ONTOLOGIE DES BEWUSSTSEINS – Nachbemerkung zu Craik

PDF

Übersicht
Craik führt in seinem Buch eine breit angelegte Diskussion im Spannungsfeld von Philosophie, Psychologie, Physiologie, Physik und Technik, die einige Hauptthemen erkennen lässt: ein Plädoyer für ein kausales Verständnis der realen Welt, für die Rekonstruktion von Bewusstsein durch Rückgriff auf das Nervensystem, für die zentrale Rolle mentaler Modelle, sowie für die wichtige Rolle von Sprache in allem Erklären. Dies gibt Anlass, den ontologischen Status des Bewusstseins nochmals zu präzisieren.

I. KONTEXT

In einem vorausgehenden Blogeintrag hatte ich kurz einige der Hauptthemen aus dem Buch ’The Nature of Explanation’ (1943) von Craig vorgestellt und kurz kommentiert. In diesem Buch weist Craik zurecht darauf hin, dass eine Erklärung der geistigen/ mentalen/ kognitiven Phänomene des Menschen ohne Rückgriff auf das ermöglichende Gehirn unvollständig sind. Eine introspektive Beschreibung solcher Phänomene beschreibt die Oberfläche dieser Phänomene, wenn sie gut gemacht ist, auch noch deren Dynamik, aber sie kann sie nicht wirklich erklären, da derjenige Kontext, der kausal für diese Phänomene verantwortlich zu sein scheint (harte Beweise gibt es nicht, siehe weiter unten), das menschliche Gehirn, in solch einer phänomenalen Beschreibung nicht berücksichtigt wird (bisher nicht!).

Dieser überdeutliche Hinweis seitens Craig wird durch vielfache Überlegungen untermauert. Was aber fehlt ist ein klares Konzept, wie denn eine philosophisch-wissenschaftliche Beschreibung des Sachverhalts methodisch vorgenommen werden müsste, um allen Aspekten Rechnung zu tragen. Obwohl Craig alle wesentlich beteiligten
Disziplinen explizit nennt (Philosophie, Psychologie, Physiologie, Physik) und er sich in diesen Bereichen gut auskennt, lässt er das genaue Verhältnis dieser Disziplinen zueinander offen.

II. MULTIPLE SICHTEN

Multiple Sichten auf den Menschen und sein Umfeld

Multiple Sichten auf den Menschen und sein Umfeld

1) Vielleicht kann es in dieser Situation helfen, sich bewusst zu machen, welch Faktoren in dieser Erkenntnissituation beteiligt sind und wie diese (grob) aufeinander bezogen sind.
2) Im Schaubild 1 sind diese Faktoren angedeutet. Die Perspektive, aus der heraus dieses Bild entstanden ist, ist zunächst die der empirischen Wissenschaften, dann ergänzt um eine introspektive Perspektive.
3) Die Physik erzählt uns die Geschichte vom Universum, seiner Entstehung seit dem Big-Bang Ereignis, seiner Struktur, die u.a. unsere Heimatgalaxie, die Milchstraße, enthält. Innerhalb der Milchstraße gibt es u.a. unser Sonnensystem mit der Erde, unserem Heimatplaneten. Die Biologie erzählt uns die Geschichte von der Entstehung des biologischen Lebens auf der Erde, die Entwicklung all der unzähligen Arten (von denen die meisten wieder ausgestorben sind), bis hin zum homo sapiens, den wir repräsentieren.
4) Um den Menschen herum gibt es zahllose wissenschaftliche Disziplinen, die unterschiedliche Aspekte des homo sapiens untersuchen. Die Physiologie hat uns darüber belehrt, dass der menschliche Körper mit all seinen komplexen Organen letztlich aus einzelnen Zellen besteht, die auf unterschiedliche Weise im Körper als Zellverbände kooperieren und dabei kommunizieren.
5) Was man bei der Betrachtung der beeindruckenden Gesamtleistung aber niemals vergessen darf, ist, dass alle Zellen zu jedem Zeitpunkt aus Molekülen bestehen, diese wiederum aus Atomen, diese wiederum aus sub-atomaren Teilchen. Jede dieser identifizierbaren Einheiten folgt eigenen, spezifischen Gesetzen des Verhaltens.
Diese Verhaltensweisen sind so spezifisch, dass es sinnvoll ist, hier entsprechend den jeweiligen Einheiten von unterschiedlichen Organisationsebenen zu sprechen, mit steigender Komplexität.
6) Diese Unterscheidung nach Organisationsebenen (denen unterschiedliche Komplexitätsebenen entsprechen), ist hilfreich, wenn man die Interaktion zwischen allen Einheiten betrachtet. Das Herz z.B. ist in einer Hinsicht eine ’Pumpe’, die das Blut durch die Adern pumpt. Es ist über Zellen auch mit dem Gehirn verbunden, das den Zustand des Herzens ’kontrolliert’ und durch elektrische-chemische Impulse beeinflussen kann. Die einzelnen Zellen, die den Zellverband ’Herz’ bilden, sind ferner für sich genommen individuelle, autonome Systeme, die untereinander durch Stoffwechselprozesse (Energieversorgung, …) verbunden sind, die absterben und durch  neue ersetzt werden, und vieles mehr. Je nach Zustand der Umgebung einer Zelle, welche Moleküle, Atome
dort vorkommen, kann dies auch die Zelle stören, zerstören. Die Zelle kann auch selbst Störungen aufweisen.
7) Insofern alle Moleküle auch Atome sind mit subatomaren Einheiten, unterliegen diese Atome jederzeit den unterschiedlichen Wechselwirkungen, die zwischen Atomen und subatomaren Einheiten im gesamten Universum möglich sind. Wie die Physik uns heute erzählen kann, gibt es hier vielfältige Wechselwirkungen im quantenmechanischen Bereich, die über den Bereich eines einzelnen menschlichen Körpers weit hinausgehen,
die bis in die Dimension der Milchstraße reichen.
8) Dies alles gilt natürlich auch für den Zellverband, der unser Nervensystem mit dem Gehirn bildet. Das Gehirn ist Teil des Gesamtkörpers; es liegt im Körper. Das Gehirn, so erzählen die Gehirnforscher heute, hat trotz der Flexibilität, Plastizität seiner Zellen in sich eine Struktur, die unterschiedliche funktionelle Einheiten abgrenzen lässt, die sowohl in sich wie auch miteinander sowohl über elektro-chemische Weise kommunizieren
wie auch nur chemisch. Dabei werden die quantenmechanischen Wechselbeziehungen normalerweise nicht berücksichtigt.
9) Lässt man die quantenmechanischen Wechselbeziehungen außen vor, dann kann das Gehirn mit der Umgebung des Körpers nur über Zellen kommunizieren, die elektro-chemische oder chemische Signale austauschen. Dazu gibt es spezielle Sinneszellen, die externe Energieereignisse in interne neuronale Energieereignisse übersetzen, und diese dann auf unterschiedliche Weise von Zelle zu Zelle weiter reichen. Dieser Prozess ist niemals 1-zu-1 sondern bringt mehrfache Transformationen und Abstraktionen mit sich. In der Regel werden zudem nicht Signale von einzelnen Sinneszellen benutzt, sondern meistens viele Hunderte, Tausend, Hunderttausende oder gar Millionen gleichzeitig und parallel. Diese werden auf unterschiedliche Weise miteinander
verrechnet. Wie das Gehirn es schafft, ohne direkten Kontakt mit der externen Welt aus diesen vielen Abermillionen gleichzeitigen Einzelsignalen brauchbare Muster, Zusammenhänge und Abläufe zu extrahieren und damit ein komplexes Verhalten zu steuern, das enthüllt sich nur langsam.
10) Aus empirischer Sicht ist die Geschichte hier zu Ende. Im Schaubild 1 gibt es aber noch die Größe Bewusstsein. Wie kommt die ins Spiel?

III. BEWUSSTSEIN

1) Aus empirischer Sicht (Physiologie, Gehirnforschung, Biologie, Physik, Chemie, Molekularbiologie, Genetik, empirische Psychologie,…) kann man die Zellen, Zellverbände, ihre Eigenschaften beobachten, messen, und das Verhalten dieser Einheiten auf der Basis dieser Messwerte beschreiben, auch mit kausalen Beziehungen,
zunehmend auch mit partiellen Modellen. Dabei wurden und werden zahlreiche interessante Wechselbeziehungen aufgedeckt z.B. zwischen Zellen und deren Molekülen, gar Atomen. In dieser Perspektive gibt es aber keinerlei Phänomene, die irgendetwas mit dem sogenannten Bewusstsein zu tun haben. In einer empirischen Perspektive gibt es prinzipiell keinerlei Möglichkeiten, bewusstseinsrelevante Phänomene zu beobachten und
zu beschreiben.
2) Selbst die moderne empirische Psychologie ist methodisch beschränkt auf messbare Sachverhalte, die sie letztlich nur im Bereich des beobachtbaren Verhaltens finden kann, neuerdings erweiterbar mit physiologischen Daten, sodass man in einer neuro-psychologischen Vorgehensweise beobachtbare Verhaltensdaten mit Körperdaten und speziell Gehirndaten in Beziehung setzen kann. Dies hat zu einer erheblichen Ausweitung
der möglichen Erklärungsleistung geführt. Aber auch in der Perspektive einer Neuro-Psychologie gibt es streng genommen keinerlei Phänomene, die man als bewusstseins-relevant bezeichnen könnte.
3) Wissenschaftstheoretisch (andere sprechen von Wissenschaftsphilosophisch) beschränkt sich der Begriff Bewusstsein auf eine spezielle Form von Innensicht des Gehirns, wie wir sie bislang explizit nur von Exemplaren des homo sapiens kennen, da dieser mittels des Werkzeugs symbolische Sprache Aussagen, Beschreibungen
liefern kann, die indirekt Zeugnis geben von Sachverhalten, die sich auf diese Innensicht des Gehirns beziehen. Die Innensicht des Gehirns ist einer empirischen Beobachtung nicht direkt zugänglich (auch wenn man in zahllosen neuro-psychologischen Abhandlungen immer wieder das Wort ’Bewusstsein’ findet, auch z.B, in der
Wortschöpfung ’neuronales Korrelat des Bewusstseins’; wissenschaftsphilosophisch ist dies Unsinn; es kann aber möglicherweise einen gewissen ’heuristischen’ Wert innerhalb wissenschaftlicher Untersuchungen haben.)
4) Dass wir überhaupt von Bewusstsein sprechen liegt daran, dass alle Exemplare des homo sapiens (und vermutlich nahezu alle biologischen Systeme) über diese bemerkenswerte Fähigkeit einer Innensicht des Gehirns verfügen, die die Betroffenen mit einem kontinuierlichen Strom von Ereignissen versorgt. Um diese Ereignisse aus der Innensicht des Gehirns von den Ereignissen der empirischen Wissenschaften abzugrenzen, sprechen die Philosophen spätestens seit dem Philosophen Edmund Husserl (1859 – 1938) von phänomenalen Ereignissen statt einfach von Ereignissen. Dies hat damit zu tun, dass Edmund Husserl und alle weiteren Anhänger einer bewusstseinsbasierten Philosophie die Ereignisse in der Innensicht des Gehirns generell als Phänomene (Ph) bezeichnet haben.
5) Da jeder Mensch qua Mensch im normalen Erkenntniszustand sich primär im Modus der Innensicht des Gehirns befindet (was anderes hat er auch gar nicht zur Verfügung) hat er zwar direkten Zugang zu den Phänomenen seines Erlebnisstroms, aber er hat nahezu keine Möglichkeit, den Begriff ’Bewusstsein’ intersubjektiv, objektiv zu definieren. Der einzelne Mensch hat zwar Zugang zu seinen Phänomenen, aber eben nur zu seinen;
das gilt für jeden Menschen in gleicher Weise. Sofern verschiedene Menschen eine gemeinsame Sprache sprechen und in dieser Sprache z.B. den Begriff ’Bewusstsein’ einführen, können sie die Wortmarke ’Bewusstsein’ zwar untereinander vorstellen, sie können aber niemals ein intersubjektives Objekt aufzeigen, auf das sich die Wortmarke ’Bewusstsein’ beziehen könnte. Nach zehntausenden Jahren von menschlicher Existenz
(wissenschaftlich gibt es den homo sapiens ca. 200.000 Jahre) gibt es so etwas wie ein explizites Sprechen mit dem Begriff ’Bewusstsein’ vielleicht 400 – 500 Jahre, höchstens. Ausführlich und systematisch vielleicht erst seit ca. 150 Jahren. Und bis heute erwecken die vielen Sprachspiele, in denen die Wortmarke ’Bewusstsein’ vorkommt, nicht den Eindruck, als ob allen Beteiligten so richtig klar ist, was sie da tun.

IV. SUBJEKTIV – EMPIRISCH

1) Die Tatsache, dass Menschen sich zunächst und primär im Modus der Innensicht des Gehirns vorfinden, ist einerseits – biologisch – normal, da sich explizite und leistungsfähige Nervensysteme und Gehirne erst relativ spät entwickelt haben, aber dann für die biologischen Systeme, die darüber verfügen konnten, zu einer der wertvollsten Eigenschaften des Überlebens und dann auch überhaupt Lebens auf der Erde wurden.
Jedes biologische System bekommt durch die Innensicht seines Gehirns eine Reihe von wertvollen (allerdings meist hochkomplexe) Informationen, mittels deren es seine aktuelle Situation, seine Geschichte, und seine mögliche Zukunft immer besser ausrechnen kann. Beim homo sapiens kommt dazu eine spezielle Kommunikationsfähigkeit hinzu. Gerade die besonderen Eigenschaften des Nervensystems beim Menschen haben dem
homo sapiens eine gigantische Überlegenheit über nahezu alle anderen biologischen Systeme gegeben. Für den homo sapiens ist dies eine Erfolgsgeschichte, nicht für die anderen Arten, die der homo sapiens entweder ausgerottet oder stark dezimiert hat oder für seine Zwecke brutal knechtet.
2) Durch die immense Zunahme der Population des homo sapiens aufgrund seiner immer verfeinerten Technik und Kultur gab es, beginnend vor ca. 2500 bis 3000 Jahren und dann andauernd bis ca. vor 500 Jahren (letztlich andauernd bis heute) immer größere Konflikte mit dem Reden über die Welt. Der Reichtum der Phänomene in der Innensicht des Gehirns ermöglicht in Kombination mit der symbolischen Sprache immer komplexere
Beschreibungen von phänomenal möglichen Sachverhalten, denen aber nicht notwendigerweise etwas in der (empirischen, objektiven, intersubjektiven) Außenwelt entsprechen musste. Das menschliche Gehirn kann in der Innensicht mühelos abstrakt-virtuelle Strukturen erzeugen, denen direkt nichts in der Außenwelt entsprechen
muss. Dies kann zu Verwirrungen führen, zu Fehlern, Katastrophen (man denke z.B. an die vorwissenschaftliche Medizin oder Physik oder …).
3) An diesem – in gewisser Weise ’natürlichem’ – Kulminationspunkt von denkerisch-sprachlicher Blütezeit und Diskrepanz zwischen gedachten Bedeutungen und empirisch, realer Bedeutung entdeckten immer mehr Menschen, dass eine Unterscheidung der menschlichen Rede in jene Redewendungen, die sich auf reale Aspekte
der Welt beziehen, und jene, die ’anders’ sind, von hohem praktischen Nutzen wäre. Die Idee einer empirischen (wissenschaftlichen) Sprache wurde geboren: empirisch wissenschaftlich sollten fortan nur noch jene Redewendungen gelten, die sich auf Gegebenheiten der realen Außenwelt beziehen lassen. Und damit dies
intersubjektiv, objektiv zweifelsfrei sei, wurde zusätzlich postuliert, dass sich diese Gegebenheiten nach einem vereinbarten Vergleichsverfahren mit einem vereinbarten Standard wissenschaftlich messen lassen. Nur solche Aussagen sollten künftig als wissenschaftlich relevante Fakten/ Daten akzeptiert werden.
4) Damit gab es nun zwar wissenschaftliche Fakten, aber es war nicht verbindlich geklärt, in welcher Form man diese Fakten dann zu komplexeren Aussagen über Beziehungen, Beziehungsnetzwerken (Modelle, Theorien) nutzen könnte. Faktisch benutzen die meisten mathematische Formeln zur abstrakten Beschreibung von empirischen Sachverhalten, die dann durch die empirischen Fakten fundiert wurden. Was genau aber
eine wissenschaftliche empirische Theorie ist, dies wurde bis in die Gegenwart nicht restlos geklärt (trotz Wissenschaftstheorie oder Philosophy of Science. Noch heute kann man in jeder sogenannten wissenschaftlichen Zeitschrift Artikel finden, in denen die Autoren sichtlich keine Vorstellung haben, was letztlich eine wissenschaftlich
empirische Theorie ist!)
5) Ein negativer (wenngleich unnötiger) Nebeneffekt der Entstehung wissenschaftlich empirischer Redeformen war die (zunächst sinnvolle) Abgrenzung gegenüber den nicht-wissenschaftlichen Redeformen, die dann aber im weiteren Verlauf zu einer Aufspaltung des Denkens in wissenschaftlich und nicht wissenschaftlich führte mit dem besonderen Akzent, dass das nicht-wissenschaftliche Reden (von den empirischen Wissenschaftlern)
grundsätzlich negativ belegt wurde. Aufgrund der historischen Lebensformen, Machtausübungen, Unterdrückungen kann man diese stark abgrenzende Haltung der Wissenschaft gegenüber den nicht wissenschaftlichen Redeformen aus der Vergangenheit verstehen. Heute dagegen wirkt diese Abgrenzung mehr und mehr kontra-produktiv.
6) Man sollte sich immer wieder bewusst machen, dass die Erfindung der empirischen Redeformen durch Verknüpfung des Redens mit definierten Vergleichsverfahren im intersubjektiven Bereich die grundsätzliche Ausgangssituation des Erkennens nicht verändert hat. Auch ein empirischer Wissenschaftler lebt primär mit dem Ereignisstrom in der Innensicht des Gehirns. Da kommt er trotz Einführung der Verknüpfung mit Messverfahren auch nicht heraus. Man kann sich dies so veranschaulichen: Ausgangspunkt für jeden Menschen ist die Menge seiner phänomenalen Ereignisse (Ph) in der Innensicht. Diese differenziert sich in aktuelle sinnliche (externe wie interne) Wahrnehmung vermischt mit den aktuell verfügbaren Gedächtnisinhalten, die diese Wahrnehmungen automatisch interpretieren. Diejenigen Phänomene, die mit intersubjektiven Messverfahren korrespondieren, bleiben trotzdem Ereignisse in der Innensicht des Gehirns; nennen wir sie Ph_emp . Als Phänomene bilden sie
dann eine Teilmenge von allen Phänomenen (Ph), also Ph_emp ⊆ Ph. Der empirische Wissenschaftler steigt also nicht grundsätzlich aus dem Club der Phänomenologen aus, sondern er folgt einer methodisch motivierten Beschränkung, wann und wie er wissenschaftlich über die empirische Welt spricht.
7) Auch in dieser Betrachtungsweise wird nochmals klar, dass eine wissenschaftliche Definition eines Begriffs ’Bewusstsein’ niemals möglich sein wird, da es grundsätzlich keine intersubjektiven Messverfahren geben kann.
8) Allerdings sollte durch diese Überlegungen auch klar werden, dass eine grundsätzliche Ausklammerung einer Beschäftigung mit der Innensicht des Gehirns und des möglichen Wechselspiels zwischen phänomenalen und empirisch-phänomenalen Ereignissen von allerhöchstem Interesse sein sollte. Denn das Gesamtphänomen Innensicht
des Gehirns ist eines der erstaunlichsten Phänomene im gesamten bekannten Universum und es wäre eine Bankrotterklärung jeglichen menschlichen Erkenntnisstrebens, würde man sich dem Phänomen verschließen, nur weil die bisher vereinbarten wissenschaftlichen Redeformen dieses Phänomen ausschließen. Wissenschaft muss nicht notwendigerweise bei den empirischen Sachverhalten enden.

 KONTEXTE

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER.

DIE ZUKUNFT WARTET NICHT – 2117 – PHILOSOPHISCHE WELTFORMEL – FAKE-NEWS ALS TODESENGEL

NACHTRAG: Mo, 13.März 2017

Wichtiger Nachtrag zum Komplexitätsbegriff, seinen Grenzen, und erweiterte  Diskussion zur ersten Periodisierung genannt ‚Emergent Life‘ (hauptsächlich ab Nr.25)

KONTEXT

  1. Der aktuelle Blogeintrag ist keine direkte Fortsetzung des letzten Eintrags, sondern schließt gedanklich eher an den vorletzten Beitrag an und ist von daher eher als eine Einleitung zu dem Blogeintrag über das Bewusstsein zu verstehen.
  2. Welche Themen jeweils in die Feder fließen hängt von vielerlei Faktoren ab. Generell natürlich schon von den übergreifenden Perspektiven des Blogs, dann aber auch von alltäglichen Ereignissen und Diskussionen. Dass es heute nun zu diesem sehr grundsätzlichen Beitrag gekommen ist, ist u.a. den intensiven Diskussionen mit Manfred Fassler geschuldet, der aufgrund seines Hintergrundes in Soziologie und Anthropologie die gesellschaftliche Dimension stark in die Überlegungen einbringt, während ich mich meist auf systemische Perspektiven fokussieren. Als ich versucht habe (während ich durch meine Grippe weitgehend ausgeschaltet war (und immer noch bin)), seine Aspekte mit meinen Überlegungen zusammen zu bringen, entstand schrittweise eine Struktur, ein Modell, das sich darstellt wie der Beginn einer philosophischen Weltformel, mit deren Hilfe man mit einem Male viele komplexe Einzelphänomene in die Logik eines übergeordneten Zusammenhangs einordnen kann (siehe Schaubild).

    Periodisierung der Evolution des Lebens mit dem Versuch eines systematischen Kriteriums

    Periodisierung der Evolution des Lebens mit dem Versuch eines systematischen Kriteriums

WELTFORMEL

  1. Den Begriff Weltformel kennen wir ja meist nur im Kontext der modernen Physik, die mit ihren Erklärungsmodellen zu immer umfassenderen Aussagen über das Universum kommen konnte, so umfassend, dass man tatsächlich geneigt ist, von einer Weltformel zu sprechen. Nun wissen wir aber, dass diese sogenannten Weltformeln der Physik bislang noch nicht wirklich alles erklären, geschweige denn nicht all jene Phänomene, die wir dem Bereich des biologischen Lebens zuordnen und den damit verbundenen immer komplexeren Phänomenen von Verhalten und menschlichen Gesellschaften. Es besteht auch wenig Aussicht, dass die physikalischen Weltformeln jemals zu einer völlig erschöpfenden Weltformeln werden könnte, weil schon rein mathematisch eine Theorie der Welt ohne jene, die die Theorie hervorbringen, seit Gödel 1931 entweder als grundsätzlich unvollständig oder unentscheidbar gilt.
  2. Ein anderes Hindernis besteht darin, dass die Physik als empirische Wissenschaft – wie alle anderen empirischen Disziplinen auch – schon vom Start weg nur einen kleinen Teil der möglichen Phänomene dieser Welt als Ausgangspunkt zulässt. Diese vorwissenschaftlich getroffene methodische Beschränkung auf die sogenannten intersubjektiven Phänomene, die sich mittels vereinbarter Messverfahren messen lassen, und zwar invariant mit Bezug auf den, der misst, hat sich zwar im großen und ganzen als sehr leistungsfähig erwiesen, aber anzunehmen, dass sich mit dieser methodisch eingeschränkten Phänomenmenge auf lange Sicht alles erklären lassen wird, auch das, was sich hinter den ausgeschlossenen Phänomenen verbirgt, dies ist eine vor-wissenschaftliche Annahme, für die es keinerlei Belege gibt. Die Zukunft wird zeigen, wie es sich mit diesem Ausschluss verhält.
  3. Ob es also die Physik sein wird, die uns die endgültige Weltformel liefern wird, oder doch eher die Philosophie, wird uns die Zukunft zeigen. Die Philosophie hat gegenüber der Physik (und auch gegenüber allen anderen empirischen Disziplinen), den methodisch großen Vorteil, dass die Philosophie alle anderen Disziplinen voraussetzen und einbeziehen kann. So kann ein Philosoph alle Fragmente und Entwürfe von Weltformeln der Physik nehmen und dann dazu ergänzend, erweiternd, begründend seine Weltformel formulieren. Alles, was in der Physik gilt, wird dann hier auch gelten, aber eventuell noch mehr.
  4. Die Überlegungen des Autors zu den Umrissen einer philosophischen Weltformel begannen nun aber gerade nicht so, dass er sich vor den Computer gesetzt hat und sich sagte, so, jetzt wird eine philosophische Weltformel geschrieben. Nein, so würde es auch nie funktionieren. Formeln, selbst die einfachsten, sind immer Ergebnisse von Denkprozessen, mehr oder weniger bewusst, mehr oder weniger schnell. Und eine Weltformel ist, wie man vermuten kann, wenn überhaupt, das Ergebnis von vielen Jahren Arbeit mit ganz vielen Inhalten. Und wie wir wissen, Zeit und Aufwand alleine garantieren auch keine Ergebnisse; sie können die Wahrscheinlichkeit erhöhen, etwas Interessantes zu finden, aber garantieren kann man es nicht.
  5. Das Ganze fing eher unscheinbar an. Unter dem Eindruck eines Telefonats mit Manfred Fassler begann der Autor zunächst für sich, eine Skizze jener Themen zu malen, die in diesem Blog seit 2007 aufgeschlagen sind (380 Beiträge von cagent und 52 Beiträge von cagent im Kontext der Werkstattgespräche). Er überlegte sich, ob man die Themen nach bestimmten inhaltlichen Kriterien und zeitlich ‚clustern‘ könnte. Was dabei herauskam das waren diese merkwürdigen Zylinderfiguren auf der linken Seite des Bildes.

ZEITLICHE EINTEILUNGEN

 

  1. Von oben – beginnend mit dem Big Bang – bis nach unten, zur Gegenwart, haben wir eine zeitliche Erstreckung von ca. 13.8 Mrd Jahren. Eine Einteilung hängt von vorausgehenden Kriterien ab, von einem Muster, Modell, von dem man annimmt, dass es die Menge der Ereignisse sinnvoll strukturiert.
  2. Wie man aus der Skizze ersehen kann, wurde solch eine Unterteilung vorgenommen.
  3. Im ersten Anlauf wurde versucht, mit einem Begriff der Komplexität zu arbeiten. Dahinter steht die Intuition, dass es sich bei den zu beschreibenden Ereignissen um Strukturen handelt, sich sich im Laufe der Zeit bildeten und die immer dichter wurden. Die aktuelle Unterteilung markiert solche Phasen, in denen hervorstechende Komplexitätssprünge zu verzeichnen sind.
  4. Bevor auf die Details dieser Betrachtung eingegangen wird, soll aber zunächst der benutzte Komplexitätsbegriff näher erläutert werden. Dabei sei schon hier angemerkt, dass sich im weiteren Verlauf herausgestellt hat, dass der gewählte Komplexitätsbegriff viel zu schwach ist, um jene Eigenschaften zu repräsentieren, von denen die heutige Biologie, Ethologie und Anthropologie (und möglicherweise viele weitere Disziplinen) sagen würden, dass sie als ‚wichtig‘ für das Phänomen angesehen werden.

KOMPLEXITÄT

 

  1. Vorab, es gibt in der Literatur keinen einheitlichen Komplexitätsbegriff. Im Laufe der Jahre habe ich einen eigenen Begriff von Komplexität entwickelt, den ich hier kurz vorstelle. Man kann ihn dann kritisieren oder übernehmen. Im Falle von Kritik wäre ich an Argumenten interessiert, um weiter lernen zu können, ihn vielleicht weiter zu entwickeln oder letztlich doch wieder zu verwerfen.
  2. Die Frage ist immer, mit welcher mentalen Brille man die Wirklichkeit sieht. Der berühmte Pessimist sieht überall die halbleeren Gläser, der Optimist die halbvollen. Der Tierschützer sieht überall, wie die Tiere leiden, der Chemiker sieht überall chemische Verbindungen am Werke, der Immobilienmakler potentielle Kaufobjekte, und so fort.
  3. Für die Frage der Komplexität besteht eine Möglichkeit darin, sich die mentale Brille der Systeme aufzusetzen. Mit der System-Brille besteht die Welt nur noch aus Systemen. Ein System ist Etwas, das sich von seiner Umgebung unterscheiden lässt. Diese Annahme impliziert, dass es rein abstrakt zwischen diesem unterscheidbaren Etwas und seiner Umgebung Wechselwirkungen geben kann. Sofern es um Einwirkungen auf das System geht sprechen wir einfach vom Input (I) des Systems und im umgekehrten Fall, wenn das System auf die Umgebung einwirkt, vom Output (O) des Systems. Rein abstrakt, auf der begrifflichen Ebene, hat ein System demgemäß immer einen Input und Output in Wechselwirkung mit seiner Umgebung; im konkreten, empirischen Fall, kann diese Wechselwirkung so schwach sein, dass sie sich nicht messen lässt. Dann ist die Wechselwirkung leer, oder 0 = I = O.
  4. Nimmt man ein bestimmtes System S als Bezugspunkt, dann kann man sagen, dass sich das System S auf Ebene/ Level 0 befindet. Alle Systeme, die sich mit Bezug auf das System S in seiner Umgebung befinden, wären dann auf der Ebene/ dem Level +1. Alle Systeme, die sich im System S befinden, finden sich auf Ebene/ Level -1. Sollte ein System S‘ sich auf Level -1 von System S befinden, also LEVEL(S‘,S,-1), und sollte das System S‘ selbst weiter Systeme S“ enthalten, dann lägen diese auf Level -2 von System S (und auf Level -1 zu System S‘).
  5. Beispiel: Vom menschlichen Körper wissen wir, dass er sich so betrachten lässt, dass er aus einer endlichen Anzahl von Körperorganen besteht (Level -1), die wiederum aus vielen Zellen bestehen (Level -2). Hier kann man entweder weitere Subeinheiten annehmen oder betrachtet diese Zellen als nächsten Bezugspunkt, von denen wir wissen, dass jeder Körperzelle wiederum aus einer Vielzahl von Systemen besteht (Level -3). Diese Betrachtung könnte man weiter fortsetzen bis zu den Molekülen, dann Atomen, dann subatomaren Teilchen, usw. Nimmt man die Umgebung menschlicher Körper, dann haben wir auf Level +1 andere menschliche Körper, Tiere, Pflanzen, Gebäude, Autos, Computer usw. Jedes dieser Systeme in der Umgebung ist selbst ein System mit inneren Systemen.
  6. Was bislang noch nicht gesagt wurde, ist, dass man anhand der Inputs und Outputs eines Systems sein Verhalten definiert. Die Abfolge von Inputs und Outputs konstituiert eine Folge von (I,O)-Paaren, die in ihrer Gesamtheit eine empirische Verhaltensfunktion f_io definieren, also f_io ={(i,o), …, (i,o)}, wobei man mit Hilfe einer Uhr (eine Maschine zur Erzeugung von gleichmäßigen Intervallen mit einem Zähler) jedem Input- und Outputereignis eine Zeitmarke zuordnen könnte.
  7. Während empirisch immer nur endlich viele konkrete Ereignisse beobachtet werden können, kann man abstrakt unendlich viele Ereignisse denken. Man kann also abstrakt eine theoretische Verhaltensfunktion f_th über alle möglichen denkbaren Input- und Outputereignisse definieren als f_th = I —> O. Eine empirische Verhaltensfunktion wäre dann nur eine Teilmenge der theoretischen Verhaltensfunktion: f_io c f_th. Dies hat Vorteile und Nachteile. Die Nachteile sind ganz klar: theoretisch spricht die Verhaltensfunktion über mehr Ereignisse, als man jemals beobachten kann, also auch über solche, die vielleicht nie stattfinden werden. Dies kann zu einer falschen Beschreibung der empirischen Welt führen. Demgegenüber hat man aber den Vorteil, dass man theoretisch über Ereignisse sprechen kann, die bislang noch nicht beobachtet wurden und die daher für Prognosezwecke genutzt werden können. Wenn die Theorie also sagen würde, dass es ein bestimmtes subatomares Teilchen mit der Beschaffenheit X geben müsste, was aber bislang noch nicht beobachtet werden konnte, dann könnte man aufgrund dieser Prognose gezielt suchen (was in der Vergangenheit auch schon zu vielen Entdeckungen geführt hat).
  8. Rein abstrakt kann man ein System SYS damit als eine mathematische Struktur betrachten, die über mindestens zwei Mengen Input (I) und Output (O) definiert ist zusammen mit einer Verhaltensfunktion f, geschrieben: SYS(x) genau dann wenn x = <I,O,f> mit f: I → O.
  9. Rein abstrakt gilt also, dass jedes System SYS auch weitere Systeme als interne Elemente besitzen kann, d.h. Jedes System kann Umgebung für weitere Systeme sein. Nennen wir die Gesamtheit solcher möglicher interner Systeme IS, dann müsste man die Strukturformel eines Systems erweitern zu SYS(x) gdw x = <I,O,IS,f> mit f: I x IS —> IS x O. Dies besagt, dass ein System mit weiteren internen Systemen IS in seinem Verhalten nicht nur abhängig ist vom jeweiligen Input I, sondern auch vom Output der jeweiligen internen Systeme. Aus beiden Inputs wir dann nicht nur der Systemoutput O ermittelt, sondern zugleich bekommen auch die internen Systeme einen Input (der diese internen Systeme u.U. So verändern kann, dass sie beim nächsten Mal ganz anders reagieren als vorher).
  10. In welchem Sinn könnte man nun sagen, dass ein System S komplexer ist als ein System S‘ (geschrieben S >~> S‘)?
  11. Es gibt jetzt verschiedene Möglichkeiten. Einmal (i) könnte die Anzahl der inneren Ebenen (-N) ein Ansatzpunkt sein. Ferner (ii) bietet sich die Anzahl der Systeme pro Ebene (|-n| mit n in N), ihre ‚Dichte‘, an. Schließlich (iii) macht es auch einen Unterschied, wie groß die Anzahl der möglichen verschiedenen Inputs-Outputs ist, die in ihrer Gesamtheit einen Raum möglicher Verhaltenszustände bilden (|I| x |O| = |f_io|). Rein mathematisch könnte man auch noch (iv) den Aspekt der Mächtigkeit der Menge aller Systeme einer Art SYS, also |SYS|, definieren und diese Menge – die in der Biologie Population genannt wird – als eine Art ‚Hüllensystem‘ S_pop definieren. Ein Hüllensystem wäre dann ein System, das ausschließlich Elemente einer bestimmten Art enthält. Ein Hüllensystem S_pop_a könnte zahlreicher sein als ein Hüllensystem S_pop_b, |S_pop_a| > |S_pop_b|, es könnte aber auch sein, dass sich die Mächtigkeit einer Population im Laufe der Zeit ändert. Eine Population mit einer Mächtigkeit |S_pop_x| = 0 wäre ausgestorben. Die Veränderungen selbst können Wachstumsraten und Sterberaten anzeigen.
  12. Im Folgenden nehmen wir hier an, dass ein System S komplexer ist als ein System S‘ (S >~> S‘), wenn S ein System im Sinne der Definition ist und entweder (i) mehr innere Ebenen enthält oder (ii) pro innere Ebene eine höhere Dichte aufweist oder aber (iii) der Raum möglicher Verhaltenszustände der beteiligten Systeme größer ist. Bei Gleichheit der Größen (i) – (iii) könnte man zusätzlich die Größe (iv) berücksichtigen.
  13. Beispiel: Die Milchstraße, unsere Heimatgalaxie, umfasst zwischen 150 und 400 Mrd. Sterne (Sonnen) und hat einen Durchmesser von ca. 100.000 bis 180.000 Lichtjahre. In einem einführenden Buch über die Mikrobiologie präsentiert Kegel als neueste Schätzungen, dass der menschliche Körper etwa 37 Billionen (10^12) Körperzellen umfasst, dazu 100 Billionen (10^12) Bakterien im Körper und 224 Mrd. (10^9) Bakterien auf der Haut. Dies bedeutet, dass ein einziger menschlicher Körper mit seinen Körperzellen rein quantitativ etwa 150 Galaxien im Format der Milchstraße entspricht (1 Zelle = 1 Stern) und die Bakterien darin nochmals etwa 400 Galaxien. Dies alles zudem nicht verteilt in einem Raum von ca. 550 x 100.000 – 180.000 Lichtjahren, sondern eben in diesem unserem unfassbar winzigen Körper. Dazu kommt, dass die Körperzellen (und auch die Bakterien) in intensiven Austauschprozessen stehen, so dass eine einzelne Zelle mit vielen Tausend, wenn nicht gar zigtausenden anderen Körperzellen kommuniziert (Hormone im Blut können können viele Milliarden Zellen adressieren). Diese wenigen Zahlen können ahnen lassen, mit welchen Komplexitäten wir im Bereich des Biologischen zu tun haben. Dabei ist noch nicht berücksichtigt, dass ja die Zellen im Körper meist noch in funktionellen Einheiten organisiert sind mit weiteren Untereinheiten, so dass sich hier viele Ebenen finden lassen.

KOMPLEXITÄTSEREIGNISSE

 

  1. Unter Voraussetzung des bisherigen Komplexitätsbegriffs kann man nun die Ereignisse der biologischen Evolution mit diesem Begriff beschreiben und schauen, ob es irgendwann einen hervorstechenden Komplexitätssprung gibt, der möglicherweise den Beginn einer neuen Phase markiert.
  2. An dieser Stelle wird schon deutlich, dass die Wahl eines Komplexitätsbegriffs basierend auf Systemen möglicherweise noch zu schwach ist, um den zu beschreibenden Phänomenen gerecht zu werden. Den Begriff ‚Komplexitätssprung‘ kann man zwar formal definieren (es gibt immer viele Möglichkeiten), ob nun solch ein Konzept dann in der empirischen Realität aber genau das beschreibt, was wirklich dem Phänomen optimal entspricht, das kann sich letztlich nur am empirischen Ereignis selbst anschaulich entscheiden (im positiven Fall). Ein einfacher Ansatz wäre, einen Komplexitätssprung über den Begriff des minimalen Abstands zwischen zwei Komplexitäten S und S‘ zu definieren, und unter Einbeziehung ‚einer empirisch sinnvollen Konstante‘. Dann würde immer dann, wenn ein solcher Abstand gemessen werden kann, ein Komplexitätssprung vorliegt. Was wäre aber ein ‚empirisch sinnvoller Abstand‘ in biologischer Sicht?

PERIODISIERUNG

  1. Betrachtet man nach diesen Vorbemerkungen das Schaubild, dann kann man als ersten Abschnitt ‚Emergent Life‘ erkennen. Dies identifiziert die Zeit ab dem ersten nachgewiesenen Auftreten von biologischen Zellen, vor ca. 3.5 Mrd Jahren (nach neuesten Funden evtl. sogar schon ab 3.77 Mrd Jahren). Der Übergang von Molekülen zu sich selbst reproduzierenden Zellen markiert einen gewaltigen Komplexitätssprung.
  2. Man kann versuchen, den formalen Komplexitätsbegriff darauf anzuwenden. Nimmt man beispielsweise eine eukaryotische Zelle als System S, dann kann man typische Umgebungen ermitteln, interne Organisationslevel, die Dichte auf den Leveln sowie den Raum möglicher Verhaltenszustände von jedem beteiligten System. Nimmt man als Vergleich die strukturell einfacheren prokaryotischen Zellen (die als evolutionär älter gelten), dann kann man zu unterschiedlichen Werten kommen, die im Falle der prokaryotischen Zellen kleiner ausfallen. Im Unterschied zu einer Ansammlung von irgendwelchen Molekülen wird man noch größere Unterschiede feststellen. Will man diese strukturellen Unterschiede für eine Klassifikation nutzen, dann muss man sie gewichten. Ohne hier auf die Details einer solchen Gewichtung eingehen zu können (das wäre ein eigener riesiger Artikel) stellen wir hier einfach mal fest, dass gilt: S_eukaryot >~> S_prokaryot >~> S_molecule, wobei der ‚Abstand‘ zwischen den beiden Zelltypen deutlich kleiner ist als zwischen dem einfachen Zelltyp und einem einfachen Molekül, also Distance(S_eukaryot, S_prokaryot) < Distance(S_prokaryot, S_molecule).
  3. Unterstellen wir mal, alle Details vorausgehender Klassifikationen wären erfüllt. Was wäre damit erreicht? Wir wüssten schematisch, dass wir es mit drei verschiedenen Typen von Systemen zu tun hätte mit unterschiedlichen Levels, Input-Output-Räumen, unterschiedlichen Dichten … hätten wir damit aber irgendetwas von dem erfasst, was die evolutionäre Biologie, Molekularbiologie, Zellbiologie usw. bislang als charakteristisch für die biologische Zelle erkannt zu haben meint?
  4. Einige der wichtigen Eigenschaften werden informell so beschrieben: (i) Zellen haben eine erkennbare Struktur mit Wechselwirkungen zur Umgebung (insofern sind sie Systeme); (ii) sie sind in der Lage, Energie aus der Umgebung aufzunehmen und damit unterschiedliche chemische Prozesse zu moderieren; (iii) sie sind in der Lage, die Strukturen und Funktionen dieser Struktur in Form eines speziellen Moleküls zu kodieren (Bauplan, ‚Gedächtnis‘); (iv) sie können sich mit Hilfe des Bauplans reproduzieren, wobei die Reproduktion Abweichungen zulässt.
  5. Mindestens in diesen vier genannten Eigenschaften unterscheiden sich biologische Zellen von Molekülen. Der zuvor eingeführte Komplexitätsbegriff kann hier zwar eine höhere Komplexität herausrechnen, aber tut sich schwer, die vier Leiteigenschaften angemessen zu repräsentieren. Woran liegt das?
  6. Das ist einmal der Begriff der Energie. Dieser wurde von der Physik in vielen Jahrhunderten schrittweise erarbeitet und ist eine Eigenschaft, die generisch die gesamte empirische Welt durchzieht. Letztlich liegt er allem zugrunde als Äquivalent zur bewegten Massen. Wenn man nur Strukturen von Systemen betrachtet, kommt Energie nicht wirklich vor. Wenn es nun aber eine zentrale neue Eigenschaft eines Systems ist, freie Energie für eigene Zwecke ‚verarbeiten‘ zu können, dann müsste dies in die Systemstruktur aufgenommen werden (spezielle Funktionen…). Allerdings verarbeiten sogar Moleküle in gewisser Weise Energie, allerdings nicht so komplex und produktiv wie Zellen.
  7. Dann sind dort die metabolischen Prozesse (Stoffwechselprozesse) der Zellen. Diese sind extrem vielfältig und komplex miteinander verwoben. Der abstrakte Komplexitätsbegriff kann dies zwar anzeigen, aber nur ‚äußerlich‘; die Besonderheiten dieser Prozesse werden damit nicht sichtbar.
  8. Schließlich das Phänomen des Zellkerns mit Molekülen, die einen Bauplan kodieren; man könnte dies auch als eine Form von Gedächtnis beschreiben. Zum kodierten Bauplan gibt es auch eine komplexe Dekodierungsmaschinerie. Eine rein formale Repräsentation im Komplexitätsbegriff macht die Besonderheit nicht sichtbar. Wenn man weiß, worauf es ankommt, könnte man eine entsprechende Systemstruktur zusammen mit den notwendigen Operationen definieren.
  9. Was sich hier andeutet, ist, dass die abstrakte Seite der formalen Repräsentation als solche zwar nahezu alles zulässt an Formalisierung, aber welche Struktur letztlich etwas Sinnvolles in der empirischen Welt kodiert, folgt aus der abstrakten Struktur alleine nicht. Dies muss man (mühsam) aus den empirischen Phänomenen selbst herauslesen durch eine Art induktive Modellbildung/ Theoriebildung, also das, was die empirischen Wissenschaften seit Jahrhunderten versuchen.
  10. Der Versuch, ‚auf die Schnelle‘ die sich hier andeutenden Komplexitäten zu systematisieren, wird also nur gelingen, wenn die Verallgemeinerungen die entscheidenden empirischen Inhalte dabei ’nicht verlieren‘.
  11. Ohne diese Problematik an dieser Stelle jetzt weiter zu vertiefen (darauf ist später nochmals zurück zu kommen), soll hier nur ein Gedanke festgehalten werden, der sich mit Blick auf die nachfolgende Phase anbietet: mit Blick aufs Ganze und den weiteren Fortgang könnte man in der ersten Phase von Emerging Life als grundlegendes Ereignis die Ausbildung der Fähigkeit sehen, eine Art strukturelles Gedächtnis bilden zu können, das sich bei der Weitergabe strukturell variieren lässt. Damit ist grundlegend der Ausgangspunkt für die Kumulation von Wissen unter Überwindung der reinen Gegenwart möglich geworden, die Kumulierung von ersten Wirkzusammenhängen. Diese Urform eines Gedächtnisses bildet einen ersten grundlegenden Meta-Level für ein erstes Ur-Wissen von der Welt jenseits des Systems. Der Emerging Mind aus der nächsten Phase wäre dann der Schritt über das strukturelle Gedächtnis hin zu einem lokal-dynamischen Gedächtnis.
  12. Dann stellt sich die Frage, welche der nachfolgenden Ereignisse in der Evolution eine weitere Steigerung der Komplexität manifestieren? Kandidaten kann man viele finden. Zellen haben gelernt, sich in immer komplexeren Verbänden zu organisieren, sie haben immer komplexere Strukturen innerhalb der Verbände ausgebildet, sie konnten in immer unterschiedlicheren Umgebungen leben, sie konnten innerhalb von Populationen immer besser kooperieren, konnten sich auch immer besser auf die Besonderheiten anderer Populationen einstellen (als potentielle Beute oder als potentielle Feinde), und konnten immer mehr Eigenschaften der Umgebungen nutzen, um nur einige der vielfältigen Aspekte zu nennen. Manche bildeten komplexe Sozialstrukturen aus, um in zahlenmäßig großen Populationen gemeinsam handeln zu können (Schwärme, ‚Staaten‘, Verbünde, ….). Nach vielen Milliarden Jahren, von heute aus erst kürzlich, vor einigen Millionen Jahren, gab es aber Populationen, deren zentrale Informationsverarbeitungssysteme (Nervensysteme, Gehirne), das individuelle System in die Lage versetzen können, Vergangenes nicht nur zu konservieren (Gedächtnis), sondern in dem Erinnerbaren Abstraktionen, Beziehungen, Unterschiede und Veränderungen erkennen zu können. Zugleich waren diese Systeme in der Lage Gegenwärtiges, Gedachtes und neue Kombinationen von all dem (Gedachtes, Geplantes) symbolisch zu benennen, auszusprechen, es untereinander auszutauschen, und sich auf diese Weise ganz neu zu orientieren und zu koordinieren. Dies führte zu einer revolutionären Befreiung aus der Gegenwart, aus dem Jetzt und aus dem ‚für sich sein‘. Damit war mit einem Mal alles möglich: das schrittweise Verstehen der gesamten Welt, die schrittweise Koordinierung allen Tuns, das Speichern von Wissen über den Moment hinaus, das Durchspielen von Zusammenhängen über das individuelle Denken hinaus.
  13. Als nächster Komplexitätssprung wird daher das Auftreten von Lebewesen mit komplexen Nervensystemen gesehen, die ein Bewusstsein ausbilden konnten, das sie in die Lage versetzt, miteinander ihre internen Zustände symbolisch austauschen zu können, so dass sie einen Siegeszug der Erkenntnis und des Aufbaus komplexer Gesellschaften beginnen konnten. Dieses Aufkommen des Geistes (‚Emerging Mind‘) definiert sich damit nicht nur über die direkt messbaren Strukturen (Nervensystem, Struktur, Umfang,..), sondern auch über den Umfang der möglichen Zustände des Verhaltens, das direkt abhängig ist sowohl von den möglichen Zuständen des Gehirns, des zugehörigen Körpers, aber auch über die Gegebenheiten der Umwelt. Anders ausgedrückt, das neue Potential dieser Lebensform erkennt man nicht direkt und alleine an ihren materiellen Strukturen, sondern an der Dynamik ihrer potentiellen inneren Zustände in Wechselwirkung mit verfügbaren Umwelten. Es ist nicht nur entscheidend, dass diese Systeme symbolisch kommunizieren konnten, sondern auch WAS, nicht entscheidend alleine dass sie Werkzeuge bilden konnten, sondern auch WIE und WOZU, usw.
  14. Es ist nicht einfach, dieses neue Potential angemessen theoretisch zu beschreiben, da eben die rein strukturellen Elemente nicht genügend aussagestark sind. Rein funktionelle Aspekte auch nicht. Es kommen hier völlig neue Aspekte ins Spiel.

Die Fortsezung gibt es HIER.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Die Einsamkeit der Atome überwinden …

Letzter Nachtrag: 22.September 2015 (Klangexperiment)

Dies ist ein Blitzeintrag. Als ih heute morgen langsam aufdämmerte und die Gedanken durcheinanderwirbelten, schälte sich ein Punkt plötzlich heraus:

WAS IST LEBEN?

Die einschlägigen Disziplinen (Biologie, Molekularbiologie, Genetik, Astrobiologie, Physik, Chemie, …) haben dazu mittlerweile viele tausend Seiten hochwertige Aussagen veröffentlicht. Die Darstellung der Prozesse auf molekularer Ebene ist geradezu atemberaubend in Vielfalt und Detail. Doch welcher dieser Forscher hat eine ernsthafte persönlichen Stellungnahme zum ‚Leben‘ wie wir es auf dieser Erde kennengelernt haben (von dem wir ein Teil sind)?

Salopp, um es auf den Punkt zu bringen, kann man sagen, dass sich das biologische Leben dadurch auszeichnet, dass es einen Prozess darstellt, in dem kontinuierlich die ‚Einsamkeit der Atome‘ überwunden wird. Ist nach physikalischen Gesetzen vielleicht noch erklärbar, wie es zu Molekülbildungen kommt, so ist der immer weiter gehende Zug in Richtung Molekülkomplexe, dann Zellen, dann Vielzell-Systeme (der Mensch mit etwa 4 Billionen Zellen plus weiteren Billionen Mikrorganismen in Kooperation), dann Kooperation zwischen Vielzellsystemen, usw. ein Prozess, der weit über die Erklärungskraft bekannter physikalischer Gesetze hinausgeht. Manche Nobelpreisträger haben dies auch konstatiert. Im wissenschaftlichen Alltagsbetrieb ist von diesen tiefliegend Fragen und Einsichten nahezu nichts zu finden. Jeder werkelt friedlich vor sich hin, als ob seine Minidisziplin die ganze Welt erklärt. Dies tut sie nicht.

Warum tut das, was wir ‚Leben‘ nennen, dies? Wozu soll das gut sein?
Keine Konzernbilanz dieser Welt gibt darauf eine Antwort.
Kein politisches Programm irgendeiner Partei stellt sich solchen Fragen.
Keine Hochschule, Universität dieser Welt interessiert sich für solche Fragen (wehe, ein Forscher würde dies tun; er würde für unseriös erklärt).
Also treiben wir weiter dahin, getrieben und getragen von einem Prozess, den wir nicht verstehen (und irgendwie auch garnicht verstehen wollen?).

Die Apostel der Maschinen-Singularität haben irgendwie noch nicht bemerkt, dass sie selbst möglicherweise zu einer viel grundlegenderen Singularität gehören, die wiederum stattfindet im Rahmen der ersten und umfassendsten Singularität, nämlich dem BigBang, der als solcher wissenschaftlich eigentlich nicht existiert, nur seine Auswirkungen dürfen wir bestaunen.

Muss hier stoppen, da ich zur ersten Probe für das Philosophy-in-Concert Projekt muss.

Hier ein Klangexperiment zum Thema: Einsame Atome verbinden sich … (Aufgenommen am 22.Sept.2015)

Nachtrag am nächsten Morgen (aus einem Brief an einen Freund):

… Als einzelne Menschen mit unserem endlichem Körper sind wir normalerweise gefangen von dem, was uns unmittelbar passiert. Dass wir überhaupt da sind, dass wir so fantastisch leben können, wie wir es können, beschäftigt uns normalerweise kaum. Wenn das System aber ’stottert‘, wenn es ‚Fehlfunktionen‘ aufweist, wenn es uns wehtut, unsere individuellen Pläne durcheinanderwirbelt, dann schrecken wir auf, schreien auf, beschweren wir uns, klagen, lamentieren, werden aggressiv, bekommen Angst, sind traurig, nur weil etwas unfassbar Wunderbares, was wir im Normalbetrieb keines Blickes würdigen, plötzlich an seine eigenen Grenzen kommt, und über kurz oder lang in den Verfall, in den Tod übergeht, aus dem es sich zuvor befreit hatte. Wir erleben das Scheitern intensiv, aber für das zuvor stattfindende unfassbare Wunder sind wir blind. Und selbst das Scheitern ist kein wirkliches Scheitern. Individuell erleben wir zwar Scheitern, aber es gibt keine Einzelne. Jeder einzelne ist eine Gemeinschaft lebender und kommunizierender Zellen (mehr als 4 Billionen allein beim Menschen), und diese sind Teil eines umfassenden riesigen Netzwerkes von Lebensereignissen, die weiterhin da sind (noch), um das unfassbare Wunder des Lebens in einem Kosmos weiter zu tragen, der jenseits der Erde — nach bisherigem Wissen — aus einsamen Atomen besteht, die sich nicht zu etwas Größerem verbinden konnten.

Für jemanden, der gerade leidet, krank ist, dem Sterben ins Auge schaut,  erscheinen diese Worte möglicherweise sehr fremd, abstrakt, weit weg, aber die Wahrheit fragt uns nicht, ob sie stattfinden darf oder nicht. Die Wahrheit liegt uns voraus, steckt in uns, auch in den Fehlfunktionen.

Morgen,Übermorgen, in einer endlichen Zeit, wird jeder von uns von den Fehlfunktionen eingeholt werden, wird jeder von uns den Zusammenbruch des Lebens an seinem individuellen Körper erleben, der weitgehend aus Atomen besteht, die zuvor schon anderen Lebewesen gehört haben. Wir sind unentrinnbar und tief liegend eine Gemeinschaft von Lebenden, die unauflöslich unteilbar ist.

Natürlich ist dies nur ein Bruchteil des Phänomens Lebens. Der aktuelle Körper, der aktuelle Schmerz ist niemals die volle Wahrheit; wer aber die Wahrheit liebt, der ist  rettungslos ein ‚Philosoph‘ (Griechisch: ‚philosophos‘). …

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

BUCHPROJEKT 2015 – Zwischenreflexion 18.August 2015 – INFORMATION IN DER MOLEKULARBIOLOGIE – Maynard-Smith

Der folgende Beitrag bezieht sich auf das Buchprojekt 2015.

SPANNENDER PUNKT BEIM SCHREIBEN

1. Das Schreiben des Buches hat zu einem spannenden Punkt geführt, der mich seit Jahren umtreibt, den ich aber nie so richtig zu packen bekommen habe: alle große begriffliche Koordinaten laufen im Ereignis der Zelle als einer zentralen Manifestation von grundlegenden Prinzipien zusammen. Die Physik hat zwar generelle Vorarbeiten von unschätzbarem Wert geleistet, aber erst das Auftreten von selbst reproduzierenden molekularen Strukturen, die wir (biologische) Zellen nennen, macht Dynamiken sichtbar, die ‚oberhalb‘ ihrer ‚Bestandteile‘ liegen. Dies könnte man analog dem physikalischen Begriff der ‚Gravitation‘ sehen: dem physikalischen Begriff entspricht kein direktes Objekt, aber es beschreibt eine Dynamik, eine Gesetzmäßigkeit, die man anhand des Verhaltens der beobachtbaren Materie indirekt ‚ableitet‘.

DYNAMIK BIOLOGISCHER ZELLEN

2. Ähnlich verhält es sich mit verschiedenen Dynamiken von biologischen Zellen. Die Beschreibung ihrer einzelnen Bestandteile (Chromatin, Mitochondrien, Golgiapparat, Membran, …) als solcher sagt nichts darüber aus, was tatsächlich eine biologische Zelle charakterisiert. Ihre Haupteigenschaft ist die generelle Fähigkeit, eingebettet in eine allgemeine Entropiezunahme sich eine Struktur zu generieren, die sich temporär funktionsfähig halten kann und in der Lage ist, Informationen zu sammeln, mittels deren sie sich selbst so kopieren kann, dass die Kopie sich von neuem zu einer funktionsfähigen Struktur aufbauen kann. Wie dies im einzelnen chemisch realisiert wurde, ist beeindruckend, es ist atemberaubend, aber es ist letztlich austauschbar; für die Gesamtfunktion spielen die chemischen Details keine Rolle.

BEGRIFF INFORMATION

3. Und hier beginnt das Problem. Obwohl es von einem theoretischen Standpunkt aus klar ist, dass die Details noch nicht die eigentliche Geschichte erzählen, wird in den vielen umfangreichen Büchern über Genetik und Molekularbiologie die eigentliche ‚Story‘ nicht erzählt. Dies fängt schon an mit dem wichtigen Begriff der Information. Spätestens seit Schrödingers Buch von 1944 „What is Life?“ ist klar, dass das selbstreproduktive Verhalten von Zellen ohne das Genom nicht funktioniert. Und es wurde auch sehr bald der Begriff der Information eingeführt, um den ‚Inhalt‘ des Genoms theoretisch zu klassifizieren. Das Genom enthält ‚Informationen‘, aufgrund deren in einer Vererbung neue hinreichend ähnlich Strukturen entstehen können.

STATISTISCHER INFORMATIONSBEGRIFF

4. Leider wurde und wird der Informationsbegriff im Sinne des rein statistischen Informationsbegriffs von Shannon/ Weaver (1948) benutzt, der explizit Fragen möglicher Bedeutungsbezüge (Semantik) außen vor lässt. Damit ist er eigentlich weitgehend ungeeignet, der Rolle der im Genom verfügbaren Informationen gerect zu werden.

MEHR ALS STATISTIK

5. Einer, der diese Unzulänglichkeit des rein statistischen Informationsbegriffs für die Beschreibung der Rolle der Information im Kontext des Genoms und der Zelle samt ihrer Reproduktionsdynamik immer kritisiert hatte, war John Maynard Smith (1920 – 2004). In seinem Artikel “ The concept of information in biology“ von 2000 kann man dies wunderbar nachlesen.

6. Zwar hat auch Maynard Smith keine explizite übergreifende Theorie der Reproduktionsdynamik, aber er kann an verschiedenen Eigenschaften aufweisen, dass der rein statistische Informationsbegriff nicht ausreicht.

7. Während im Shannon-Weaver Modell ein fester Kode A von einem Sender in Transportereignisse übersetzt (kodiert) wird, die wiederum in den festen Kode A von einem Empfänger zurückübersetzt (dekodiert) werden, ist die Lage bei der Zelle anders.

8. Nimmt man an, dass der zu sendende Kode das DNA-Molekül ist, das in seiner Struktur eine potentielle Informationssequenz repräsentiert, dann ist der Sender eine Zelle in einer Umgebung. Der ‚DNA-Kode‘ (der feste Kode A) wird dann umgeschrieben (Transskription, Translation) in zwei verschiedene Kodes (mRNA, tRNA). Während man die Zustandsform des mRNA-Moleküls noch in Korrespondenz zum DNA-Kode sehen kann (abr nicht vollständig), enthalten die verschiedenen tRNA-Moleküle Bestandteile, die über den ursprünglichen DNA-Kode hinausgehen. Daraus wird dann eine Proteinstruktur erzeugt, die sowohl eine gewisse Kopie des ursprünglichen DNA-Moleküls (Kode A) enthält, aber auch zusätzlich einen kompletten Zellkörper, der mit dem Kode A nichts mehr zu tun hat. Außerdem gibt es den Empfänger bei Beginn der Übermittlung noch gar nicht. Der Empfänger wird im Prozess der Übermittlung erst erzeugt! Anders formuliert: beim biologischen Informationsaustausch im Rahmen einer Selbstreproduktion wird zunächst der potentielle Empfänger (eine andere Zelle) erzeugt, um dann den DNA-Kode im Empfänger neu zu verankern.

9. Innerhalb dieses Gesamtgeschehens gibt es mehrere Bereiche/ Phasen, in denen das Konzept eines rein statistischen Informationsbegriffs verlassen wird.

10. So weist Maynard Smith darauf hin, dass die Zuordnung von DNA-Sequenzen zu den später erzeugten Proteinen mindestens zweifach den statistischen Informationsbegriff übersteigt: (i) die erzeugten Proteinstrukturen als solche bilden keine einfache ‚Übersetzung‘ das DNA-Kodes verstanden als eine syntaktische Sequenz von definierten Einheiten eines definierten endlichen Alphabets. Die Proteinmoleküle kann man zwar auch als Sequenzen von Einheiten eines endlichen Alphabets auffassen, aber es handelt sich um ein ganz anderes Alphabet. Es ist eben nicht nur eine reine ‚Umschreibung‘ (‚Transkription‘), sondern eine ‚Übersetzung‘ (‚Translation‘, ‚Translatio‘), in die mehr Informationen eingehen, als die Ausgangssequenzen im DNA-Kode beinhalten. (ii) Der DNA-Kode enthält mindestens zwei Arten von Informationselementen: solche, die dann in Proteinstrukturen übersetzt werden können (mit Zusatzinformationen), und solche, die die Übersetzung der DNA-Informationselemente zeitlich steuern. Damit enthält der DNA-Kode selbst Elemente, die nicht rein statistisch zu betrachten sind, sondern die eine ‚Bedeutung‘ besitzen, eine ‚Semantik‘. Diese Bedeutung st nicht fixiert; sie kann sich ändern.

ALLGEMEINE ZEICHENLEHRE = SEMIOTIK

11. Für Elemente eines Kodes, denen ‚Bedeutungen‘ zugeordnet sind, gibt es in der Wissenschaft das begriffliche Instrumentarium der allgemeinen Zeichenlehre, spricht ‚Semiotik‘ (siehe z.B. Noeth 2000).

12. Nimmt man die empirischen Funde und die semiotische Begrifflichkeit ernst, dann haben wir es im Fall der Zelle also mit eindeutigen (und recht komplexen) Zeichenprozessen zu; man könnte von der Zelle in diesem Sinne also von einem ’semiotischen System‘ sprechen. Maynard Smith deutet den Grundbegriff von Jacques Lucien Monod (1910-1976) ‚gratuity‘ im Sinne, dass Signale in der Biologie ‚Zeichen‘ seien. Ob dies die Grundintention von Monod trifft, ist eine offene Frage; zumindest lässt die Maschinerie, die Monod beschreibt, diese Deutung zu.

13. Eine zusätzliche Komplikation beim biologischen Zeichenbegriff ergibt sich dadurch, dass eine Zelle ja nicht ‚isoliert‘ operiert. Eine Zelle ist normalerweise Teil einer Population in einer bestimmten Umgebung. Welche Strukturen der Proteinaufbauprozess (Wachstum, Ontogenese) auch hervorbringen mag, ob er gewisse Zeiten überdauert (gemessen in Generationen), hängt entscheidend davon ab, ob die Proteinstruktur in der Interaktion mit der Umgebung ‚hinreichend lange‘ jene ‚Arbeit‘ verrichten kann, die notwendig ist, um eine Selbstreproduktion zu ermöglichen.

14. Ob eine Proteinstruktur in diesem weiterführenden Sinne ‚lebensfähig‘ ist, hängt also entscheidend davon ab, ob sie zur jeweiligen Umgebung ‚passt‘. Eine lebensfähige Proteinstruktur ist in diesem Sinne – von einer höheren theoretischen Betrachtungsweise aus gesehen – nichts anderes als ein auf Interaktion basierendes ‚Echo‘ zur vorgegebenen Umgebung.

15. Dass dies ‚Echo‘ nicht ’stagniert‘, nicht ‚auf der Stelle tritt‘, nicht ‚um sich selbst kreist‘, liegt entscheidend daran, dass die ‚letzte‘ Struktur den Ausgangspunkt für ‚weitere Veränderungen‘ darstellt. Die Zufallsanteile im gesamten Selbstreproduktionsprozess fangen also nicht immer wieder ‚von vorne‘ an (also keine ‚Auswahl mit Zurücklegen‘), sondern sie entwickeln eine Informationsstruktur ‚weiter‘. In diesem Sinne bildet die Informationssequenz des DNA-Moleküls auch einen ‚Speicher‘, ein ‚Gedächtnis‘ von vergangenen erfolgreichen Versuchen. Je mehr Zellen in einer Population verfügbar sind, umso größer ist diese molekulare Erfolgsgedächtnis.

Diese Fortsetzung war nicht die letzte Zwischenreflexion. Es geht noch weiter: HIER

QUELLEN

Schroedinger, E. „What is Life?“ zusammen mit „Mind and Matter“ und „Autobiographical Sketches“. Cambridge: Cambridge University Press, 1992 (‚What is Life‘ zuerst veröffentlicht 1944; ‚Mind an Matter‘ zuerst 1958)
Claude E. Shannon, „A mathematical theory of communication“. Bell System Tech. J., 27:379-423, 623-656, July, Oct. 1948 (URL: http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html; last visited May-15, 2008)
Claude E. Shannon; Warren Weaver (1948) „The mathematical theory of communication“. Urbana – Chicgo: University of Illinois Press.
John Maynard Smith (2000), „The concept of information in biology“, in: Philosophy of Science 67 (2):177-194
Noeth, W., Handbuch der Semiotik, 2. vollst. neu bearb. und erw. Aufl. mit 89 Abb. Stuttgart/Weimar: J.B. Metzler, xii + 668pp, 2000
Monod, Jacques (1971). Chance and Necessity. New York: Alfred A. Knopf

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

Randbemerkung: Komplexitätsentwicklung (Singularität(en))

1. Momentan überschlagen sich die Ideen, die hier niedergeschrieben sein wollen; dies wirkt wie eine leichte Paralyse. Denkt man an die eine Idee, melden sich gleich drei andere und wollen auch gedacht sein…. hier wenigstens eine kleine Notiz.
2. Bisher gab es in diesem Blog immer wieder Überlegungen zur Zunahme von struktureller Komplexität im Laufe der Geschichte des bekannten Universums. Sehr ausdrücklich z.B. schon am 15.Oktober 2011.
3. Das Problem bei solchen Deutungsversuchen ist natürlich die Auswahl der Eigenschaftsbündel, die man für den Begriff ‚Komplexität‘ für relevant hält. Es gibt bislang sehr unterschiedliche Komplexiätsbegriffe, die nicht so ohne weiteres vereinheitlicht werden können. Es wäre eine eigene Arbeit, diese Begriffe sauber formal zu analysieren. In beschränktem Umfang tue ich das in meinen Arbeiten dynamischen Wissen (Beginn einer neuen Version des Skripts).
4. Andererseits gewinnt man oft nur Fortschritte, wenn man mit den bekannten Möglichkeiten einfach mal ‚herumspielt‘ und unterschiedliche Varianten ausprobiert. Dies habe ich seit Oktober 2011 immer wieder mal getan. Eine solche ‚Testanordnung‘ findet sich in den beiden folgenden Bildern.
5. Beiden Bildern liegen die gleichen Annahmen zugrunde, sie sind nur unterschiedlich angeordnet. Die Daten stammen aus verschiedenen Büchern und aus den englischen Wikipedia-Artikeln zur Entstehung des Universums (die Artikeln in der englischen Wikipedia sind überwiegend gut bis sehr gut).

Notizen zur Komplexitätsentwicklung im bekannten Universum. Die Achse links zeigt links unten die Gegenwart =0 Jahre, links oben den Beginn des bekannten Universums bei -13,77 Milliarden Jahre (Quellen für Zahlen:u.a.  Englische Wikipedia). Die Achse oben zeigt von links nach rechts einige mögliche Komplexitätsausprägungen. Erklärungen: siehe Text.

Notizen zur Komplexitätsentwicklung im bekannten Universum. Die Achse links zeigt links unten die Gegenwart =0 Jahre, links oben den Beginn des bekannten Universums bei -13,77 Milliarden Jahre (Quellen für Zahlen:u.a. Englische Wikipedia). Die Achse oben zeigt von links nach rechts einige mögliche Komplexitätsausprägungen. Erklärungen: siehe Text.

Ausgewählte Komplexitätsereignisse seit Beginn der Erde

Ausgewählte Komplexitätsereignisse seit Beginn der Erde. Man beachte, (i) dass hier ein spezieller Komplexitätsbegriff gewählt wurde, und (ii) dass diese Auflistung einen zunächst explorativen Charakter hat.

6. Diesen Bildern liegen folgende Annahmen zugrunde: Die Bildung komplexer Moleküle, wie sie die Vorläufer zur Zellbildung darstellen, geschah in der kurzen Zeit zwischen der Erdendstehung und dem Auftreten erster Zellen, also zwischen -4,55 Mrd und -3,8 Mrd Jahren. Wann genau die Bedingungen auf der Erde so waren, dass sich überhaupt im großen Maßstab und dauerhaft komplexere Molekülmengen bilden konnten, ist im Nachhinein nicht ganz eindeutig zu entscheiden. Die Schätzungen gehen so in Richtung ab -4 Mrd Jahren. Dies bedeutet, dass es vom Beginn des bekannten Universums (ca. -13,77Mrd Jahre) bis zu diesen Molekülmengen ca. 9.77 Mrd Jahre gebraucht hat. Das sind etwa 71% der Gesamtzeit des bekannten Universums.
7. Von diesen ersten Molekülmengen bis zu den ersten Zellen vergingen dann ca. 200.000 Mio Jahre, das sind ca. 1.45% der Gesamtzeit.
8. Das Auftreten von Vielzellern wird auf die Zeit ab -1Mrd Jahre datiert, also ca. 2,8 Mrd Jahre später, das entspricht ca.20.33% der Gesamtzeit.
9. Der Begriff ‚Organismen mit Organen‘ ist ein bischen ad hoc. Dahinter steckt die Annahme, dass der Aufbau komplexer Systeme jenseits ‚bloßer Vielzelligkeit‘ nach einer ‚modularen Struktur‘ verlangt. Organe kann man in diesem Sinne als ‚Module‘ betrachten, die in sich hochkomplex sind, die sich aber nach ‚außen‘ über ‚Schnittstellen‘ zu noch komplexeren Einheiten organisieren lassen. Spätestens mit der Besiedlung des Landes vom Meer aus vor -0.7 Mrd Jahre gab es Lebewesen, die solche komplexen Strukturen besaßen, also spätestens 300.000 Mio Jahre später, d.h. nach ca. 2,17% der Gesamtzeit.
10. Die bisherigen Eigenschaften beziehen sich auf die ’strukturelle Organisation‘ des Körpers, für die wir ansatzweise Erklärungsmodelle besitzen (‚ansatzweise‘, nicht vollständig!). Die nachfolgenden Eigenschaftsbündel heben demgegenüber ab auf Eigenschaften des Verhaltens, die als Hinweise auf eine steigende Komplexität der inneren Organisation bilden können.
11. Ein Meilenstein ist hier sicher das Auftreten des homo sapiens sapiens ca. -200.000 Jahre, der sich durch sein Verhalten gegenüber den anderen Organismen durch eine höhere Intelligenz abhebt. Die Zeitspanne von den Multiorgan-Systemen bis zum homo sapiens sapiens beträgt ca. 5,08 % der Gesamtzeit.
12. Die nachfolgenden Strukturereignisse folgen dann in so kurzen Zeitabständen, dass sie sich als Bruchteile der Gesamtzeit immer wenigere ausdrücken lassen, so klein sind sie. Erste ‚Städte‘ werden auf ca. -9000 Jahre datiert, das sind ca. 190.000 Jahre nach dem Auftreten des homo sapiens sapiens, also ca. 0.0014% der Gesamtzeit später.
13. Die Verbreitung eines verteilten netzbasierten Wissens und Kommunizierens begann vor ca. 40 Jahren, als ca. 8960 Jahre später, d.h. nach ca. 0,00006% der Gesamtzeit.
14. Dies sind nur wenige Daten (man könnte diese Aufstellung sicher verfeinern). Aber man kann schon erkennen, dass es hier eine Art ‚Beschleunigung‘ dergestalt gibt, dass die Abstände bis zur Hervorbringung eines neuen Komplexitätsmerkmals immer kürzer werden. Dies zeigt die nächste Kurve: in dieser wurden einfach die obigen Abstände in % der Gesamtzeit eingetragen.

Kurve der Beschleunigung für die Komplexitätsbilldung: Links % der Gesamtzeit des bekannten Universums, unten die Ereignispunkte. Erklärung: im t Text

Kurve der Beschleunigung für die Komplexitätsbilldung: Links % der Gesamtzeit des bekannten Universums, unten die Ereignispunkte. Erklärung: im
Text

15. Diese Beschleunigung erinnert natürlich an die schon lange andauernde Diskussion über die Technologische Singularität, in der im Kern darauf abgehoben wird, dass die technologische Entwicklung künstliche (maschinelle) Formen von Intelligenz entstehen lassen wird, die die körpergebundene menschliche Intelligenz übersteigen wird und die – das ist der entscheidende Punkt – sich mit den verbesserten technologischen Möglichkeiten auch menschenunabhängig schneller weiterentwickeln kann. Dies wird zu einer weiteren Beschleunigung der Entwicklung führen, deren finalen Fortgang niemand mehr voraussagen kann. Dies bedeutet aber rein logisch, dass ein Fortbestand und eine Weiterentwicklung der menschlichen Intelligenz in diesem Gesamtkontext nicht von vornherein ausgeschlossen ist.
16. Denn, auch die Weiterentwicklung der menschlichen Intelligenz als Teil des Gesamtphänomens ‚Leben‘ ist ja vom heutigen Stand aus betrachtet in keiner Weise klar. Dass das Thema ‚Intelligenz‘ als Teil des Themas ‚Leben‘ in irgendeiner Weise schon an einem ‚Endpunkt‘ wäre, ist in keiner Weise abgemacht. Im Gegenteil, sieht man die bisherige Entwicklung (soweit wir sie bislang überhaupt verstehen können), so ist ja schon diese Entwicklung von einem Format, einer Komplexität, einer zeitlichen Ausdehnung, die unser aktuelles körpergebundenes Denken vollständig überfordert. Schon jetzt erarbeiten wir uns ja die leitenden gedanklichen Bilder nur mit Hilfe komplexer Maschinen und im Zusammenwirken vieler hundert Tausender, wenn nicht gar Millionen, von Gehirnen. Jedes Bild im Kopf eines einzelnen Gehirns ist ja weitgehend schon vermittelt und bezogen auf die Bilder in anderen Gehirnen, symbolisch aufgeschrieben, gespeichert, übersetzt, vielfältigst eingebettet, so dass wir in keiner Weise mehr nur von einer Einzelerkenntnis sprechen können, wenngleich das einzelne Gehirn sehr wohl noch sein individuelles, einzelnes Erkenntniserleben hat.
17. Aus der logischen Unmöglichkeit, den ‚Inhalt‘ der Singularity Hypothese voll denken zu können folgt u.a. auch das ‚Verbot‘, zu früh zu negative Schlüsse daraus zu ziehen, um sich dadurch möglicherweise um genau jene wichtigen Erkenntnisse zu bringen, die für uns alle wichtig sind. So ist es möglicherweise gefährlich, dass es sehr machtorientierte Denkzentren sind, die die Singularityhypothese vorschnell in ihrem einseitigen partikulären Machtdenken zu interpretieren und in ihrem Sinne zu manipulieren versuchen. Denn, wenn überhaupt, dann geht es bei der künftigen Entwicklung um das Leben schlechthin, um das Ganze, möglicherweise um etwas außerordentlich Rares im ganzen Universum. Denn, wenngleich die mathematische Wahrscheinlichkeit das prinzipielle Auftreten von Leben irgendwo im Universum grundsätzlich nicht ausschließen kann, so gilt auch umgekehrt, dass wir wissen, dass aus der reinen Wahrscheinlichkeit kein einziges konkretes Ereignis als reales folgen muss. Das tatsächliche Ereignis bleibt das Besondere, genau wie der Übergang von der Kohärenz der Quantenwelt zur konkreten dekohärenten Makrowelt unseres körpergebundenen Erlebens bislang jede Erklärung versagt. Für das Konkrete gibt es weder eine Erklärung noch eine Notwendigkeit. Das schiere Faktum des Konkreten ist die Ungeheuerlichkeit schlechthin, die allererste und die ungeheuerlichste Singularität (Ontologische Ur-Singularität), die es für unseren erlebend-erkennenden Wissensraum bislang gab und gibt.
18. Um also die sich andeutende ’neue‘ Singularität — eine vergleichsweise ‚kleine‘ und sehr ’schlichte‘– zu verstehen, sollte wir erst einmal unsere Hausaufgaben lösen und versuchen, die bisherige Ur-Singularität, nämlich das Universum, wie es zur Zeit auftritt, sich ereignet, zu verstehen. Innerhalb dieser Ur-Singularität beginnen wir eine Komplexitätswerdung zu erahnen, zu ertasten, anfangshaft zu denken, die sich abhebt vor einem allgemeinen ‚Rauschen‘. In unserer einfachen Alltagswelt ist all das, was sich von einem Rauschen abhebt, etwas ‚Geordnetes‘, ‚Bedeutungsvolles‘, etwas ‚Gewolltes‘. Im Nicht-Rauschen zeigt sich die Struktur des Daseins, u.a. unsere Körper, u.a. die Gedanken in unserem Gehirn, das Lächeln im Gesicht des anderen, gesprochene Worte.
19. ‚Musik‘ ist das, was jenseits des Rauschens geschieht. Während Rauschen nervt, weh tut, aggressiv machen kann, beunruhigt, können wir ‚Musik‘ als etwas ‚Schönes‘, ‚Wohltuendes‘ erleben. ‚Rauschen‘ ist eine Verdichtung von Zufällen. Wo der Zufall durchbrochen wird durch ‚Regelhaftes‘, beginnt sich Rauschen aufzulösen, weicht das ‚Unbestimmte‘ einem ‚Bestimmten‘.
20. In diesem Sinne ist das Auftreten von Strukturen, die bestimmte Eigenschaften mit sich bringen, das Durchbrechen des reinen Zufalls, des Unbestimmten. Im Sich-Ereignen von Strukturen ‚zeigt sich etwas‘. ‚Teilt sich etwas mit‘; man kann auch von ‚Offenbarung‘ sprechen. Jede sich ereignende Struktur ist eine Form von ‚Mitteilung‘ über das bloße ‚Rauschen‘ hinaus.
21. Bedenkt man, welch ungeheurer Aufwand getrieben wird, um im Rahmen des SETI-Programms (Search for Extra-Terrestrial Intelligence) nach ‚Mustern‘ in den elektromagnetischen Ereignissen des Universum zu suchen, die man als ‚Botschaften‘ deuten könnte, dann kann es schon wundern, warum wir die Muster, die wir schon haben, die wir selber darstellen, nicht als solche daraufhin untersuchen, welche ‚Botschaften‘ diese darstellen? Während die SETI-Botschaften nur vergleichsweise einfache Muster sein können, sind die Muster = Strukturen des Lebens selbst, die sich aus dem allgemeinen Rauschen ‚herausgeschält‘ haben, von einer unfassbaren Komplexität. Das ‚biologische Leben selbst‘ kann man als eine ‚Botschaft‘ begreifen, die sich in der Weite der Ur-Singularität, sprich des konkreten Universum als einzige bekannte Konkretheit eines Quantenraumes, zeigt. Das schiere Faktum dieser einzigartigen Ur-Singularität bedeutet noch nicht ihr ‚Verstehen‘! Als Teil dieser einzigartigen Singularität ’sind wir‘, aber dieses Dasein impliziert nicht automatisch ein volles Verständnis eben dieses Daseins. Obgleich die bisherige Geschichte (soweit wir sie verstehen) andeutet, dass eine Besonderheit dieser gewordenen Singularität ist, dass sie in Gestalt des Lebens begonnen hat, ’sich selbst zu verstehen‘ indem sie ’sich selbst konsumiert‘. Das ‚Leben‘ existiert ja nur durch ständigen Verbrauch von Energie zum Aufbau und Erhalt seiner Strukturen, die beginnen zu erkennen. Je mehr wir erkennen, um so mehr Energie (sprich: gewordenen Strukturen) verbrauchen wir, was bedeutet, in dem Masse wir wir durch Verbrauch von Energie erkennen, werden wir genau das, was uns in diesem Zustand möglich macht, vorhandene freie Energie, aufbrauchen. Bildhaft: im Zunehmen unseres eigenen Seins im Erkennen lösen wir unser Gegenüber im Erkennen auf. Das bekannte Universum in Form von Energie verwandelt sich in Erkanntes und verschwindet damit als etwas vom Erkannten Verschiedenes. Was wird mit dem ‚Erkannten‘ geschehen?
22. Alles sehr spekulativ. Aber wir sind mitten in diesem Prozess. Er findet statt, ob wir wollen oder nicht. Unser Verstehen ist ganz am Anfang. Die bisherigen Überlegungen zur technologischen Singularität sind – nach meinem Verständnis – viel zu simpel. Die wirklich interessanten Faktoren sind noch gar nicht berücksichtigt.

Eine Fortsetzung findet sich HIER.

Einen Überblick über alle bisherigen Blogeinträge nach Titeln findet man HIER

SUCHE NACH DEM URSPRUNG UND DER BEDEUTUNG DES LEBENS. Teil 3 (Superbugs, Steinefresser)

Paul Davies, The FIFTH MIRACLE: The Search for the Origin and Meaning of Life, New York:1999, Simon & Schuster

Start: 3.Sept.2012

Letzte Fortsetzung: 4.Sept.2012

Fortsetzung von Teil 2

 

  1. Die Entdeckung, dass RNA-Moleküle ähnliche Eigenschaften haben wie DNA-Moleküle und sie bis zu einem gewissen Grade auch als Enzyme fungieren können, die chemische Prozesse unterstützen (was sonst Proteine tun), führte zur Hypothese von der RNA-Welt, die der DNA-Welt vorausgeht. Experimente von Spiegelmann zeigten z.B., dass RNA-Genome in einer entsprechenden Lösung mit Enzymen sich reproduzieren können, allerdings mit der Tendenz, sich immer mehr zu vereinfachen (74.ter Durchlauf, 84% abgestoßen [Spiegelmann S.217]). Die Entkopplung von realen Lebensprozessen führt offensichtlich zu einer ‚Sinnentleerung‘ dergestalt, dass die Basen ihre ‚Bedeutung‘ verlieren und damit ihre ‚Notwendigkeit‘! Das vereinfachte Endprodukt bekam den Namen ‚Spiegelmanns Monster‘. (123-127) Genau gegenläufig war ein Experiment von Manfred Eigen und Peter Schuster (1967), die mit RNA-Bausteinen begannen und herausfanden, dass diese sich ‚aus sich heraus‘ zu immer komplexeren Einheiten zusammenfügten, sich reproduzierten, und den ‚Monstern von Spiegelmann‘ ähnelten. (127f) Allerdings benutze Eigen und Schuster für ihre Experimente spezialisierte Enzyme, die aus einer Zelle gewonnen waren. Die Existenz solcher Enzyme in der frühen Zeit der Entstehung gilt aber nicht als gesichert. (128f) Überlegungen zu möglichen Szenarien der frühen Koevolution von RNA-Molekülen und Proteinen gibt es, aber keine wirklichen ‚Beweise‘. (129f) Alle bisherigen Experimente haben nur gezeigt, dass die Synthese längerer RNA-Moleküle ohne spezielle Unterstützung zu fragil ist; sie funktioniert nicht. Dazu gehört auch das Detail der Chiralität: bei ‚freier‘ Erzeugung zeigen die Moleküle sowohl Links- als auch Rechtshändigkeit; die biologischen Moleküle sind aber alle linkshändig. (130f) Stammbaumanalysen zeigen ferner, dass RNA-Replikation eine spätere Entwicklung ist; die frühesten Vorläufer hatten sie so nicht. (131f) Ferner ist völlig unklar, wie sich frühere Replikatoren entwickeln konnten. (132)

  2. Aufgrund dieser Schwierigkeiten gibt es alternative Versuche, anzunehmen, dass vielleicht die Proteine zuerst da waren. Rheza Ghadiri entdeckte, dass sich Peptidketten selbst vermehren können, was auch am Beispiel der Rinderseuche BSE bestätigt wurde (133). Freeman Dyson nahm an, dass die Proteine und die replikationsfähigen Moleküle sich parallel entwickelt haben und dann erst fusionierten.(133f) Die zentrale Annahme bei Dyson ist, dass Moleküle die Produktion und Veränderung anderer Moleküle bewirken können. Damit können dann ‚Ordnungen‘ dergestalt entstehen, dass sich präferierte chemische Zyklen bilden, die verklumpen, anschwellen und sich spalten. Schon auf dieser Ebene sollte begrenzter ‚Wettbewerb‘ möglich sein, der zu einer begrenzten ‚Evolution‘ führt. (134) Solche Prozesse könnten dann von von Nukleinsäuren durchdrungen werden, die sich diese Prozesse zunutze machen. (134f) Als möglicher Ort für solche Prozesse könnte der Boden der Ozeane fungieren. Russell entwickelte ein Modell von semipermeablen- Membranen, die sich dort bilden können. (135f) Cairns-Smith generalisierte die Idee der Informationsspeicherung und entwickelte die Hypothese, dass zu Beginn Tonkristalle die Funktion von RNA und DNA gespielt haben könnten. Allerdings gibt es bislang keine experimentelle Bestätigung hierfür. (136f)

  3. Alle diese Überlegungen liefern bislang keine vollständig überzeugenden Lösungen. Klar ist nur, dass die biologische Evolution Vorläuferprozesse haben musste, denen ein Minimum an Komplexität zukommt und zwar eine ‚organisierte Komplexität‘. (137f) Unter dem Titel ‚Selbstorganisation‘ fand Prigogine Beispiele, wie sich durch Zufluss freier Energie geordnete Strukturen aus einer ‚chaotischen‘ Situation heraus bilden konnten.(138f) Kaufmann entwickelte die Idee ‚autokatalytischer‘ Prozesse, in denen ein Molekül M auf andere Moleküle als Katalysator so wirkt, dass sie Prozesse eingehen, die letztlich zur Produktion von M führen. Dies verstärkt diese Prozesse immer mehr. (139f) Allerdings fehlen auch für diese Hypothesen empirische und experimentelle Belege. (140f) Davies weist auch darauf hin, dass selbstorganisierende Prozesse in allen wesentlichen Eigenschaften von den Umgebungsbedingungen bestimmt werden; biologische Reproduktion ist aber wesentlich ‚intrinsisch‘ bestimmt durch die Informationen der DNA/ RNA-Moleküle. Alle die Modelle zur Selbstorganisation liefern keine wirklichen Hinweise, wie es zu den selbstbestimmten Formen der Reproduktion kommen konnte, zur Herausbildung der Software [zur Dekodierung?]. (141) Dabei erinnert Davies nochmals an den Aspekt der ’nicht-zufälligen‘ Ordnung, d.h. alle jene Muster, die regelmäßige Anteile enthalten (wie in den Beispielen von Autokatalyse und Selbstorganisation), sind nicht die Formen von zufälliger Informationsspeicherung, wie man sie im Falle von DNA bzw. RNA-Molekülen findet.(142)

  4. [Anmerkung: So gibt es bislang also Einsichten in das Prinzip der biologischen Selbstreproduktion, aber überzeugende Hinweise auf chemische Prozesse, wie es zur Ausbildung solcher komplexer Prozesse komme konnte, fehlen noch. ]

  5. Im Kapitel 6 ‚The Cosmic Connection‘ (SS.143 – 162) wird aufgezeigt, dass die irdische Chemie nicht losgelöst ist von der allgemeinen Chemie des Universums. Fünf chemische Elemente spielen in der erdgebundenen Biologie eine zentrale Rolle: Kohlenstoff (‚carbon‘), Sauerstoff (‚oxygen‘), Wasserstoff (‚hydrogen‘), Stickstoff (’nitrogen‘), und Phosphor (‚phosphorus‘). Dies sind zugleich die häufigsten Elemente im ganzen Universum. (143) Kohlenstoff hat die außerordentliche Fähigkeit, praktisch unendlich lange Ketten zu bilden (Nukleinsäuren und Proteine sind Beispiele dafür). (143)

  6. Kohlenstoff entsteht durch die Kernfusion in Sternen von Wasserstoff zu Helium zu Kohlenstoff.(146) Buchstäblich aus der ‚Asche‘ erloschener Sterne konnten sich dann Planeten wie die Erde bilden.(144) Kohlenstoff (‚carbon‘), Sauerstoff (‚oxygen‘), Wasserstoff (‚hydrogen‘) und Stickstoff (’nitrogen‘) werden seit Bestehen der Erde beständig in der Atmosphäre, in der Erdkruste, bei allen Verwesungsprozessen ‚recycled‘. Danach enthält jeder Körper Kohlenstoffatome von anderen Körpern, die 1000 und mehr Jahre älter sind.(146f) Mehr als hundert chemische Verbindungen konnten bislang im Universum nachgewiesen werden, viele davon organischer Natur. (147f) Nach den ersten hundert Millionen Jahren war die Oberfläche der Erde immer noch sehr heiß, die Ozeane viel tiefer, die Atmosphäre drückend (‚crushing‘), intensiver Vulkanismus, der Mond näher, die Gezeiten viel höher, die Erdumdrehung viel schneller, und vor allem andauernde Bombardements aus dem Weltall. (152) Eine ausführlichere Schilderung zeigt die vielfältigen Einwirkungen aus dem Weltall auf die Erde. Generell kann hier allerlei (auch organisches) Material auf die Erde gekommen sein. Allerdings sind die Umstände eines Eindringens und Aufprallens normalerweise eher zerstörerischer Natur was biologische Strukturen betrifft. (153-158) Das heftige Bombardement aus dem Weltall mit den verheerenden Folgen macht es schwer, abzuschätzen, wann Leben wirklich begann. Grundsätzlich ist weder auszuschließen, dass Leben mehrfach erfunden wurde noch, dass es Unterstützung aus dem Weltall bekommen haben kann. Andererseits war der ’sicherste‘ Ort irgendwo in einer Tiefe, die von dem Bombardement kaum bis gar nicht beeinträchtigt wurde. (158-161)

  7. Kapitel 7 ‚Superbugs‘ (163-186). Die weltweit auftretende Zerstörung von unterirdischen Kanalleitungen aus Metall (später 1920iger) führte zur Entdeckung eines Mikroorganismus, der ausschließlich in einer säuerlichen Umgebung lebt, Schwefel (’sulfur‘) frißt und eine schweflige Säure erzeugt, die sogar Metall zerstören kann.(163f) Man entdeckte mittlerweile viele verschiedene Mikroorganismusarten, die in Extremsituationen leben: stark salzhaltig, sehr kalt, starke radioaktive Strahlung, hoher Druck, extremes Vakuum, hohe Temperaturen. (164f) Diese Mikroorganismen scheinen darüber hinaus sehr alt zu sein. (165) Am erstaunlichsten von allen sind aber die wärmeliebenden Mikroorganismen (‚thermophiles‘, ‚hyperthermophiles‘), die bislang bis zu Temperaturen von 113C^o gefunden wurden. Von den mittlerweile mehr als Tausend entdeckten Arten sind ein großer Teil Archäen, die als die ältesten bekannten Lebensformen gelten. (166f) Noch mehr, diese thermophilen und hyperthermophylen Mikroorganismen sind – wie Pflanzen allgemein – ‚autotroph‘ in dem Sinne, dass sie kein organisches Material für ihre Versorgung voraussetzen, sondern anorganisches Material. Man nennt die unterseeischen Mikroorganismen abgrenzend von den autotrophen ‚Chemotrophs‘, da sie kein Sonnenlicht (also keine Photosynthese) benutzen, sondern einen eigenen Energiegewinnungsprozess entwickelt haben. (167f) Es dauerte etwa von 1920 bis etwa Mitte der 90iger Jahre des 20.Jahrhunderts bis der Verdacht und einzelne Funde sich zu einem Gesamtbild verdichteten, dass Mikroorganismen überall in der Erdoberfläche bis in Tiefen von mehr als 4000 m vorkommen, mit einer Dichte von bis zu 10 Mio Mikroorganismen pro Gramm, und einer Artenvielfalt von mittlerweile mehreren Tausend. (168-171) Bohrungen in den Meeresgrund erbrachten weitere Evidenz dass auch 750m unter dem Meeresboden überall Mikroorganismen zu finden sind (zwischen 1 Mrd pro cm^3 bis zu 10 Mio). Es spricht nichts dagegen, dass Mikroorganismen bis zu 7km unter dem Meeresboden leben können. (171-173) All diese Erkenntnisse unterstützen die Hypothese, dass die ersten Lebensformen eher unterseeisch und unterirdisch entstanden sind, geschützt vor der Unwirtlichkeit kosmischer Einschläge, ultravioletter Strahlung und Vulkanausbrüchen. Außerdem waren alle notwendigen Elemente wie z.B. Wasserstoff, Methan, Ammoniak, Wasserstoff-Sulfid im Überfluss vorhanden. (173f) Untersuchungen zur Energiebilanz zeigen, dass in der Umgebung von heißen unterirdischen Quellen speziell im Bereich 100-150 C^o sehr günstig ist.(174f) Zusätzlich deuten genetische Untersuchungen zur Abstammung darauf hin, dass gerade die Archäen-Mikroorganismen zu den ältesten bekannten Lebensformen gehören, die sich z.T. nur sehr wenig entwickelt haben. Nach all dem wären es dann diese hyperthermophilen Mikroorganismen , die den Ursprung aller biologischen Lebensformen markieren. Immer mehr Entdeckungen zeigen eine wachsende Vielfalt von Mikroorganismen die ohne Licht, in großer Tiefe, bei hohen Temperaturen anorganische Materialien in Biomasse umformen. (175-183)

  8. Wie Leben wirklich begann lässt sich bislang trotz all dieser Erkenntnisse nicht wirklich klären. Alle bisherigen Fakten sprechen für den Beginn mit den Archäen, die sich horizontal in den Ozeanen und in der Erdkruste in einem Temperaturbereich nicht höher als etwa 120 C^o (oder höher?) ausbreiten konnten. Irgendwann muss es dann einen Entwicklungssprung in die Richtung Photosynthese gegeben haben, der ein Leben an der Oberfläche ermöglichte. (183-186)

  9. Kap.8 ‚Mars: Red and Dead‘ (SS.187-220). Diskussion, ob es Leben auf dem Mars gab bzw. noch gibt. Gehe weiter darauf nicht ein, da es für die Diskussion zur Struktur und Entstehung des Lebens keinen wesentlichen Beitrag liefert.

  10. Kap.9 ‚Panspermia‘ (SS.221-243). Diskussion, inwieweit das Leben irgendwo im Weltall entstanden sein kann und von dort das Leben auf die Erde kam. Aber auch hier gilt, neben der Unwahrscheinlichkeit einer solchen Lösung würde es die Grundsatzfragen nicht lösen. (siehe auch Davies S.243))

  11. Kap.10 ‚A Bio-Friendly Universe‘ (SS.245-273). Angesichts der ungeheuren molekularen Komplexität , deren Zusammenspiel und deren Koevolution steht die Annahme einer rein zufälligen Entwicklung relativ schwach da. Die Annahme, dass die Komplexität durch die impliziten Gesetzmäßigkeiten aller beteiligten Bestandteile ‚unterstützt‘ wird, würde zwar ‚helfen‘, es bleibt aber die Frage, wie. (245-47) Eine andere Erklärungsstrategie‘, nimmt an, dass das Universum ewig ist und dass daher Leben und Intelligenz schon immer da war. Die sich daraus ergebenden Konsequenzen widersprechen den bekannten Fakten und erklären letztlich nichts. Davies plädiert daher für die Option, dass das Leben begonnen hat, möglicherweise an mehreren Orten zugleich. (247-250)
  12. Im Gegensatz zu Monod und den meisten Biologen, die nur reinen Zufall als Entstehungsform annehmen, gibt es mehrere Vertreter, die Elemente jenseits des Zufalls annehmen, die in der Naturgesetzen verankert sind. Diese wirken sich als ‚Präferenzen‘ aus bei der Bildung von komplexeren Strukturen. (250-254) Dem hält Davies aber entgegen, dass die normalen Naturgesetze sehr einfach sind, schematisch, nicht zufällig, wohingegen die Kodierung des Lebens und seiner Strukturen sich gerade von den chemischen Notwendigkeiten befreit haben, sich nicht über ihre materiellen Bestandteile definieren, sondern über eine frei (zufällig) sich konfigurierende Software. Der Rückzug auf die Präferenzen ist dann möglicherweise kein genügender Erklärungsgrund. Davies hält die Annahme eines ‚Kodes im Kode‘ für nicht plausibel. (254-257) Wie aber lässt sich das Problem der biologischen Information lösen? (257f) Grundsätzlich meint Davies, dass vieles dafür spricht, dass man ein ‚Gesetz der Information‘ als genuine Eigenschaft der Materie annehmen muss. (258f) Davies nennt dann verschiedene Theorieansätze zum möglichen Weiterdenken, ohne die gedanklichen Linien voll auszuziehen. Er erinnert nochmals an die Komplexitätstheorie mit ihrem logischen Charakter, erinnert an die Quantenstruktur der Materie, die Dualität von Welle (Information? Software?) und Teilchen (Hardware?) und ‚Quasikristalle‘, die auf den ersten Blick periodisch wirken, aber bei näherer Analyse aperiodisch sind. (259-263)
  13. Eine andere Frage ist die, ob man in der Evolution irgendeine Art von Fortschritt erkennen kann. Das Hauptproblem ist, wie man Fortschritt definieren kann, ohne sich in Vorurteilen zu verfangen. Vielfach wird der Begriff der Komplexität bemüht, um einen Anstieg an Komplexität zu konstatieren. Stephen J.Gould sieht solche Annahmen eines Anstiegs der Komplexität sehr kritisch. Für Christian de Duve hingegen erscheint ein Anstieg von Komplexität klar. (264-270)
  14. In den Schlussbemerkungen stellt Davies nochmals die beiden großen Interpretationsalternativen gegenüber: einmal die Annahme einer Zunahme der Komplexität am Beispiel von Gehirnen und daran sich knüpfenden Eigenschaften aufgrund von impliziten Präferenzen oder demgegenüber die Beschränkung auf reinen Zufall. Im letzteren Fall ist das Auftreten komplexer Lebensformen so hochgradig unwahrscheinlich, dass eine Wiederholung ähnlicher Lebensformen an einem anderen Ort ausgeschlossen erscheint. (270-273)
  15. [Anmerkung: Am Ende der Lektüre des Buches von Davies muss ich sagen, dass Davies hier ein Buch geschrieben hat, das auch ca. 13 Jahre später immer noch eine Aussagekraft hat, die die gewaltig ist. Im Detail der Biochemie und der Diskussion der chemischen Evolution mag sich das eine oder andere mittlerweile weiter entwickelt haben (z.B. ist die Diskussion zum Stammbaum fortgeschritten in einer Weise, dass weder die absolute Datierung noch zweifelsfrei ist noch die genauen Abhängigkeiten aufgrund von Genaustausch zwischen den Arten (vgl. Rauchfuß (326-337)]), doch zeigt Davies Querbeziehungen zwischen vielen Bereichen auf und bringt fundamentale Konzepte zum Einsatz (Information, Selbstorganisation, Autokatalyse, Komplexitätstheorie, Quantentheorie, Thermodynamik, algorithmische Berechenbarkeit ….), die in dieser Dichte und reflektierenden Einbringung sehr selten sind. Sein sehr kritischer Umgang mit allen möglichen Interpretationen ermöglicht Denkansätze, stellt aber auch genügend ‚Warnzeichen‘ auf, um nicht in vorschnelle Interpretationssackgassen zu enden. Eine weitere Diskussion des Phänomen Lebens kann an diesem Buch schwerlich vorbei gehen. Ich habe auch nicht den Eindruck, dass die neueren Ergebnisse die grundsätzlichen Überlegungen von Davies tangieren; mehr noch, ich kann mich des Gefühls nicht erwehren, dass die neuere Diskussion zwar weiter in ‚Details wühlt‘, aber die großen Linien und die grundlegenden theoretischen Modelle nicht wirklich beachten. Dies bedarf weiterer intensiver Lektüre und Diskussion ]
  16. [ Anmerkung: Ich beende hiermit die direkte Darstellung der Position von Davies, allerdings beginnt damit die Reflektion seiner grundlegenden Konzepte erst richtig. Aus meiner Sicht ist es vor allem der Aspekt der ‚logischen Strukturen‘, die sich beim ‚Zusammenwirken‘ einzelner Komponenten in Richtung einer höheren ‚funktionellen Komplexität‘ zeigen, die einer Erklärung bedürfen. Dies ist verknüpft mit dem Phänomen, dass biologische Strukturen solche übergreifenden logischen Strukturen in Form von DNA/ RNA-Molekülen ’speichern‘, deren ‚Inhalt‘ durch Prozesse gesteuert werden, die selbst nicht durch ‚explizite‘ Informationen gesteuert werden, sondern einerseits möglicherweise von ‚impliziten‘ Informationen und jeweiligen ‚Kontexten‘. Dies führt dann zu der Frage, inwieweit Moleküle, Atome, Atombestandteile ‚Informationen‘ ‚implizit‘ kodieren können, die sich in der Interaktion zwischen den Bestandteilen als ‚Präferenzen‘ auswirken. Tatsache ist, dass Atome nicht ’neutral‘ sind, sondern ’spezifisch‘ interagieren, das gleiche gilt für Bestandteile von Atomen bzw. für ‚Teilchen/ Quanten‘. Die bis heute nicht erklärbare, sondern nur konstatierbare Dualität von ‚Welle‘ und ‚Teilchen‘ könnte ein Hinweis darauf sein, dass die Grundstrukturen der Materie noch Eigenschaften enthält, die wir bislang ‚übersehen‘ haben. Es ist das Verdienst von Davies als Physiker, dass er die vielen chemischen, biochemischen und biologischen Details durch diese übergreifenden Kategorien dem Denken in neuer Weise ‚zuführt‘. Die überdimensionierte Spezialisierung des Wissens – in gewisser Weise unausweichlich – ist dennoch zugleich auch die größte Gefahr unseres heutigen Erkenntnisbetriebes. Wir laufen wirklich Gefahr, den berühmten Wald vor lauter Bäumen nicht mehr zu sehen. ]

 

Zitierte Literatur:

 

Mills,D.R.; Peterson, R.L.; Spiegelmann,S.: An Extracellular Darwinian Experiment With A Self-Duplicating Nucleic Acid Molecule, Reprinted from the Proceedings of the National Academy of Sciences, Vol.58, No.1, pp.217-224, July 1997

 

 

Rauchfuß, H.; CHEMISCHE EVOLUTION und der Ursprung des Lebens. Berlin – Heidelberg: Springer, 2005

 

Einen Überblick über alle bisherigen Themen findet sich HIER

 

Ein Video in Youtube, das eine Rede von Pauls Davies dokumentiert, die thematisch zur Buchbesprechung passt und ihn als Person etwas erkennbar macht.

 

Teil 1:
http://www.youtube.com/watch?v=9tB1jppI3fo

Teil 2:
http://www.youtube.com/watch?v=DXXFNnmgcVs

Teil 3:
http://www.youtube.com/watch?v=Ok9APrXfIOU

Teil 4:
http://www.youtube.com/watch?v=vXqqa1_0i7E

Part 5:
http://www.youtube.com/watch?v=QVrRL3u0dF4
Es gibt noch einige andere Videos mit Paul Davies bei Youtube.

 

 

SUCHE NACH DEM URSPRUNG UND DER BEDEUTUNG DES LEBENS (Paul Davies). Teil 2 (Information als Grundeigenschaft alles Materiellen?)

Paul Davies, The FIFTH MIRACLE: The Search for the Origin and Meaning of Life, New York:1999, Simon & Schuster

 Fortsetzung von Suche… (Teil 1)

Start: 27.Aug.2012

Letzte Fortsetzung: 1.Sept.2012

  1. Das dritte Kapitel ist überschrieben ‚Out of the Slime‘. (SS.69-96) Es startet mit Überlegungen zur Linie der Vorfahren (Stammbaum), die alle auf ‚gemeinsame Vorfahren‘ zurückführen. Für uns Menschen zu den ersten Exemplaren des homo sapiens in Afrika vor 100.000 Jahren, zu den einige Millionen Jahre zurückliegenden gemeinsamen Vorläufern von Affen und Menschen; ca. 500 Mio Jahre früher waren die Vorläufer Fische, zwei Milliarden Jahre zurück waren es Mikroben. Und diese Rückführung betrifft alle bekannten Lebensformen, die, je weiter zurück, sich immer mehr in gemeinsamen Vorläufern vereinigen, bis hin zu den Vorläufern allen irdischen Lebens, Mikroorganismen, Bakterien, die die ersten waren.(vgl. S.69f)

  2. [Anmerkung: Die Formulierung von einem ‚einzelnen hominiden Vorfahren‘ oder gar von der ‚afrikanischen Eva‘ kann den Eindruck erwecken, als ob der erste gemeinsame Vorfahre ein einzelnes Individuum war. Das scheint mir aber irreführend. Bedenkt man, dass wir ‚Übergangsphasen‘ haben von Atomen zu Molekülen, von Molekülen zu Netzwerken von Molekülen, von Molekülnetzwerken zu Zellen, usw. dann waren diese Übergänge nur erfolgreich, weil viele Milliarden und Abermilliarden von Elementen ‚gleichzeitig‘ beteiligt waren; anders wäre ein ‚Überleben‘ unter widrigsten Umständen überhaupt nicht möglich gewesen. Und es spricht alles dafür, dass dieses ‚Prinzip der Homogenität‘ sich auch bei den ‚komplexeren‘ Entwicklungsstufen fortgesetzt hat. Ein einzelnes Exemplar einer Art, das durch irgendwelche besonderen Eigenschaften ‚aus der Reihe‘ gefallen wäre, hätte gar nicht existieren können. Es braucht immer eine Vielzahl von hinreichend ‚ähnlichen‘ Exemplaren, dass ein Zusammenwirken und Fortbestehen realisiert werden kann. Die ‚Vorgänger‘ sind also eher keine spezifischen Individuen (wenngleich in direkter Abstammung schon), sondern immer Individuen als Mitglieder einer bestimmten ‚Art‘.]

  3. Es ist überliefert, dass Darwin im Sommer 1837, nach der Rückkehr von seiner Forschungsreise mit der HMS Beagle in seinem Notizbuch erstmalig einen irregulär verzweigenden Baum gemalt hat, um die vermuteten genealogischen Zusammenhänge der verschiedenen Arten darzustellen. Der Baum kodierte die Annahme, dass letztlich alle bekannten Lebensformen auf einen gemeinsamen Ursprung zurückgehen. Ferner wird deutlich, dass viele Arten (heutige Schätzungen: 99%) irgendwann ‚ausgestorben‘ sind. Im Falle einzelliger Lebewesen gab es aber – wie wir heute zunehmend erkennen können – auch das Phänomene der Symbiose: ein Mikroorganismus ‚frißt‘ andere und ‚integriert‘ deren Leistung ‚in sich‘ (Beispiel die Mitochondrien als Teil der heute bekannten Zellen). Dies bedeutet, dass ‚Aussterben‘ auch als ‚Synthese‘ auftreten kann.(vgl. SS.70-75)

  4. Die Argumente für den Zusammenhang auf Zellebene zwischen allen bekannten und ausgestorbenen Arten mit gemeinsamen Vorläufern beruhen auf den empirischen Fakten, z.B. dass die metabolischen Verläufe der einzelnen Zellen gleich sind, dass die Art und Weise der genetischen Kodierung und Weitergabe gleich ist, dass der genetische Kode im Detail der gleiche ist, oder ein kurioses Detail wie die molekulare Ausrichtung – bekannt als Chiralität –; obgleich jedes Molekül aufgrund der geltenden Gesetze sowohl rechts- oder linkshändig sein kann, ist die DNA bei allen Zellen ‚rechtshändig‘ und ihr Spiegelbild linkshändig. (vgl.SS.71-73)

  5. Da das DNA-Molekül bei allen bekannten Lebensformen in gleicher Weise unter Benutzung von Bausteinen aus Aminosäure kodiert ist, kann man diese Moleküle mit modernen Sequenzierungstechniken Element für Element vergleichen. Unter der generellen Annahme, dass sich bei Weitergabe der Erbinformationen durch zufällige Mutationen von Generation zur Generation Änderungen ergeben können, kann man anhand der Anzahl der verschiedenen Elemente sowohl einen ‚genetischen Unterschied‘ wie auch einen ‚genealogischen Abstand‘ konstruieren. Der genetische Unterschied ist direkt ’sichtbar‘, die genaue Bestimmung des genealogischen Abstands im ‚Stammbaum‘ hängt zusätzlich ab von der ‚Veränderungsgeschwindigkeit‘. Im Jahr 1999 war die Faktenlage so, dass man annimmt, dass es gemeinsame Vorläufer für alles Leben gegeben hat, die sich vor ca. 3 Milliarden Jahren in die Art ‚Bakterien‘ und ‚Nicht-Bakterien‘ verzweigt haben. Die Nicht-Bakterien haben sich dann weiter verzweigt in ‚Eukaryoten‘ und ‚Archäen‘. (vgl. SS.75-79)

  6. Davies berichtet von bio-geologischen Funden nach denen in de Nähe von Isua (Grönland) Felsen von vor mindestens -3.85 Milliarden Jahren gefunden wurden mit Spuren von Bakterien. Ebenso gibt es Funde von Stromatolythen (Nähe Shark Bay, Australien), mit Anzeichen für Cyanobakterien aus der Zeit von ca. -3.5 Milliarden Jahren und aus der gleichen Zeit Mikrofossilien in den Warrawoona Bergen (Australien). Nach den Ergebnissen aus 1999 hatten die Cyanobakterien schon -3.5 Mrd. Jahre Mechanismen für Photosynthese, einem höchst komplexen Prozess.(vgl. SS.79-81)

  7. Die immer weitere Zurückverlagerung von Mikroorganismen in die Vergangenheit löste aber nicht das Problem der Entstehung dieser komplexen Strukturen. Entgegen der früher verbreiteten Anschauung, dass ‚Leben‘ nicht aus ‚toter Materie‘ entstehen kann, hatte schon Darwin 1871 in einem Brief die Überlegung geäußert, dass in einer geeigneten chemischen Lösung über einen hinreichend langen Zeitraum jene Moleküle und Molekülvernetzungen entstehen könnten, die dann zu den bekannten Lebensformen führen. Aber erst in den 20iger Jahren des 20.Jahrhunderts waren es Alexander Oparin (Rußland) und J.B.S.Haldane (England) die diese Überlegungen ernst nahmen. Statt einem kleinen See,  wie bei Darwin, nahm Haldane an, dass es die Ozeane waren, die den Raum für den Übergangsprozess von ‚Materie‘ zu ‚Leben‘ boten. Beiden Forschern fehlten aber in ihrer Zeit die entscheidende Werkzeuge und Erkenntnisse der Biochemie und Molekularbiologie, um ihre Hypothesen testen zu können. Es war Harold Urey (USA) vorbehalten, 1953 mit ersten Laborexperimenten beginnen zu können, um die Hypothesen zu testen. (vgl. SS.81-86)

  8. Mit Hilfe des Studenten Miller arrangierte Urey ein Experiment, bei dem im Glaskolben eine ‚Mini-Erde‘ bestehend aus etwas Wasser mit den Gasen Methan, Hydrogen und Ammonium angesetzt wurde. Laut Annahme sollte dies der Situation um ca. -4 Millarden Jahren entsprechen. Miller erzeugte dann in dem Glaskolben elektrische Funken, um den Effekt von Sonnenlicht zu simulieren. Nach einer Woche fand er dann verschiedene Amino-Säuren, die als Bausteine in allen biologischen Strukturen vorkommen, speziell auch in Proteinen.(vgl. S.86f)

  9. Die Begeisterung war groß. Nachfolgende Überlegungen machten dann aber klar, dass damit noch nicht viel erreicht war. Die Erkenntnisse der Geologen deuteten in den nachfolgenden Jahren eher dahin, dass die Erdatmosphäre, die die sich mehrfach geändert hatte, kaum Ammonium und Methan enthielt, sondern eher reaktions-neutrales Kohlendioxyd und Schwefel, Gase die keine Aminosäuren produzieren. (vgl.S.87)

  10. Darüber hinaus ist mit dem Auftreten von Aminosäuren als Bausteine für mögliche größere Moleküle noch nichts darüber gesagt, ob und wie diese größere Moleküle entstehen können. Genauso wenig wie ein Haufen Ziegelsteine einfach so ein geordnetes Haus bilden wird, genauso wenig formen einzelne Aminosäuren ‚einfach so‘ ein komplexes Molekül (ein Peptid oder Polypeptid). Dazu muss der zweite Hauptsatz überwunden werden, nach dem ’spontane‘ Prozesse nur in Richtung Energieabbau ablaufen. Will man dagegen komplexe Moleküle bauen, muss man gegen den zweiten Hauptsatz die Energie erhöhen; dies muss gezielt geschehen. In einem angenommenen Ozean ist dies extrem unwahrscheinlich, da hier Verbindungen eher aufgelöst statt synthetisiert werden.(vgl.87-90)

  11. Der Chemiker Sidney Fox erweiterte das Urey-Experiment durch Zufuhr von Wärme. In der Tat bildeten sich dann Ketten von Aminosäurebausteinen die er ‚Proteinoide‘ nannte. Diese waren eine Mischung aus links- und rechts-händigen Molekülen, während die biologisch relevanten Moleküle alle links-händig sind. Mehr noch, die biologisch relevanten Aminosäureketten sind hochspezialisiert. Aus der ungeheuren Zahl möglicher Kombinationen die ‚richtigen‘ per Zufall zu treffen grenzt mathematisch ans Unmögliche.(vgl.S.90f) Dazu kommt, dass eine Zelle viele verschiedene komplexe Moleküle benötigt (neben Proteinen auch Lipide, Nukleinsäuren, Ribosomen usw.). Nicht nur ist jedes dieser Moleküle hochkomplex, sondern sie entfalten ihre spezifische Wirkung als ‚lebendiges Ensemble‘ erst im Zusammenspiel. Jedes Molekül ‚für sich‘ weiß aber nichts von einem Zusammenhang. Wo kommen die Informationen für den Zusammenhang her? (vgl.S.91f) Rein mathematisch ist die Wahrscheinlichkeit, dass sich die ‚richtigen‘ Proteine bilden in der Größenordnung von 1:10^40000, oder, um ein eindrucksvolles Bild des Physikers Fred Hoyle zu benutzen: genauso unwahrscheinlich, wie wenn ein Wirbelsturm aus einem Schrottplatz eine voll funktionsfähige Boeing 747 erzeugen würde. (vgl.S.95)

  12. Die Versuchung, das Phänomen des Lebens angesichts dieser extremen Unwahrscheinlichkeiten als etwas ‚Besonderes‘, als einen extrem glücklichen Zufall, zu charakterisieren, ist groß. Davies plädiert für eine Erklärung als eines ’natürlichen physikalischen Prozesses‘. (S.95f)

  13. Im Kapitel 4 ‚The Message in the Machine‘ (SS.97-122) versucht Davies mögliche naturwissenschaftliche Erklärungsansätze, beginnend bei den Molekülen, vorzustellen. Die Zelle selbst ist so ungeheuerlich komplex, dass noch ein Niels Bohr die Meinung vertrat, dass Leben als ein unerklärbares Faktum hinzunehmen sei (vgl.Anmk.1,S.99). Für die Rekonstruktion erinnert Davies nochmals daran, dass diejenigen Eigenschaften, die ‚lebende‘ Systeme von ’nicht-lebenden‘ Systemen auszeichnen, Makroeigenschaften sind, die sich nicht allein durch Verweis auf die einzelnen Bestandteile erklären lassen, sondern nur und ausschließlich durch das Zusammenspiel der einzelnen Komponenten. Zentrale Eigenschaft ist hier die Reproduktion. (vgl.SS.97-99)

  14. Reproduktion ist im Kern gebunden an das Kopieren von drei-dimensional charakterisierten DNA-Molekülen. Vereinfacht besteht solch ein DNA-Molekül aus zwei komplementären Strängen, die über eine vierelementiges Alphabet von Nukleinsäurebasen miteinander so verbunden sind, dass es zu jeder Nukleinsäurebase genau ein passendes Gegenstück gibt. Fehlt ein Gegenstück, ist es bei Kenntnis des Kodes einfach, das andere Stück zu ergänzen. Ketten von den vierelementigen Basen können ‚Wörter‘ bilden, die ‚genetische Informationen‘ kodieren. Ein ‚Gen‘ wäre dann solch ein ‚Basen-Wort‘. Und das ganze Molekül wäre dann die Summe aller Gene als ‚Genom‘. Das ‚Auftrennen‘ von Doppelsträngen zum Zwecke des Kopierens wie auch das wieder ‚Zusammenfügen‘ besorgen spezialisierte andere Moleküle (Enzyme). Insgesamt kann es beim Auftrennen, Kopieren und wieder Zusammenfügen zu ‚Fehlern‘ (Mutationen) kommen. (vgl.SS.100-104)

  15. Da DNA-Moleküle als solche nicht handlungsfähig sind benötigen sie eine Umgebung, die dafür Sorge trägt, dass die genetischen Informationen gesichert und weitergegeben werden. Im einfachen Fall ist dies eine Zelle. Um eine Zelle aufzubauen benötigt man Proteine als Baumaterial und als Enzyme. Proteine werden mithilfe der genetischen Informationen in der DNA erzeugt. Dazu wird eine Kopie der DNA-Informationen in ein Molekül genannt Boten-RNA (messenger RNA, mRNA) kopiert, dieses wandert zu einem komplexen Molekülnetzwerk genannt ‚Ribosom‘. Ribosomen ‚lesen‘ ein mRNA-Molekül als ‚Bauanleitung‘ und generieren anhand dieser Informationen Proteine, die aus einem Alphabet von 20 (bisweilen 21) Aminosäuren zusammengesetzt werden. Die Aminosäuren, die mithilfe des Ribosoms Stück für Stück aneinandergereiht werden, werden von spezialisierten Transportmolekülen (transfer RNA, tRNA) ‚gebracht‘, die so gebaut sind, dass immer nur dasjenige tRNA-Molekül andocken kann, das zur jeweiligen mRNA-Information ‚passt‘. Sobald die mRNA-Information ‚abgearbeitet‘ ist, liegt eines von vielen zehntausend möglichen Proteinen vor. (vgl.SS. 104-107) Bemerkenswert ist die ‚Dualität‘ der DNA-Moleküle (wie auch der mRNA) sowohl als ‚Material/ Hardware‘ wie auch als ‚Information/ Software‘. (vgl.S.108)

  16. Diese ‚digitale‘ Perspektive vertieft Davies durch weitere Betrachtung und führt den Leser zu einem Punkt, bei dem man den Eindruck gewinnt, dass die beobachtbaren und messbaren Materialien letztlich austauschbar sind bezogen auf die ‚impliziten Strukturen‘, die damit realisiert werden. Am Beispiel eines Modellflugzeugs, das mittels Radiowellen ferngesteuert wird, baut er eine Analogie dahingehend auf, dass die Hardware (das Material) des Flugzeugs wie auch der Radiowellen selbst als solche nicht erklären, was das Flugzeug tut. Die Hardware ermöglicht zwar grundsätzlich bestimmte Flugeigenschaften, aber ob und wie diese Eigenschaften genutzt werden, das wird durch ‚Informationen‘ bestimmt, die per Radiowellen von einem Sender/ Empfänger kommuniziert werden. Im Fall einer Zelle bilden komplexe Molekülnetzwerke die Hardware mit bestimmten verfügbaren chemischen Eigenschaften, aber ihr Gesamtverhalten wird gesteuert durch Informationen, die primär im DNA-Molekül kodiert vorliegt und die als ‚dekodierte‘ Information alles steuert.(vgl. SS.113-115)

  17. [Anmerkung: Wie schon zuvor festgestellt, repräsentieren Atome und Moleküle als solche keine ‚Information‘ ‚von sich aus‘. Sie bilden mögliche ‚Ereignisse‘ E ‚für andere‘ Strukturen S, sofern diese andere Strukturen S auf irgendeine Weise von E ‚beeinflusst‘ werden können. Rein physikalisch (und chemisch) gibt es unterschiedliche Einwirkungsmöglichkeiten (z.B. elektrische Ladungen, Gravitation,…). Im Falle der ‚Information‘ sind es aber nicht nur solche primären physikalisch-chemischen Eigenschaften, die benutzt werden, sondern das ‚empfangende‘ System S befindet sich in einem Zustand, S_inf, der es dem System ermöglicht, bestimmte physikalisch-chemische Ereignisse E als ‚Elemente eines Kodes‘ zu ‚interpretieren. Ein Kode ist minimal eine Abbildungsvorschrift, die Elemente einer Menge X (die primäre Ereignismenge) in eine Bildmenge Y (irgendwelche anderen Ereignisse, die Bedeutung) ‚übersetzt‘ (kodiert), also CODE: X —> Y. Das Materiell-Stoffliche wird damit zum ‚Träger von Informationen‘, zu einem ‚Zeichen‘, das von einem Empfänger S ‚verstanden‘ wird. Im Falle der zuvor geschilderten Replikation wurden ausgehend von einem DNA-Molekül (= X, Ereignis, Zeichen) mittels mRNA, tRNA und Ribosom (= Kode, CODE) bestimmte Proteine (=Y, Bedeutung) erzeugt. Dies bedeutet, dass die erzeugten Proteine die ‚Bedeutung des DNA-Moleküls‘ sind unter Voraussetzung eines ‚existierenden Kodes‘ realisiert im Zusammenspiel eines Netzwerkes von mRNA, tRNAs und Ribosom. Das Paradoxe daran ist, das die einzelnen Bestandteile des Kodes, die Moleküle mRNA, tRNA und Ribosom (letzteres selber hochkomplex) ‚für sich genommen‘ keinen Kode darstellen, nur in dem spezifischen Zusammenspiel! Wenn also die einzelnen materiellen Bestandteile, die Atome und Moleküle ‚für sich gesehen‘ keinen komplexen Kode darstellen, woher kommt dann die Information, die alle diese materiell hochkomplexen Bestandteile auf eine Weise ‚zusammenspielen‘ lässt, die weit über das hinausgeht, was die Bestandteile einzeln ‚verkörpern‘? ]

  18. "Zelle und Turingmaschine"

    zelle_tm

    [Anmerkung: Es gibt noch eine andere interssante Perspektive. Das mit Abstand wichtigste Konzept in der (theoretischen) Informatik ist das Konzept der Berechenbarkeit, wie es zunächst von Goedel 1931, dann von Turing in seinem berühmten Artikel von 1936-7 vorgelegt worden ist. In seinem Artikel definiert Turing das mathematische (!) Konzept einer Vorrichtung, die alle denkbaren berechenbaren Prozesse beschreiben soll. Später gaben andere dieser Vorrichtung den Namen ‚Turingmaschine‘ und bis heute haben alle Beweise immer nur dies eine gezeigt, dass es kein anderes formales Konzept der intuitiven ‚Berechenbarkeit‘ gibt, das ’stärker‘ ist als das der Turingmaschine. Die Turingmaschine ist damit einer der wichtigsten – wenn nicht überhaupt der wichtigste — philosophischen Begriff(e). Viele verbinden den Begriff der Turingmaschine oft mit den heute bekannten Computern oder sehen darin die Beschreibung eines konkreten, wenngleich sehr ‚umständlichen‘ Computers. Das ist aber vollständig an der Sache vorbei. Die Turingmaschine ist weder ein konkreter Computer noch überhaupt etwas Konkretes. Genau wie der mathematische Begriff der natürlichen Zahlen ein mathematisches Konzept ist, das aufgrund der ihm innewohnenden endlichen Unendlichkeit niemals eine reale Zahlenmenge beschreibt, sondern nur das mathematische Konzept einer endlich-unendlichen Menge von abstrakten Objekten, für die die Zahlen des Alltags ‚Beispiele‘ sind, genauso ist auch das Konzept der Turingmaschine ein rein abstraktes Gebilde, für das man konkrete Beispiele angeben kann, die aber das mathematische Konzept selbst nie erschöpfen (die Turingmaschine hat z.B. ein unendliches Schreib-Lese-Band, etwas, das niemals real existieren kann).
    ]

  19. [Anmerkung: Das Interessante ist nun, dass man z.B. die Funktion des Ribosoms strukturell mit dem Konzept einer Turingmaschine beschreiben kann (vgl. Bild). Das Ribosom ist jene Funktionseinheit von Molekülen, die einen Input bestehend aus mRNA und tRNAs überführen kann in einen Output bestehend aus einem Protein. Dies ist nur möglich, weil das Ribosom die mRNA als Kette von Informationseinheiten ‚interpretiert‘ (dekodiert), die dazu führen, dass bestimmte tRNA-Einheiten zu einem Protein zusammengebaut werden. Mathematisch kann man diese funktionelle Verhalten eines Ribosoms daher als ein ‚Programm‘ beschreiben, das gleichbedeutend ist mit einer ‚Funktion‘ bzw. Abbildungsvorschrift der Art ‚RIBOSOM: mRNA x tRNA —> PROTEIN. Das Ribosom stellt somit eine chemische Variante einer Turingmaschine dar (statt digitalen Chips oder Neuronen). Bleibt die Frage, wie es zur ‚Ausbildung‘ eines Ribosoms kommen kann, das ’synchron‘ zu entsprechenden mRNA-Molekülen die richtige Abbildungsvorschrift besitzt.
    ]
  20. Eine andere Blickweise auf das Phänomen der Information ist jene des Mathematikers Chaitin, der darauf aufmerksam gemacht hat, dass man das ‚Programm‘ eines Computers (sein Algorithmus, seine Abbildungsfunktion, seine Dekodierungsfunktion…) auch als eine Zeichenkette auffassen kann, die nur aus Einsen und Nullen besteht (also ‚1101001101010..‘). Je mehr Wiederholungen solch eine Zeichenkette enthalten würde, um so mehr Redundanz würde sie enthalten. Je weniger Wiederholung, um so weniger Redundanz, um so höher die ‚Informationsdichte‘. In einer Zeichenkette ohne jegliche Redundanz wäre jedes einzelne Zeichen wichtig. Solche Zeichenketten sind formal nicht mehr von reinen zufallsbedingten Ketten unterscheidbar. Dennoch haben biologisch nicht alle zufälligen Ketten eine ’nützliche‘ Bedeutung. DNA-Moleküle ( bzw. deren Komplement die jeweiligen mRNA-Moleküle) kann man wegen ihrer Funktion als ‚Befehlssequenzen‘ als solche binär kodierten Programme auffassen. DNA-Moleküle können also durch Zufall erzeugt worden sein, aber nicht alle zufälligen Erzeugungen sind ’nützlich‘, nur ein verschwindend geringer Teil.  Dass die ‚Natur‘ es geschafft hat, aus der unendlichen Menge der nicht-nützlichen Moleküle per Zufall die herauszufischen, die ’nützlich‘ sind, geschah einmal durch das Zusammenspiel von Zufall in Gestalt von ‚Mutation‘ sowie Auswahl der ‚Nützlichen‘ durch Selektion. Es stellt sich die Frage, ob diese Randbedingungen ausreichen, um das hohe Mass an Unwahrscheinlichkeit zu überwinden. (vgl. SS. 119-122)
  21. [Anmerkung: Im Falle ‚lernender‘ Systeme S_learn haben wir den Fall, dass diese Systeme einen ‚Kode‘ ‚lernen‘ können, weil sie in der Lage sind, Ereignisse in bestimmter Weise zu ‚bearbeiten‘ und zu ’speichern‘, d.h. sie haben Speichersysteme, Gedächtnisse (Memory), die dies ermöglichen. Jedes Kind kann ‚lernen‘, welche Ereignisse welche Wirkung haben und z.B. welche Worte was bedeuten. Ein Gedächtnis ist eine Art ‚Metasystem‘, in dem sich ‚wahrnehmbare‘ Ereignisse E in einer abgeleiteten Form E^+ so speichern (= spiegeln) lassen, dass mit dieser abgeleiteten Form E^+ ‚gearbeitet‘ werden kann. Dies setzt voraus, dass es mindestens zwei verschiedene ‚Ebenen‘ (layer, level) im Gedächtnis gibt: die ‚primären Ereignisse‘ E^+ sowie die möglichen ‚Beziehungen‘ RE, innerhalb deren diese vorkommen. Ohne dieses ‚Beziehungswissen‘ gibt es nur isolierte Ereignisse. Im Falle multizellulärer Organismen wird diese Speicheraufgabe durch ein Netzwerk von neuronalen Zellen (Gehirn, Brain) realisiert. Der einzelnen Zelle kann man nicht ansehen, welche Funktion sie hat; nur im Zusammenwirken von vielen Zellen ergeben sich bestimmte Funktionen, wie z.B. die ‚Bearbeitung‘ sensorischer Signale oder das ‚Speichern‘ oder die Einordnung in eine ‚Beziehung‘. Sieht man mal von der spannenden Frage ab, wie es zur Ausbildung eines so komplexen Netzwerkes von Neuronen kommen konnte, ohne dass ein einzelnes Neuron als solches ‚irgend etwas weiß‘, dann stellt sich die Frage, auf welche Weise Netzwerke von Molekülen ‚lernen‘ können.  Eine minimale Form von Lernen wäre das ‚Bewahren‘ eines Zustandes E^+, der durch ein anderes Ereignis E ausgelöst wurde; zusätzlich müsste es ein ‚Bewahren‘ von Zuständen geben, die Relationen RE zwischen primären Zuständen E^+ ‚bewahren‘. Solange wir es mit frei beweglichen Molekülen zu tun haben, ist kaum zu sehen, wie es zu solchen ‚Bewahrungs-‚ sprich ‚Speicherereignissen‘ kommen kann. Sollte es in irgend einer Weise Raumgebiete geben, die über eine ‚hinreichend lange Zeit‘ ‚konstant bleiben, dann wäre es zumindest im Prinzip möglich, dass solche ‚Bewahrungsereignisse‘ stattfinden. Andererseits muss man aber auch sehen, dass diese ‚Bewahrungsereignisse‘ aus Sicht eines möglichen Kodes nur möglich sind, wenn die realisierenden Materialien – hier die Moleküle bzw. Vorstufen zu diesen – physikalisch-chemische Eigenschaften aufweisen, die grundsätzlich solche Prozesse nicht nur ermöglichen, sondern tendenziell auch ‚begünstigen‘, und dies unter Berücksichtigung, dass diese Prozesse ‚entgegen der Entropie‘ wirken müssen. Dies bedeutet, dass — will man keine ‚magischen Kräfte‘ annehmen —  diese Reaktionspotentiale schon in den physikalisch-chemischen Materialien ‚angelegt‘ sein müssen, damit sie überhaupt auftreten können. Weder Energie entsteht aus dem Nichts noch – wie wir hier annehmen – Information. Wenn wir also sagen müssen, dass sämtliche bekannte Materie nur eine andere Zustandsform von Energie ist, dann müssen wir vielleicht auch annehmen, dass alle bekannten ‚Kodes‘ im Universum nichts anderes sind als eine andere Form derjenigen Information, die von vornherein in der Energie ‚enthalten‘ ist. Genauso wie Atome und die subatomaren Teilchen nicht ’neutral‘ sind sondern von vornherein nur mit charakteristischen (messbaren) Eigenschaften auftreten, genauso müsste man dann annehmen, dass die komplexen Kodes, die wir in der Welt und dann vor allem am Beispiel biologischer Systeme bestaunen können, ihre Wurzeln in der grundsätzlichen ‚Informiertheit‘ aller Materie hat. Atome formieren zu Molekülen, weil die physikalischen Eigenschaften sie dazu ‚bewegen‘. Molkülnetzwerke entfalten ein spezifisches ‚Zusammenspiel‘, weil ihre physikalischen Eigenschaften das ‚Wahrnehmen‘, ‚Speichern‘ und ‚Dekodieren‘ von Ereignissen E in einem anderen System S grundsätzlich ermöglichen und begünstigen. Mit dieser Annahme verschwindet ‚dunkle Magie‘ und die Phänomene werden ‚transparent‘, ‚messbar‘, ‚manipulierbar‘, ‚reproduzierbar‘. Und noch mehr: das bisherige physikalische Universum erscheint in einem völlig neuen Licht. Die bekannte Materie verkörpert neben den bislang bekannten physikalisch-chemischen Eigenschaften auch ‚Information‘ von ungeheuerlichen Ausmaßen. Und diese Information ‚bricht sich selbst Bahn‘, sie ‚zeigt‘ sich in Gestalt des Biologischen. Das ‚Wesen‘ des Biologischen sind dann nicht die ‚Zellen als Material‘, das Blut, die Muskeln, die Energieversorgung usw., sondern die Fähigkeit, immer komplexer Informationen aus dem Universum ‚heraus zu ziehen, aufzubereiten, verfügbar zu machen, und damit das ‚innere Gesicht‘ des Universums sichtbar zu machen. Somit wird ‚Wissen‘ und ‚Wissenschaft‘ zur zentralen Eigenschaft des Universums samt den dazugehörigen Kommunikationsmechanismen.]

  22. Fortsetzung Teil 3

Einen Überblick über alle bisherigen Themen findet sich HIER

Zitierte  Literatur:

Chaitin, G.J. Information, Randomness & Incompleteness, 2nd ed.,  World Scientific, 1990

Turing, A. M. On Computable Numbers with an Application to the Entscheidungsproblem. In: Proc. London Math. Soc., Ser.2, vol.42(1936), pp.230-265; received May 25, 1936; Appendix added August 28; read November 12, 1936; corr. Ibid. vol.43(1937), pp.544-546. Turing’s paper appeared in Part 2 of vol.42 which was issued in December 1936 (Reprint in M.DAVIS 1965, pp.116-151; corr. ibid. pp.151-154).

 Interessante Links:

Ein Video in Youtube, das eine Rede von Pauls Davies dokumentiert, die thematisch zur Buchbesprechung passt und ihn als Person etwas erkennbar macht.

Teil 1:
http://www.youtube.com/watch?v=9tB1jppI3fo

Teil 2:
http://www.youtube.com/watch?v=DXXFNnmgcVs

Teil 3:
http://www.youtube.com/watch?v=Ok9APrXfIOU

Teil 4:
http://www.youtube.com/watch?v=vXqqa1_0i7E

Part 5:
http://www.youtube.com/watch?v=QVrRL3u0dF4
Es gibt noch einige andere Videos mit Paul Davies bei Youtube.

ERKENNTNISSCHICHTEN – Das volle Programm…

 

  1. Wir beginnen mit einem Erkenntnisbegriff, der im subjektiven Erleben ansetzt. Alles, was sich subjektiv als ‚Gegeben‘ ansehen kann, ist ein ‚primärer‘ ‚Erkenntnisinhalt‘ (oft auch ‚Phänomen‘ [PH] genannt).

  2. Gleichzeitig mit den primären Erkenntnisinhalten haben wir ein ‚Wissen‘ um ’sekundäre‘ Eigenschaften von Erkenntnisinhalten wie ‚wahrgenommen‘, ‚erinnert‘, ‚gleichzeitig‘, ‚vorher – nachher‘, ‚Instanz einer Klasse‘, ‚innen – außen‘, und mehr.

  3. Auf der Basis der primären und sekundären Erkenntnisse lassen sich schrittweise komplexe Strukturen aufbauen, die das subjektive Erkennen aus der ‚Innensicht‘ beschreiben (‚phänomenologisch‘, [TH_ph]), aber darin auch eine systematische Verortung von ‚empirischem Wissen‘ erlaubt.

  4. Mit der Bestimmung des ‚empirischen‘ Wissens lassen sich dann Strukturen der ‚intersubjektiven Körperwelt‘ beschreiben, die weit über das ’subjektive/ phänomenologische‘ Wissen hinausreichen [TH_emp], obgleich sie als ‚Erlebtes‘ nicht aus dem Bereich der Phänomene hinausführen.

  5. Unter Einbeziehung des empirischen Wissens lassen sich Hypothesen über Strukturen bilden, innerhalb deren das subjektive Wissen ‚eingebettet‘ erscheint.

  6. Der Ausgangspunkt bildet die Verortung des subjektiven Wissens im ‚Gehirn‘ [NN], das wiederum zu einem ‚Körper‘ [BD] gehört.

  7. Ein Körper stellt sich dar als ein hochkomplexes Gebilde aus einer Vielzahl von Organen oder organähnlichen Strukturen, die miteinander in vielfältigen Austauschbeziehungen (‚Kommunikation‘) stehen und wo jedes Organ spezifische Funktionen erfüllt, deren Zusammenwirken eine ‚Gesamtleistung‘ [f_bd] des Input-Output-Systems Körpers ergibt. Jedes Organ besteht aus einer Vielzahl von ‚Zellen‘ [CL], die nach bestimmten Zeitintervallen ‚absterben‘ und ‚erneuert‘ werden.

  8. Zellen, Organe und Körper entstehen nicht aus dem ‚Nichts‘ sondern beruhen auf ‚biologischen Bauplänen‘ (kodiert in speziellen ‚Molekülen‘) [GEN], die Informationen vorgeben, auf welche Weise Wachstumsprozesse (auch ‚Ontogenese‘ genannt) organisiert werden sollen, deren Ergebnis dann einzelne Zellen, Zellverbände, Organe und ganze Körper sind (auch ‚Phänotyp‘ genannt). Diese Wachstumsprozesse sind ’sensibel‘ für Umgebungsbedingungen (man kann dies auch ‚interaktiv‘ nennen). Insofern sind sie nicht vollständig ‚deterministisch‘. Das ‚Ergebnis‘ eines solchen Wachstumsprozesses kann bei gleicher Ausgangsinformation anders aussehen. Dazu gehört auch, dass die biologischen Baupläne selbst verändert werden können, sodass sich die Mitglieder einer Population [POP] im Laufe der Zeit schrittweise verändern können (man spricht hier auch von ‚Phylogenese‘).

  9. Nimmt man diese Hinweise auf Strukturen und deren ‚Schichtungen‘ auf, dann kann man u.a. zu dem Bild kommen, was ich zuvor schon mal unter dem Titel ‚Emergenz des Geistes?‘ beschrieben hatte. In dem damaligen Beitrag hatte ich speziell abgehoben auf mögliche funktionale Unterschiede der beobachtbaren Komplexitätsbildung.

  10. In der aktuellen Reflexion liegt das Augenmerk mehr auf dem Faktum der Komplexitätsebene allgemein. So spannen z.B. die Menge der bekannten ‚Atome‘ [ATOM] einen bestimmten Möglichkeitsraum für theoretisch denkbare ‚Kombinationen von Atomen‘ [MOL] auf. Die tatsächlich feststellbaren Moleküle [MOL‘] bilden gegenüber MOL nur eine Teilmenge MOL‘ MOL. Die Zusammenführung einzelner Atome {a_1, a_2, …, a_n} ATOM zu einem Atomverband in Form eines Moleküls [m in MOL‘] führt zu einem Zustand, in dem das einzelne Atom a_i mit seinen individuellen Eigenschaften nicht mehr erkennbar ist; die neue größere Einheit, das Molekül zeigt neue Eigenschaften, die dem ganzen Gebilde Molekül m_j zukommen, also {a_1, a_2, …, a_n} m_i (mit {a_1, a_2, …, a_n} als ‚Bestandteilen‘ des Moleküls m_i).

  11. Wie wir heute wissen, ist aber auch schon das Atom eine Größe, die in sich weiter zerlegt werden kann in ‚atomare Bestandteile‘ (‚Quanten‘, ‚Teilchen‘, ‚Partikel‘, …[QUANT]), denen individuelle Eigenschaften zugeordnet werden können, die auf der ‚Ebene‘ des Atoms verschwinden, also auch hier wenn {q_1, q_2, …, q_n} QUANT und {q_1, q_2, …, q_n} die Bestandteile eines Atoms a_i sind, dann gilt {q_1, q_2, …, q_n} a_i.

  12. Wie weit sich unterhalb der Quanten weitere Komplexitätsebenen befinden, ist momentan unklar. Sicher ist nur, dass alle diese unterscheidbaren Komplexitätsebenen im Bereich ‚materieller‘ Strukturen aufgrund von Einsteins Formel E=mc^2 letztlich ein Pendant haben als reine ‚Energie‘. Letztlich handelt es sich also bei all diesen Unterschieden um ‚Zustandsformen‘ von ‚Energie‘.

  13. Entsprechend kann man die Komplexitätsbetrachtungen ausgehend von den Atomen über Moleküle, Molekülverbände, Zellen usw. immer weiter ausdehnen.

  14. Generell haben wir eine ‚Grundmenge‘ [M], die minimale Eigenschaften [PROP] besitzt, die in einer gegebenen Umgebung [ENV] dazu führen können, dass sich eine Teilmenge [M‘] von M mit {m_1, m_2, …, m_n} M‘ zu einer neuen Einheit p={q_1, q_2, …, q_n} mit p M‘ bildet (hier wird oft die Bezeichnung ‚Emergenz‘ benutzt). Angenommen, die Anzahl der Menge M beträgt 3 Elemente |M|=3, dann könnte man daraus im einfachen Fall die Kombinationen {(1,2), (1,3), (2,3), (1,2,3)} bilden, wenn keine Doubletten zulässig wären. Mit Doubletten könnte man unendliche viele Kombinationen bilden {(1,1), (1,1,1), (1,1,….,1), (1,2), (1,1,2), (1,1,2,2,…),…}. Wie wir von empirischen Molekülen wissen, sind Doubletten sehr wohl erlaubt. Nennen wir M* die Menge aller Kombinationen aus M‘ (einschließlich von beliebigen Doubletten), dann wird rein mathematisch die Menge der möglichen Kombinationen M* gegenüber der Grundmenge M‘ vergrößert, wenngleich die Grundmenge M‘ als ‚endlich‘ angenommen werden muss und von daher die Menge M* eine ‚innere Begrenzung‘ erfährt (Falls M’={1,2}, dann könnte ich zwar M* theoretisch beliebig groß denken {(1,1), (1,1,1…), (1,2), (1,2,2), …}, doch ‚real‘ hätte ich nur M*={(1,2)}. Von daher sollte man vielleicht immer M*(M‘) schreiben, um die Erinnerung an diese implizite Beschränkung wach zu halten.

  15. Ein anderer Aspekt ist der Übergang [emer] von einer ’niedrigerem‘ Komplexitätsniveau CL_i-1 zu einem höheren Komplexitätsniveau CL_i, also emer: CL_i-1 —> CL_i. In den meisten Fällen sind die genauen ‚Gesetze‘, nach denen solch ein Übergang stattfindet, zu Beginn nicht bekannt. In diesem Fall kann man aber einfach ‚zählen‘ und nach ‚Wahrscheinlichkeiten‘ Ausschau halten. Allerdings gibt es zwischen einer ‚reinen‘ Wahrscheinlich (absolute Gleichverteilung) und einer ‚100%-Regel‘ (Immer dann wenn_X_dann geschieht_Y_) ein Kontinuum von Wahrscheinlichkeiten (‚Wahrscheinlichkeitsverteilungen‘ bzw. unterschiedlich ‚festen‘ Regeln, in denen man Z%-Regeln benutzt mit 0 < Z < 100 (bekannt sind z.B. sogenannte ‚Fuzzy-Regeln‘).

  16. Im Falle des Verhaltens von biologischen Systemen, insbesondere von Menschen, wissen wir, dass das System ‚endogene Pläne‘ entwickeln kann, wie es sich verhalten soll/ will. Betrachtet man allerdings ‚große Zahlen‘ solcher biologischer Systeme, dann fällt auf, dass diese sich entlang bestimmter Wahrscheinlichkeitsverteilungen trotzdem einheitlich verhalten. Im Falle von Sterbensraten [DEATH] einer Population mag man dies dadurch zu erklären suchen, dass das Sterben weitgehend durch die allgemeinen biologischen Parameter des Körpers abhängig ist und der persönliche ‚Wille‘ wenig Einfluß nimmt. Doch gibt es offensichtlich Umgebungsparameter [P_env_i], die Einfluss nehmen können (Klima, giftige Stoffe, Krankheitserreger,…) oder indirekt vermittelt über das individuelle ‚Verhalten‘ [SR_i], das das Sterben ‚begünstigt‘ oder ‚verzögert‘. Im Falle von Geburtenraten [BIRTH] kann man weitere Faktoren identifizieren, die die Geburtenraten zwischen verschiedenen Ländern deutlich differieren lässt, zu verschiedenen Zeiten, in verschiedenen sozialen Gruppen, usw. obgleich die Entscheidung für Geburten mehr als beim Sterben individuell vermittelt ist. Bei allem Verhalten kann man mehr oder weniger starke Einflüsse von Umgebungsparametern messen. Dies zeigt, dass die individuelle ‚Selbstbestimmung‘ des Verhaltens nicht unabhängig ist von Umgebungsparametern, die dazu führen, dass das tatsächliche Verhalten Millionen von Individuen sehr starke ‚Ähnlichkeiten‘ aufweist. Es sind diese ‚gleichförmigen Wechselwirkungen‘ die die Ausbildung von ‚Verteilungsmustern‘ ermöglichen. Die immer wieder anzutreffenden Stilisierungen von Wahrscheinlichkeitsverteilungen zu quasi ‚ontologischen Größen‘ erscheint vor diesem Hintergrund eher irreführend und verführt dazu, die Forschung dort einzustellen, wo sie eigentlich beginnen sollte.

  17. Wie schon die einfachen Beispiele zu Beginn gezeigt haben, eröffnet die nächst höhere Komplexitätstufe zunächst einmal den Möglichkeitsraum dramatisch, und zwar mit qualitativ neuen Zuständen. Betrachtet man diese ‚Komplexitätsschichtungen‘ nicht nur ‚eindimensional‘ (also z.B. in eine Richtung… CL_i-1, CL_i, CL_i+1 …) sondern ‚multidimensional‘ (d.h. eine Komplexitätsstufe CL_i kann eine Vielzahl von Elementen umfassen, die eine Komplexitätstufe j<i repräsentieren, und diese können wechselseitig interagieren (‚kommunizieren‘)), dann führt dies zu einer ‚Verdichtung‘ von Komplexität, die immer schwerer zu beschreiben ist. Eine einzige biologische Zelle funktioniert nach so einem multidimensionalen Komplexitätsmuster. Einzelne Organe können mehrere Milliarden solcher multidimensionaler Einheiten umfassen. Jeder Körper hat viele solcher Organe die miteinander wechselwirken. Die Koordinierung aller dieser Elemente zu einer prägnanten Gesamtleistung übersteigt unsere Vorstellungskraft bei weitem. Dennoch funktioniert dies in jeder Sekunde in jedem Körper Billionenfach, ohne dass das ‚Bewusstsein‘ eines biologischen Systems dies ‚mitbekommt‘.

  18. Was haben all diese Komplexitätstufen mit ‚Erkenntnis‘ zu tun? Nimmt man unser bewusstes Erleben mit den damit verknüpften ‚Erkenntnissen‘ zum Ausgangspunkt und erklärt diese Form von Erkenntnis zur ‚Norm‘ für das, was Erkenntnis ist, dann haben all diese Komplexitätsstufen zunächst nichts mit Erkenntnis zu tun. Allerdings ist es dieses unser ’subjektives‘ ‚phänomenologisches‘ ‚Denken‘, das all die erwähnten ‚Komplexitäten‘ im Denken ’sichtbar‘ macht. Ob es noch andere Formen von Komplexität gibt, das wissen wir nicht, da wir nicht wissen, welche Form von Erkenntnis unsere subjektive Erkenntnisform von vornherein ‚ausblendet‘ bzw. aufgrund ihrer Beschaffenheit in keiner Weise ‚erkennt‘. Dies klingt paradox, aber in der Tat hat unser subjektives Denken die Eigenschaft, dass es durch Verbindung mit einem Körper einen indirekt vermittelten Bezug zur ‚Körperwelt jenseits des Bewusstseins‘ herstellen kann, der so ist, dass wir die ‚Innewohnung‘ unseres subjektiven Erkennens in einem bestimmten Körper mit dem Organ ‚Gehirn‘ als Arbeitshypothese formulieren können. Darauf aufbauend können wir mit diesem Körper, seinem Gehirn und den möglichen ‚Umwelten‘ dann gezielt Experimente durchführen, um Aufklärung darüber zu bekommen, was denn so ein Gehirn im Körper und damit korrelierend eine bestimmte Subjektivität überhaupt erkennen kann. Auf diese Weise konnten wir eine Menge über Erkenntnisgrenzen lernen, die rein aufgrund der direkten subjektiven Erkenntnis nicht zugänglich sind.

  19. Diese neuen Erkenntnisse aufgrund der Kooperation von Biologie, Psychologie, Physiologie, Gehirnwissenschaft sowie Philosophie legen nahe, dass wir das subjektive Phänomen der Erkenntnis nicht isoliert betrachten, sondern als ein Phänomen innerhalb einer multidimensionalen Komplexitätskugel, in der die Komplexitätsstrukturen, die zeitlich vor einem bewussten Erkennen vorhanden waren, letztlich die ‚Voraussetzungen‘ für das Phänomen des subjektiven Erkennens bilden.

  20. Gilt im bekannten Universum generell, dass sich die Systeme gegenseitig beeinflussen können, so kommt bei den biologischen Systemen mit ‚Bewusstsein‘ eine qualitativ neue Komponente hinzu: diese Systeme können sich aktiv ein ‚Bild‘ (‚Modell‘) ihrer Umgebung, von sich selbst sowie von der stattfindenden ‚Dynamik‘ machen und sie können zusätzlich ihr Verhalten mit Hilfe des konstruierten Bildes ’steuern‘. In dem Masse, wie die so konstruierten Bilder (‚Erkenntnisse‘, ‚Theorien‘,…) die tatsächlichen Eigenschaften der umgebenden Welt ‚treffen‘ und die biologischen Systeme ‚technologische Wege‘ finden, die ‚herrschenden Gesetze‘ hinreichend zu ‚kontrollieren‘, in dem Masse können sie im Prinzip nach und nach das gesamte Universum (mit all seinen ungeheuren Energien) unter eine weitreichende Kontrolle bringen.

  21. Das einzig wirkliche Problem für dieses Unterfangen liegt in der unglaublichen Komplexität des vorfindlichen Universums auf der einen Seite und den extrem beschränkten geistigen Fähigkeiten des einzelnen Gehirns. Das Zusammenwirken vieler Gehirne ist absolut notwendig, sehr wahrscheinlich ergänzt um leistungsfähige künstliche Strukturen sowie evtl. ergänzt um gezielte genetische Weiterentwicklungen. Das Problem wird kodiert durch das Wort ‚gezielt‘: Hier wird ein Wissen vorausgesetzt das wir so eindeutig noch nicht haben Es besteht ferner der Eindruck, dass die bisherige Forschung und Forschungsförderung diese zentralen Bereiche weltweit kum fördert. Es fehlt an brauchbaren Konzepten.

Eine Übersicht über alle bisherigen Beiträge findet sich hier

Philosophie Jetzt: Veranstaltung am 2.Okt.2011

Hier eine Ankündigung in eigener Sache:

Am 2.Okt.2011 beginne ich mit einer ersten Veranstaltung im Rahmen des Projektes ‚Philosophie Jetzt‘ mit dem aktuellen Titel ‚Unterwegs Wohin?‘

Grundidee ist, die Diskussion aus dem Blog auch in der Öffentlichkeit zu führen und damit  das Umdenken vieler gewohnter Alltagsbegriffe weiter zu unterstützen. Die Veranstaltung findet im

Bistro des Restautant ‚Schnittlik‘ statt

61137 Schöneck

Platz der Republik 2

16:00 – 19:00h

Gedacht ist an einer lockeren Form  von Vortrag, Gespräch, aufgelockert mit eigener experimenteller Musik. Denkbar, dass in Zukunft auch andere aktiv mitwirken durch Texte und Musik. Dies ist jedenfalls ein Anfang. Philosophie ist für uns alle wichtig, nicht nur für ‚Hinterstubendenker’……

Herzliche Grüße,

cagent

PS:  Es deutet alles darauf hin, dass es mir zum ersten Mal gelingt, einen Zusammenhang von ‚Urknall‘ über kosmische Evolution, biologische Evolution 1, biologische Evolution 2 (=Kultur, Technologie) bis hin zu Grundstrukturen von Wissen, Lernen und Werten zu zeichnen. Hätte dies nie für möglich gehalten. Im Nachhinein erscheint es so einfach und man versteht gar nicht, warum man sich nahezu 63 Jahre quälen muss, bis man dahin kommt (kleiner Trost. den anderen geht es auch nicht besser…). Die neue Perspektive hat allerdings etwas ‚Berauschendes‘; die philosophisch-theologischen Kategorien der Vergangenheit wirken da wie ein ’schlechter Traum‘. Andererseits war dies irgendwie als ‚Durchgangsphase‘ unumgänglich. Erkennen funktioniert nur über Blindversuch, Fehler, Korrektur, neuer Versuch… irgendwann hat man dann das Gefühl, jetzt scheint es ‚besser‘ zu sein…bis zur nächsten ‚Verbesserung’…Ohne diese gelegentlichen Blog-Einträge — so einfach und erratisch sie auch im einzelnen sein mögen — wäre dies nie passiert….

PS2: Ja, die Veranstaltung hat stattgefunden. Trotz strahlendem Sommerwetter war der Raum gefüllt und die drei Stunden erwiesen sich als viel zu kurz….Das ruft nach mehr….

Zusammenfassung des Vortrags

 

(1) Der Vortrag wählte als Ausgangspunkt die Position des Dualismus, der fast 2000 Jahre die europäische Philosophie — und auch das übrige Denken — geprägt hatte und selbst heute noch in vielen Kreisen präsent ist: die Gegenübersetzung von Geist und Materie.

 

(2) Es wurde dann in mehreren Schritten gezeigt, wie diese Gegenübersetzung im Lichte des heutigen Wissens nicht nur ‚in sich zusammenfällt‘ sondern mehr noch, einen völlig neuen Denkansatz ermöglicht.

 

(3) Über die Stationen Erde – Sonnensystem – Milchstraße – Universum wurde nicht nur deutlich, dass wir in einer der wenigen ‚bewohnbaren‘ (habitablen) Zonen leben, sondern dass alle bekannte ‚Materie‘ letztlich nichts anderes ist als eine ‚Zustandsform von Energie‘.

 

(4) Anhand der unterschiedlichen komplexen Strukturen wie subatomar Quanten, Atome, Moleküle wurde deutlich, wie es eine Brücke gibt von der Energie zu den kleinsten Bauelementen biologischer Lebensformen im Rahmen der chemischen Evolution. Zwar sind hier bis heute noch nicht alle Abläufe vollständig aufgeklärt, aber der Weg vom Molekül zur Zelle ist zumindest prinzipiell nachvollziehbar.

 

(5) Es wurden grob jene Prozess skizziert, die bei der Selbstreproduktion involviert sind (DNA, mRNA, tRNA, Ribosomenkomplexe….). Sämtliche Prozesse dieser chemischen Informationsmaschinerie basieren ausschließlich auf Molekülen.

 

(6) Die biologische Evolution von den ersten Zellen bis zum homo sapiens wurde stark verkürzend skizziert. Die Rolle des Gehirns in der Steuerung, für das Verhalten, für die Sprache. Die mittlerweile allgemein akzeptierte Out-of-Africa Hypothese, die Abstammung aller heute lebenden Menschen von einer Gruppe von homo sapiens Menschen, die von Ostafrika aus vor ca. -70.000 über Arabien, Persien, Indien Australien bevölkerten, Asien und ab ca. -45000 Europa. Später auch Nord- und Südamerika.

 

(7) Es wurde kurz erklärt wie der ‚Wissensmechanismus‘ hinter der biologischen Evolution funktioniert, die — obgleich vollständig ‚blind‘ — innerhalb von ca. 3.7 Mrd. Jahren hochkomplexe Organismen hervorgebracht hat. Die ‚Logik‘ dahinter ist ein gigantischer Suchprozess über die möglichen ökologischen Nischen, deren Feedbackmechanismus ausschließlich im Modus des ‚Überlebens‘ gegeben war. Das konnte nur funktionieren, weil beständig Milliarden von ‚Experimenten‘ gleichzeitig ausgeführt wurden. Evolution heißt ‚aktiv mit dem Unbekannten spielen‘ mit dem Risiko, unter zu gehen; aber dieses Risiko war — und ist — die einzige ‚Versicherung‘, letztlich doch zu überleben.

 

(8) Es wurde dann die Besonderheit des Gehirns erläutert, warum und wie Gehirnzellen in der Lage sind, Signale zu verarbeiten. Es wurden die chemischen Prozesse geschildert, die diesen Prozessen zugrunde liegen und dann, wie sich diese komplexen chemischen Prozesse heute technisch viel einfacher realisieren lassen. Es wurde ferner erklärt, warum ein Computer das Verhalten eines Gehirns simulieren kann. Zugleich wurde aber auch deutlich gemacht, dass die Simulation mittels eines Computers keine vollständige Berechenbarkeit impliziert, im Gegenteil, wir wissen, dass ein Gehirn — real oder simuliert — grundsätzlich nicht entscheidbar ist (Goedel, Turing).

 

(9) Es wurde weiter erläutert, wie sich die Informationsverarbeitung eines Gehirns von der DNA-basierten Informationstechnologie unterscheidet. Neben Details wie Gedächtnisstrukturen, Bewusstsein – Unbewusstsein, Sprache, Abstraktionen, Planen, usw. wurde deutlich gemacht, dass die Informationseinheiten eines Gehirns (Meme) permanent durch das Verhalten eines Organismus modifiziert werden können. Im Zusammenwirken von Gehirn und Sprache ist das biologische Leben nun im Stande, komplexe Modelle des Lebens versuchsweise zu entwickeln, die in Verbindung mit Genetik den Entwicklungsprozess biologischer Strukturen extrem beschleunigen könnten. Mit Blick auf die drohenden Faktoren der Lebenszerstörung wie Sonnenerwärmung, Zusammenstoß mit der Galaxie Andromeda in ca. 2-4 Mrd Jahren — um nur einige Faktoren zu nennen — kann diese Beschleunigung des Entwicklungsprozesses von Leben von Interesse sein.

 

(10) Hier endete die Sitzung mit dem vielfachen Wunsch, den Diskurs fort zu setzen, speziell mit Blick auf die sich neu stellenden ethischen und praktischen Lebensfragen.

SEXUALITÄT GESTERN, MORGEN, UND

Zuerst: 29.Juni 2011

Korrekturen: 20.Nov.2011

(1) Sexualität war und ist ein Kernthema unseres menschlichen Lebens; angefeindet, verherrlicht, verdammt, gepriesen, verfolgt, geehrt, Ware, Ideal, sündhaft, Sakrament, überlebensnotwendig, Konsumartikel, schmachtend, verwirrt, glühend, bezaubert, heiß, zart, aggressiv gewalttätig,… also schrecklich und schön zugleich.

Augen der Begierde 1

Augen der Begierde 1

(2) Die Erfahrung von Sexualität beginnt meistens irgendwo im Übergang von der Kindheit zur Jugend. Wenn die Wachstumsprozesse den Körper so zu verändern beginnen, dass Moleküle (Hormone) das Gehirn mehr und mehr in Form von Spannungs- und Erregungszuständen beeinflussen können. Die statistische Mehrheit der Körper hat irgendwann Empfindungszustände, die so vorher nicht da waren. Bei männlichen Körpern können diese Erregungszustände biologisch bedingt eine Intensität annehmen, die alle anderen Empfindungen gleichsam ‚übertönt‘ und damit zur ‚Qual‘ werden kann. Grundsätzlich sind sexuelle Erregungszustände an spezifische Auslöser gebunden, aber aufgrund des assoziativ-kreativen Charakters des menschlichen Gehirns kann dieses mehr und mehr alles und jedes in Verbindung zu sexuellen Erregungszuständen setzen, so dass dann gleichsam die ganze Welt nahezu permanent als Stimulus dienen kann, um spezifische sexuelle Erregungszustände zu erzeugen, die der Körper intern als ‚Belohnung‘ empfindet. Gehirne, die sich so verhalten, würde man in gewissem Sinne als ‚abnorm‘ bezeichnen, da sie es zulassen, dass die Vielfalt des Körpers und der Welt — ab einem bestimmten Punkt dann ‚zwanghaft‘ — einem einzigen internen Trieb ‚unterworfen‘ wird und damit das Gehirn seine Vermittlerfunktion für die ganze Breite des Leben immer mehr verliert; aber unser Gehirn kann sich einem einzelnen Bereich ‚dienstbar‘ machen; ’sich selbst überlassen‘ kann ein Gehirn sich in diesem Sinne ‚falsch programmieren‘. Dies zu ändern kann ab einem bestimmten Punkt nahezu unmöglich werden; letzte absolute Aussagen über das Verhalten unserer Gehirne sind allerdings — aus theoretischen Gründen — prinzipiell unmöglich.

(3) Diese körperlichen Prozesse von molekül-basierten Spannungs- und Erregungszuständen im Gehirn haben eine Empfindungsseite. Menschen erleben ihren Körper nicht ‚wie er ist‘, sondern so wie das Gehirn die Vielfalt der körperlichen Prozesse in Form von ‚bewussten Empfindungen‘ zur Verfügung stellt. Wir ‚empfinden‘ bestimmte Spannungen, wir ‚empfindenden‘ bestimmte Erregungen, wir ‚erleben‘ diese Spannungen und Erregungen als Momente einer jeweiligen Situationserfahrung ohne dass wir die dahinter liegende körperlichen (physiologischen) Prozesse selbst direkt erkennen könnten, da unser Gehirn uns diese ‚vorenthält‘ (würde das Gehirn uns die ungeheure Fülle aller körperlichen Vorgänge ‚ungefiltert‘ erfahren lassen, wir würden an dieser Komplexität möglicherweise ‚ersticken‘. Insofern ist das ‚Bewusstsein mit seiner Filterfunktion ein ungeheurer evolutionärer Fortschritt). In diesem Sinne ‚verstehen‘ wir im ersten Moment nicht, was mit uns passiert, sondern wir ‚erleben‘ diese Zustände passiv, als etwas, das uns geschieht, das uns betrifft, das uns beeinflusst. Für Kinder kann dies zu Beginn sehr wohl beunruhigend, ja möglicherweise erschreckend sein. Und jeder braucht seine Zeit (Monate, Jahre, Jahrzehnte (?)), um diese erlebbaren Zustände in geeignete Deutungs- und dann Handlungszusammenhänge einzuordnen. Als Kind und Jugendlicher übernimmt man Deutungszusammenhänge aus der Umgebung. Im Zeitalter von Massenmedien und Internet kann dies nahezu alles sein, was ein Kind so findet.

(4) Vom Standpunkt des ‚Lebens auf dem Planet Erde‘, das sich uns als komplexer Entwicklungsprozess zeigt — den wir bislang zwar noch nicht vollständig erklären können, aber doch in vielen Aspekten so umfangreich, dass wir einige interessante Mechanismen identifizieren können — stellt sich ‚Sexualität‘ als eine ‚revolutionäre Erfindung‘ dar, die dazu geführt hat, dass bei der Weitergabe der ‚Bauanleitung für neue Lebewesen‘ sich das Prinzip des ‚Mischens von Informationen‘ als für das ‚Überleben auf der Erde‘ als ‚erfolgreicher‘ erwiesen hatte als ein Verzicht auf dieses Mischungsprinzip. Da die Bauanleitung selbst (ein Molekül, die DNA, das Genom, die Erbsubstanz…) nicht lebensfähig ist, sondern nur ein Körper (ein Phänotyp), der sich anhand einer solchen Bauanleitung entwickeln kann (Wachsen, Ontogenese,….), war es wichtig, dass das Leben in der Phase der ‚agierenden Körper‘ ‚Vorsorge‘ dafür trifft, dass sich die Körper zum Zwecke der Mischung der Erbinformationen ‚finden‘ und ‚aktiv zusammenwirken‘. Die Konstruktionsaufgabe lautete: statte die Körper (Phänotypen) so aus, dass sich immer zwei so ‚attraktiv‘ finden, dass sie sich ‚angezogen‘ fühlen, dass diese Anziehung so stark ist, dass die umwelttypischen Widrigkeiten, Bedrohungen und Gefahren mit den daraus resultierenden Beunruhigungen und Ängsten diese Anziehung nicht vollständig neutralisieren können. Für diese Konstruktionsaufgabe fanden sich im Laufe der Jahrmillionen unterschiedliche Lösungsmodelle. Das Lösungsmodell beim homo sapiens — uns heute lebenden Menschen — kennen wir. Der Körper der Frau wirkt als ‚Reiz‘ (Stimulus) auf das Gehirn des Mannes, das diesen dann in solche Spannungszustände versetzt (volkstümlich: der Mann ist ‚Schwanzgesteuert‘), dass dieser sprichwörtlich tatsächlich nahezu alles vergessen kann, um seinen Trieb zu befriedigen. Diese Lösung, die viele tausend Jahre für das Überleben und die Weiterentwicklung des Lebens auf der Erde erfolgreich (in welchem Ausmaß ‚gewaltfrei‘?) war, hat durch die rasante Entwicklung der menschlichen Lebensformen heute — so scheint es — ‚Passungsprobleme‘ unterschiedlicher Art. Diese alle hier zu schildern würde zu weit führen; das Phänomen ist sehr bunt und vielschichtig (aber alleine eine Zahl wie ‚20.000 verschwundene (verschleppte?) junge Frauen im Jahr 2010‘ in einem (!) kleinen Ostblockland wäre – würde sie stimmen — ein grausamer Index für die soziale und ökonomische Realität eines schwer kontrollierbaren genetischen Merkmals bei männlichen homo sapiens Vertretern).

(5) Vom Standpunkt des Lebens auf der Erde ist eigentlich nur ein einziger Punkt interessant: das Leben in Gestalt des homo sapiens sapiens hat die Fähigkeit erlangt, die ‚Mischung von Erbinformationen‘ nicht mehr nur und ausschliesslich dem drei Milliarden Jahren alten Prinzip der Erbinformationsweitergabe zu überlassen, sondern wir können mehr und mehr eine solche Mischung nun mit speziell geschaffenen Techniken vornehmen. In dem Maße, wie der homo sapiens diese Technik so beherrschen kann, dass daraus lebensfähige Gebilde entstehen, wäre die bisherige Form von geschlechterspezifischen Körpern mit ihren komplexen Anziehungsmechanismen letztlich überflüssig. Salopp: zukünftigen geschlechtsneutralen Lebewesen könnte man auf Wunsch Pillen verabreichen, die für eine gewisse Zeit solche Spannungs- und Erregungszustände in den Gehirnen — und damit dann auch in bestimmten Körperteilen, sofern es noch welche gibt — induzieren würden, wie sie ‚damals‘ die ‚alten Menschen‘ hatten, die sich noch nicht aus dem genetischen Gefängnis befreit hatten. Vielleicht gäbe es dann nostalgische Geschichtsvereine, in denen man solche Pillen nehmen und entsprechende Filme ‚von früher‘ anschauen würde, begleitet von einem gewissen ‚Ekel‘, wie diese ‚primitiven Menschen von früher‘ sich von ihren ’sexuellen Zwängen‘ haben ‚knechten‘ lassen (speziell die Frauen würden den Zeiten von Schwangerschaft und schmerzhaften — bis hin zu gefährlichen — Geburten nicht unbedingt nachtrauern). Da bekannt ist, dass schon das ungeborene Kind während der Schwangerschaft mit dem Körper der Mutter und durch diesen mit der Umwelt ‚kommuniziert‘, würden entsprechende ‚Kommunikationsschnittstellen‘ entwickelt werden, um von Anfang an die Kommunikation eines neuen Lebewesens mit seiner Umgebung zu sichern.

(6) Durch die Tatsache, dass es ausschließlich der homo sapiens ist (bislang), der über das KnowHow und die Technik verfügt, Erbinformationen technisch gezielt mischen zu können, kann er dies nicht nur für die Erbinformationen der eigenen Art tun, sondern letztlich für alle Arten, ja, letztlich für das gesamte Phänomen des Lebens auf der Erde. Dies ist ziemlich ungeheuerlich. Es hat ca. 3.5 Milliarden Jahre gebraucht, bis das Leben eine Form annehmen konnte, die über diese Fähigkeit verfügt. Obwohl wir bis heute noch nicht wirklich völlig verstehen, wie es überhaupt zu den Anfängen des Lebens kommen konnte, verfügen wir im Prinzip über die Technologie, verändernd eingreifen zu können. Allerdings, bislang können wir — bildhaft gesprochen — nur die Buchstaben des Textes herumwirbeln, wie Kinder, die die herabgefallenen Blätter von den Bäumen herumwirbeln, wir haben nahezu keine Ahnung, wie man gezielt die möglichen Wirkungen (= Bedeutung, Semantik, Pragmatik) der Buchstabenkombinationen im Rahmen von Wachstumsprozessen ‚berechnen‘ kann. Eine ‚genetische Semantik‘ bzw. ‚genetische Pragmatik‘ steckt noch ganz in den Kinderschuhen. Doch, wie die bisherige Geschichte nahe legt, ist es nur eine Frage der Zeit, bis wir dieses KnowHow haben werden. Wenn irgendetwas die Bezeichnung ‚historische Wende‘ verdient, dann diese Phase des Lebens auf der Erde; es ist der gewaltigste Umbruch, den es seit dem Beginn des Lebens auf der Erde gegeben hat.

Augen der Begierde 2

Augen der Begierde 2

(7) Wer bis hierher gelesen hat könnte den Einwand erheben, dass diese Sichtweise doch zu ‚biologistisch‘ sei und in keiner Weise der Tatsache Rechnung trägt, dass Menschen über den unmittelbaren ‚Trieb‘ hinaus noch andere ‚Emotionen‘, ‚Gefühle‘ in sich tragen, ‚Werte‘, die sie dazu befähigen, Interaktionen komplexe Institutionen zu realisieren, die nicht von sexuellen Motiven geprägt sind. Diesem Einwand würde ich zustimmen. In der Tat verfügt der Mensch über eine Bandbreite von Empfindungen, Emotionen, Gefühlen, Motivationen, Werten, die erstaunlich ist und die ihn zu Verhaltensweisen befähigen, die sich einem einfachen Verstehen entziehen. Während bei Tieren die Sexualität etwas Unausweichliches hat, kann der Mensch damit letztlich gestalterisch ‚umgehen‘, bis dahin, dass es Menschen gibt, die sich aus eigenen Stücken entschlossen haben, ‚Keusch‘, d.h. ‚frei von Sexualität‘, zu leben. D.h. die ‚Plastizität‘ des menschlichen Gehirns kann sowohl dazu ‚missbraucht‘ werden, immer mehr dem ‚Sexualtrieb‘ ‚zuzuarbeiten‘, als auch dazu, aus der großen Bandbreite von anderen Bedürfnissen, Stimmungen, Gefühlen, Emotionen usw. ‚Zufriedenheitskonstellationen‘ zu ‚erlernen‘, ‚einzuüben‘, die sexfrei sind oder wo die Sexualität nur ein bestimmter Teil eines größeren Zusammenhanges ist (die Pädagogen/ Therapeuten sprechen hier von der ‚Integration des Triebes‘). Diese Fähigkeiten des Menschen, ‚über‘ (trans…) konkrete Bedürfnisse hinaus Motivationen entwickeln zu können, macht den Menschen als Lebensform ‚auffällig‘, lässt ihn in einem ‚besonderen Licht‘ erscheinen, wirft zahllose Fragen auf, fasziniert. Zwischen Menschen — nicht nur zwischen Frau und Mann, sondern auch Frau und Frau, Mann und Mann — kann es Gefühlszustände geben, die sehr intensiv und nachhaltig sein können, ohne dass dies unmittelbar etwas mit Sexualität zu tun haben muss, Gefühle, die weder Geschlechts- noch Altersgrenzen kennen, die sich auch nicht durch abweichendes Aussehen beeinflussen lassen (Mir ist nicht bekannt, dass es dazu irgendwelche wirkliche Forschungsarbeiten gibt; dies sind aber Lebenserfahrungen).


Es gab eine Art Fortsetzung der Gedanken unter dem Titel SEXARBEITERiINNEN – Sind wir weiter?

Eine Übersicht über alle Blogbeiträge nach Titeln findet sich HIER.