzeitig abhängig. Wirtschaftlich können die Dienstleister nicht mehr dahinter zurück und lebenspraktisch ist der Verbraucher, der Kunde immer mehr von der Verfügbarkeit dieser Leistung abhängig. Also treiben beide die Entwicklung zu noch größerer Abhängigkeit von den intelligenten Vermittlern voran.
  19. Eine interessante Entwicklung als Teil der übergreifenden Evolution. Wo führt sie uns hin?
  20. Die Frage ist spannend, da die heute bekannten intelligenten Maschinen noch weitab von den Möglichkeiten operieren, die es real gibt. Die Schwelle ist bislang die Abhängigkeit von den begrenzten menschlichen Gehirnen. Unsere Gehirne tun sich schwer mit Komplexität. Wir brauchen Computer, um größere Komplexität bewältigen zu können, was zu noch komplexeren (für uns Menschen) Computern führt, usw. Dabei haben wir noch lange nicht verstanden, wie die etwa 200 Milliarden einzelne Nervenzellen in unserem Gehirn es schaffen, im Millisekundenbereich miteinander so zu reden, dass all die wunderbaren Leistungen der Wahrnehmens, Denkens, Erinnerns, Bewegens usw. möglich sind.
  21. Heutige Computer haben mittlerweile eine begrenzte lokale Lernfähigkeit realisiert, die ihnen den Zugang zu begrenzter Intelligenz erlaubt. Heutige Computer sind aber weder im lokalen wie im strukturellen voll Lernfähig.
  22. Einige meinen, dass die Zukunft im Sinne von technischer-Singularität zu deuten ist, dass die intelligenten Maschinen dann irgendwann alles übernehmen. Ich wäre mir da nicht so sicher. Das Hauptproblem einer vollen Lernfähigkeit ist nicht die Intelligenz, sondern die Abhängigkeit von geeigneten Präferenzsystemen (Werte, Normen, Emotionen, Bedürfnissen, …). Dieses Problem begegnen wir beim Menschen auf Schritt und Tritt. Die vielen Probleme auf dieser Welt resultieren nicht aus einem Mangel an Intelligenz, sondern aus einem Mangel an geeigneten von allen akzeptierten Präferenzsystemen. Dass Computer die gleichen Probleme haben werden ist den meisten (allen?) noch nicht bewusst, da die Lernfähigkeit der bisherigen Computer noch so beschränkt ist, dass das Problem nicht sichtbar wird. Sobald aber die Lernfähigkeit von Computern zunehmen wird, wird sich dieses Problem immer schärfer stellen.
  23. Das einzige wirklich harte Problem ist jetzt schon und wird in der Zukunft das Werteproblem sein. Die bisherigen Religionen haben unsere Blicke mit vielen falschen Bildern vernebelt und uns im Glauben gelassen, das Werteproblem sei ja gelöst, weil man ja an Gott glaubt (jede Religion tat dies auf ihre Weise). Dieser Glaube ist aber letztlich inhaltsleer und nicht geeignet, die realen Wertprobleme zu lösen.
  24. Man kann nur gespannt sein, wie die Menschheit als Teil des umfassenden Lebensphänomens mit einer immer leistungsfähigeren Technik auf Dauer das Werteproblem lösen wird. Die einzige Hoffnung ruht in der Logik des Prozesses selbst. Der Mensch in seiner unfassbaren Komplexität ist ein Produkt der Evolutionslogik; wir selbst sind weit entfernt davon, dass wir etwas Vergleichbares wie uns selbst schaffen könnten. Darf man also darauf vertrauen, dass die in allem Leben innewohnende Logik der Evolution uns Menschen als Werkzeuge benutzt zu noch mehr Komplexität, in der wir alle kleine Rädchen im Ganzen sind (als was erscheint uns  ein einzelner Mensch in einer 30-Millionen Metropole?)

Einen Überblick über alle Einträge von cagent nach Titeln findet sich HIER

FORMALE THEORIE DES BEWUSSTSEINS oder BEWUSSTSEINSBASIERTE AGENTEN

(1) Nach einer ersten Diskussion von Husserls Pariser Vorlesung(en) von 1929 (siehe diesen Blog CM III, Teil 1-8) folgt nun eine Zwischenphase, in der ich eine erste Version einer formalen Theorie des Bewusstseins im Kontext selbstlernender Software hinschreiben werde. Die vorausgehenden Versuche der letzten Jahre scheiterten immer wieder an schwer fassbaren ‚Denkknäuel‘.

(2) Wer diese formale Theorie selber nachlesen will, der sei auf mein Skript ‚General (Behavior Based) Computational Learning Theory (GBBCLT)‘ verwiesen. Da sich dieses im beständigen Fluss befindet, kann ich nur die allgemeine Adresse (http://www.uffmm.org/gbbclt.html) angeben und auf das Kapitel ‚Consciousness‘ mit diversen Unterabschnitten verweisen. Dazu sollte man vorher den Abschnitt ‚Philosophy of Engineered Intelligent Systems‘ mit den entsprechenden Unterabschnitten lesen, um den Zusammenhang mit den künstlichen lernenden Softwareagenten verstehen zu können.

(3) Der erste Versuch des Aufschreibens erweckt den Eindruck, dass man die scheinbare Komplexität unseres Bewusstseins eventuell auf recht wenige und einfache Strukturen zurückführen kann (die eigentliche Komplexität liegt ja sowieso ‚hinter‘ dem Bewusstsein, in jener ‚Maschinerie‘, die die Leistungen des ‚erlebbaren‘ Bewusstseins quasi ‚zur Verfügung stellt‘). Sicher müssen hier viele Details noch weiter justiert werden. Doch scheint der ‚Grundprozess‘ alle Eigenschaften zu bieten, die man braucht.

(4) Die Diskussion über das phänomenologische Konzept von Husserl ist natürlich in keiner Weise abgeschlossen. Aber aufgrund der knappen Zeit, weiß ich nicht, wann ich an dieser Stelle fortfahren kann. Die Ausarbeitung der formalen Theorie und ihrer Tests hat in den nächsten Wochen –oder gar Monaten– ‚Vorfahrt‘. Außerdem habe ich das starke Gefühl, dass eine Relektüre der ‚Phänomenologie‘ von Hegel eine Menge interessanter Gedanken in diesem Kontext liefern könnte. Es ist auffällig, wie wenig Husserl auf die vorausgehende Philosophie und die umgebenden Wissenschaften eingegangen ist (die Psychologie ausgenommen, hier aber auch nur anscheinend sehr selektiv). Zudem habe ich den Eindruck, dass das Phänomen der Musik philosophisch höchst brisant ist.

ÜBERBLICK: Einen Überblick über alle Beiträge des Blogs nach Titeln findet sich HIER