MENSCHENBILD – VORGESCHICHTE BIS ZUM HOMO SAPIENS – Überlegungen

Letzte Altualisierung: 27.Aug.2017 - 17:37h
Es gibt eine Weiterentwicklung dieses Beitrags in einem Folgebeitrag!

PDF

Überblick

Eingeleitet durch wissenschaftsphilosophische
Überlegungen wird versucht, die Entwicklung der
Säugetiere bis hin zum homo sapiens anhand der aktuellen
Forschungsdaten abzubilden. Das Hauptaugenmerk liegt
auf der allgemeinen Struktur. Für die vielen Details sei auf
die Literatur verwiesen, die angegeben wird.

I. KONTEXT

Eine der Leitfragen dieses Blogs ist die Frage nach
dem neuen Menschenbild, speziell auch im Kontext
der Diskussion um die Zukunft von Menschen und
intelligenten Maschine.

Wer nach der Zukunft des Menschen fragt,
braucht ein gutes Bild vom aktuellen Menschen und
seiner Entstehungsgeschichte, um auf dieser Basis
Überlegungen zu einer möglichen Zukunft anstellen zu
können.

Während zur biologischen Evolution allgemein schon
einige Blogbeiträge geschrieben wurden, fehlt es im Blog
an konkreten Daten zur Entwicklung unmittelbar vor dem
Auftreten des homo sapiens, etwa in dem Zeitfenster -10
Mio Jahren bis ca. -30.000 Jahren vor dem Jahr 0. Dies
soll hier in einem ersten Beitrag nachgeholt werden.

II. WISSENSCHAFTLICHE SICHTWEISEN

Bei der Frage nach der Entwicklung des homo
sapiens spielen mehrere wissenschaftliche Disziplinen
ineinander. Einmal ist es die Geologie (Siehe: [WD17g]),
die den Kontext Erde untersucht; dann die Klimatologie
(Siehe: [WD17n]), die sich mit den klimatischen
Verhältnissen im Kontext Erde beschäftigt. Für das
Phänomen des Lebens selbst ist die Biologie zuständig,
speziell die Evolutionsbiologie (Siehe: [SWW13],
[WD17e]). Als Teil der Evolutionsbiologie sind noch
zu nennen die Molekularbiologie (Siehe: [WD17s]) mit
der Genetik (Siehe: [WD17f]). Ferner könnte man als
Teil der Evolutionsbiologie auch noch die Paläontologie
(Siehe: [WD17u], [Par15]) nennen und auch die
Archäologie (Siehe: [WD17a]). Wobei das Wechselspiel
von Evolutionsbiologie und Archäologie nicht ganz
so klar erscheint. Viele weitere wissenschaftliche
Disziplinen tauchen innerhalb der genannten Disziplinen
in unterschiedlichsten Kontexten auf.

Diese Vielfalt spiegelt ein wenig die Komplexität der
Phänomene wieder, um die es hier geht. Der Autor
cagent selbst betrachtet die hier zu verhandelnden
empirischen Phänomene aus Sicht der Philosophie
mit den Schwerpunkten Erkenntnisphilosophie, die
Überschneidungen hat mit Phänomenen wie z.B.
‚Lernen’ und ’Intelligenz’. Dies sind Themen, die
feste Orte auch in der Psychologie haben, heute
oft parallelisiert mit der Gehirnforschung (letztere
methodisch gesehen ein Teil der Biologie).

Angesichts dieser Komplexität ist es praktisch
unmöglich, ein völlig konsistentes, einheitliches Bild der
Phänomene zu zeichnen. An dieser Stelle ist es das
Anliegen von cagent, einen ’hinreichenden’ Überblick
über die ’unmittelbare’ Vorgeschichte des homo sapiens
zu bekommen.

Der homo sapiens ist jene biologische Art (Spezies),
die zur Gattung homo gerechnet wird, die sich aus
dem biologischen Formenstrom über Jahrmillionen
herausgeschält hat. Es zeigt sich, dass die zeitliche
Abgrenzung, wann genau ’das Menschliche’ anfängt,
und wann das ’Tierische’ aufhört, irgendwie beliebig
erscheint. Der homo sapiens ab ca. -30.000 besitzt
natürlich Eigenschaften, die wir beschreiben können
wie Körperbau, genetisch bestimmte Erbanlagen,
typische Verhaltensweisen, aber diese Eigenschaften
tauchen nicht abrupt in der Geschichte auf, sind nicht
irgendwann einfach so da, sondern man findet in
der vorausgehenden Zeit eine große Formenvielfalt
in den Artefakten, mit unterschiedlichen genetischen
Distanzen zum heutigen homo sapiens. Daraus muss
man schließen, dass es einen viele Millionen dauernden
Prozess des Formenwandels gab, innerlich genetisch
und äußerlich durch die jeweiligen geologischen und
klimatologischen Verhältnisse beeinflusst, die sich
zudem noch verknüpfen mit der jeweiligen Pflanzen- und
Tierwelt. Alle diese genannten Faktoren waren selbst
einem kontinuierlichen Wandel unterworfen.

Wenn die Grenzziehung zwischen dem ’Tierischen’
und dem ’Menschlichen’ von daher nicht ganz scharf
gezogen werden kann, ist auch eine Zeitangabe dazu,
wie weit zurück in der Zeit man gehen soll, um die
Vorgeschichte’ zu beschreiben, relativ, d.h. abhängig
von den Kriterien, die man bei der Analyse anlegen
will.

In diesem Beitrag wurde der Startpunkt für die
Beschreibung bei den Lebensformen gewählt, die die
Biologen ’Primaten’ nennen, und zwar spezieller den
Punkt der Aufspaltung in die Strepsirrhini und Haplorhini
(Siehe: [WE17l] und [WD17r]), die sich um etwa -80
Mio Jahren ereignet haben soll. Aus Sicht der heutigen
menschlichen Geschichte, wo 100 Jahre oder gar 1000
Jahre eine lange Zeit sind, wirken diese 80 Millionen
Jahre sehr, sehr lang. Innerhalb der Geschichte des
Lebens mit ca. 3.5 Milliarden Jahre fallen die 0.08 Mrd
Jahre seit dieser Aufspaltung nahezu kaum ins Gewicht,
es sind gerade mal 2.2% der gesamten Entwicklungszeit
des biologischen Lebens. Betrachtet man dagegen nur
die Zeit seit dem Auftreten der Lebensform homo, die
dem heute bekannten Menschlichem schon nahe kommt
(etwa ab -2.5 Mio), dann schrumpft der Zeitanteil auf
0.071 % der Entwicklungszeit des biologischen Lebens
zusammen. Umgerechnet auf das 12-Stunden Ziffernblatt
einer Uhr mit 720 Minuten würde die Entstehung der
Lebensform homo die letzte halbe Minute auf dem
Ziffernblatt ausmachen. Die Lebensform homo sapiens,
zu der wir uns zählen, tauchte frühestens um -190.000 in
Afrika auf. Das wären auf dem Ziffernblatt dann (bei ca.
81.000 Jahren pro Sekunde) die letzten 2.3 Sekunden.

Im Spiel des Lebens erscheint dies nicht viel. Betrachtet
man aber, was sich allein in den letzten ca. 10.000
Jahren ereignet hat, und hier speziell nochmals in den
letzten 100 Jahren, dann legt sich der Schluss nahe,
dass die Lebensform homo sapiens offensichtlich über
Fähigkeiten verfügt, die gegenüber der Vorgeschichte
von ca. 3.5 Mrd Jahren etwas qualitativ ganz Neues
sichtbar macht. Autor cagent ist sich nicht sicher,
ob der homo sapiens selbst bislang wirklich begreift,
was hier passiert, welche Rolle er in diesem Prozess
spielt. Auf der einen Seite zeichnet sich eine immer
größere Zerstörungskraft ab (die auch stattfindet), auf
der anderen Seite deuten sich konstruktive Potentiale
an, die alles übersteigen, was bislang vorstellbar war.

III. DEUTUNGEN: MATERIAL, MUSTER, FUNKTION, KONTEXTE

Die Tätigkeit der eingangs erwähnten Wissenschaft
kann man verstehen als eine Deutung, ausgeführt in
einem Deutungsprozess. Diese Deutung beginnt bei der
Bestimmung der Substanzen/ Materialien, die Forscher
vorfinden. Ist das eine Gesteinsart, sind das Knochen,
sind das pflanzliche Bestandteile …. ? Ein anderer
Aspekt ist die Frage nach ’Formen’ und ’Mustern’:
kann man an dem Material auffällige Formen oder
Muster erkennen, dann auch im Vergleich zu anderen
Materialien? Schließlich auch die Frage nach möglichen funktionalen Zusammenhängen’: wenn es ein Knochen
ist, in welchem Zusammenhang eines Knochengerüsts
kommt er vor? Wenn etwas ein Zahn sein soll, wie sah
das zugehörige Gebiss aus? Oder ist dieser Knochen Teil
eines Werkzeugs, einer zu unterstellenden Handlung,
die das Stück benutzt hat? Schließlich, in welchem
Kontext kommt ein Material vor? Ist es zufälliger Kontext,
ein Kontext durch einen geologischen Prozess, ein
Kontext erzeugt durch Verhalten von Lebewesen?
Schon bei diesen Fragen bieten sich eine Vielzahl von
Deutungsmöglichkeiten, bestehen viele Ungewissheiten.

IV. DEUTUNGEN 2: ZEITLICHE ABFOLGE

Was Forscher zur Evolutionsbiologie besonders
interessiert, ist das Erfassen von zeitlichen Abfolgen:
unter Voraussetzung eines bestimmten Zeitmaßes
möchte die Evolutionsbiologie wissen, ob ein
Gegenstand/ Artefakt A im Sinne des Zeitmaßes ‚vor’ oder ’nach’ einem anderen Gegenstand/ Artefakt B ‚anzuordnen’ ist.
Diese Frage macht nur Sinn, wenn man neben
einem definierten Zeitmaß auch annehmen darf
(muss), dass sich die Erde als Generalumgebung aller
vorfindbaren Materialien/ Artefakte grundsätzlich in
einem Veränderungsmodus befindet, dass also die
Erde zu zwei verschiedenen Zeitpunkten grundsätzlich
verschieden sein kann.

Dass sich am Kontext Erde Veränderungen feststellen
lassen, dies haben Menschen schon sehr früh erleben
können: Temperatur, Regen oder nicht Regen, Tag und
Nacht, Wachstum der Pflanzen, Geboren werden und
Sterben, usw. Es passierte aber erst im 17.Jahrhundert,
dass die Fragestellung nach dem Vorher und Nachher in
der Entwicklung der Gesteine mit Nils Stensen (nicolaus
steno) eine systematische Form fand, aus der sich nach
und nach die moderne Geologie entwickelte (Siehe:
[WD17h]).

Erst durch die wissenschaftliche Geologie wissen
wir zunehmend, dass die Erde selbst ein dynamisches
System ist, das sich beständig verändert, wo sich
ganze Kontinente bilden, verschieben, verformen; wo
Vulkanismus stattfindet, Erosion, Klimaänderungen, und
vieles mehr. Erst durch die geologische Sehweise konnte
man nicht nur verschiedene Zustände der Erde entlang
einem definierten Zeitmaß identifizieren, sondern damit
dann auch Veränderungen in der Zeit’ sichtbar machen.

Dieses geologische Wissen vorausgesetzt,  besteht
plötzlich die Möglichkeit, ein Material/ Artefakt einer
erdgeschichtlichen Phase, einem Zeitpunkt in einem
Veränderungsprozess, zuzuordnen. Die Geologie hat – mittlerweile unterstützt durch viele Spezialgebiete, wie z.B. auch die Klimatologie (Siehe:
[WD17n]) – unter anderem eine zeitliche Abfolge von
Vulkanausbrüchen in den verschiedenen Regionen
der Erde identifizieren können und auch das sich
verändernde Klima.

So spricht man in der Klimatologie von sogenannten
Eiszeitaltern’ (Siehe: [WD17d]). In der schwachen
Version einer Definition von Eiszeitalter geht man davon
aus, dass mindestens eine Polkappe vereist ist. Die
letzte Eiszeit dieser Art fand statt um -33.5 Mio Jahren.
In der starken Version geht man davon aus, dass beide
Polkappen vereist sind. Die letzte Eiszeit dieser Art
begann um ca. -2.7 Mio Jahren und hält bis heute
an. In dieser Zeit gab es unterschiedliche Kalt- und
Warm-Phasen. Seit ca. -1 Mio Jahren haben sich 6
mal Kaltzeiten wiederholt: ca. -0.9 Mio, -0.77 Mio, -0.6
Mio, -0.48 Mio, -0.35 Mio, -12.000 (siehe: [WD17o],
[Rot00]:SS.173ff ).

Ein anderer starker Faktor, der das Klima
beeinflussen kann, sind Supervulkanausbrüche
(Siehe: [WD17w]). Hier eine Zusammenstellung
von Eiszeitaltern mit Kaltphasen in Kombination mit
den Supervulkanausbrüchen sofern sie das frühe
Ausbreitungsgebiet von homo und homo sapiens berührt
haben (wobei auch andere große Ausbrüche sich
weltweit auswirken konnten)(man beachte, dass die
Zeitangaben mit großen Unschärfen versehen sind):

  • Eiszeit: ab ca. -2.7 Mio Jahren
  • Vulkan:-1 Mio Äthiopien
  • Vulkan: -788.000 Indonesien
  • Kaltzeit: ca. -0.77 Mio Jahren
  • Kaltzeit: ca. -0.6 Mio Jahren
  • Vulkan: -500.000 (+/- 60.000) Äthiopien
  • Kaltzeit: ca. -0.48 Mio Jahren
  • Vulkan: -374.000 Italien
  • Kaltzeit: ca. -0.35 Mio Jahren
  • Vulkan:-161.000 Griechenland
  • Vulkan: -74.000 Indonesien
  • Vulkan:-50.000 Italien
  • Vulkan:-39.000 Italien
  • Kaltzeit: ca. -12.000

Bei der Entstehung von Eiszeiten spielen eine Vielzahl
von Faktoren eine Rolle, die ineinandergreifen. Sofern
es sich um periodische Faktoren handelt, kann sich dies
auf den Periodencharakter von Kalt- und Warmzeiten
auswirken (siehe: [WD17o], [Rot00]:SS.173ff ). Die globale Erwärmung, die
aktuell beklagt wird, ist ein Ereignis innerhalb eines noch
existierenden Eiszeitalters. Insofern ist die Erwärmung
eigentlich keine Anomalie, sondern eher die Rückkehr
zum ’Normalzustand’ ohne Eiszeitalter. Wobei sich
natürlich die Frage stellt, welcher Zustand der Erde ist
eigentlich ’normal’? Kosmologisch betrachtet – und darin
eingebettet die Wissenschaften von der Erde – wird
die Erde in einem Zustand enden, der nach heutigem
Wissen absolut lebensfeindlich sein wird (siehe: [WD17p],
[WE17b], [WE17c]). Für die Erde ist dieser Zustand
normal’, weil es dem physikalischen Gang der Dinge
entspricht, aus Sicht der biologischen Lebensformen
ist dies natürlich überhaupt nicht ’normal’, es ist ganz
und gar ’fatal’.

Insofern wird hier schon deutlich, dass
die innere Logik des Phänomens ‚biologisches Leben‘
nicht automatisch kongruent ist mit einem aktuellen
Lebensraum. Das Phänomen des biologischen Lebens
manifestiert einen Anspruch auf Geltung, für den
es im Licht der physikalischen Kosmologie keinen
natürlichen’ Ort gibt. Das biologische Leben erscheint
von daher als eine Art ’Widerspruch’ zum bekannten
physikalischen Universum, obgleich es das physikalische
Universum ist, das das biologische Leben mit ermöglicht.

V. DEUTUNGEN 3: ENTWICKLUNG VON KOMPLEXITÄT

Wenn man so weit vorgestoßen ist, dass man
Materialien/ Artefakte auf einer Zeitachse anordnen kann,
dann kann man auch der Frage nachgehen, welche
möglichen Veränderungen sich entlang solch einer
Zeitachse beobachten lassen: Bleibt alles Gleich? Gibt
es Änderungen? Wie lassen sich diese Veränderungen
klassifizieren: werden die beobachtbaren Phänomene
einfacher’ oder ’komplexer’?

Um solche eine Klassifikation in ’einfach’ oder
komplex’ vorzunehmen, braucht man klare Kriterien für
diese Begriffe. Aktuell gibt es aber keine einheitliche, in
allen Disziplinen akzeptierte Definition von ’Komplexität’.

In der Informatik wird ein Phänomen relativ zu
einem vorausgesetzten Begriff eines ’Automaten’ als
komplex’ charakterisiert: je nachdem wie viel Zeit
solch ein Automat zur Berechnung eines Phänomens
benötigt oder wie viel Speicherplatz, wird ein Phänomen
als mehr oder weniger ’komplex’ eingestuft (Siehe
dazu: [GJ79]). Dieser vorausgesetzte Automat ist eine
sogenannte ’Turingmaschine’. Dieses Konzept entstand
in der Grundlagendiskussion der modernen Mathematik
um die Wende vom 19. zum 20.Jahrhundert, als sich
die Mathematiker (und Logiker) darüber stritten, unter
welchen Bedingungen ein mathematischer Beweis
für einen Menschen (!) als ’nachvollziehbar’ gelten
kann. Nach gut 30 Jahren heftigster Diskussionen fand
man mehrere mathematische Konzepte, die sich als
äquivalent erwiesen. Eines davon ist das Konzept der
Turingmaschine, und dieses gilt als das ’einfachste’
Konzept von allen, das sich seit 1936/7 bisher in
allen Widerlegungsversuchen als stabil erwiesen hat.
Dies ist zwar selbst kein unwiderleglicher logischer
Beweis, aber ein empirisches Faktum, was alle Experten
bislang glauben lässt, dass mit diesem Konzept eine
zentrale Eigenschaft des menschlichen Denkens
eine konzeptuelle Entsprechung gefunden hat, die
sich formal und empirische experimentell überprüfen
lässt. So, wie die Physiker zum Messen Standards
entwickelt haben wie das ’Kilogramm’, das ’Meter’
oder die ’Sekunde’, so haben die Informatiker zum
Messen der ’Komplexität’ eines Phänomens relativ zur
(menschlichen) Erkenntnisfähigkeit die ’Turingmaschine’
(samt all ihren äquivalenten Konzepten) gefunden. Der
Vorteil dieser Definition von Komplexität ist, dass man
über das zu klassifizierende Phänomen vorab nahezu
nichts wissen muss. Darüber hinaus macht es Sinn, das
menschliche Erkennen als Bezugspunkt zu wählen, da
die Frage der Komplexität jenseits des menschlichen
Erkennens keinen wirklichen Ort hat.

Zurück zum Ausgangspunkt, ob sich im ’Gang der
Dinge’ auf der Erde Phänomene erkennen lassen,
die ’im Lauf der Zeit’ an Komplexität zunehmen,
deutet sich Folgendes an: es scheint unbestritten,
dass die Beschreibung einer biologischen ’Zelle’
(siehe: [AJL+15]) einen erheblich größeren Aufwand
bedeutet als die Beschreibung eines einzelnen Moleküls.
Zellen bestehen aus Milliarden von Molekülen, die
in vielfältigsten funktionellen Zusammenhängen
miteinander wechselwirken. Der Übergang von einzelnen
Molekülen zu biologischen Zellen erscheint von daher
gewaltig, und es ist sicher kein Zufall, dass es bis heute
kein allgemein akzeptiertes Modell gibt, das diesen
Übergang vollständig und befriedigend beschreiben
kann.

Für den weiteren Verlauf der biologischen Evolution
gibt es zahllose Phänomene, bei denen eine Vielzahl
von Faktoren darauf hindeuten, dass es sich um eine
Zunahme von Komplexität’ im Vergleich zu einer
einzelnen Zelle handelt, wenngleich manche dieser
Komplexitäts-Zunahmen’ Milliarden oder hunderte von
Millionen Jahre gebraucht haben. Im Fall der Entwicklung
zum homo sapiens ab ca. -80 Millionen Jahre gibt es
auch solche Phänomene, die sich aber immer weniger
nur alleine im Substrat selbst, also im Körperbau
und im Gehirnbau, festmachen lassen, sondern wo
das ’Verhalten’ der Lebewesen ein Indikator ist für
immer komplexere Wechselwirkungen zwischen den
Lebewesen und ihrer Umwelt.

Der Körper des homo sapiens selbst umfasst ca.
37 Billionen (10^12) Körperzellen, dazu im Innern des
Körpers geschätzte ca. 100 Billionen Bakterien, und
zusätzlich auf der Körperoberfläche ca. 224 Milliarden
Bakterien (siehe dazu [Keg15]). Diese ca. 137 Billionen
Zellen entsprechen etwa 437 Galaxien im Format
der Milchstraße. Während Menschen beim Anblick
des Sternenhimmels zum Staunen neigen, bis hin
zu einer gewissen Ergriffenheit über die Größe (und
Schönheit) dieses Phänomens, nehmen wir einen
anderen menschlichen Körper kaum noch wahr (falls
er sich nicht irgendwie auffällig ’inszeniert’). Dabei
ist der menschliche Körper nicht nur 437 mal größer in seiner Komplexität
als die Milchstraße, sondern jede einzelne Zelle ist
ein autonomes Individuum, das mit den anderen auf
vielfältigste Weise interagiert und kommuniziert. So kann
eine einzelne Gehirnzelle bis zu 100.000 Verbindungen
zu anderen Zellen haben. Körperzellen können über
elektrische oder chemische Signale mit vielen Milliarden
anderer Zellen kommunizieren und sie beeinflussen.
Bakterien im Darm können über chemische Prozesse
Teile des Gehirns beeinflussen, das wiederum aufgrund dieser Signale Teile des
Körpers beeinflusst. Und vieles mehr. Obgleich
die Erfolge der modernen Wissenschaften in den letzten
20 Jahren geradezu atemberaubend waren, stehen wir
in der Erkenntnis der Komplexität des menschlichen
Körpers noch weitgehend am Anfang. Niemand hat
bislang eine umfassende, zusammenhängende Theorie.

Dazu kommen noch die vielen immer komplexer
werden Muster, die sich aus dem Verhalten von
Menschen (und der Natur) ergeben. Zusätzlich wird das Ganze
stark beeinflusst von modernen Technologi wie z.B. der
Digitalisierung.

VI. DEUTUNGEN4: SELBSTREFERENZ: CHANCE UND
RISIKO

Ist man also zur Erkenntnis einer Zunahme an
Komplexität vorgestoßen, gerät das Erkennen vermehrt
in einen gefährlichen Zustand. Das Erkennen von
Zunahmen an Komplexität setzt – nach heutigem
Wissensstand – symbolisch repräsentierte ’Modelle’
voraus, ’Theorien’, mittels deren das menschliche
(und auch das maschinelle) Denken Eigenschaften
und deren Anordnung samt möglichen Veränderungen
repräsentieren’. Sobald ein solches Modell vorliegt, kann
man damit die beobachteten Phänomene ’klassifizieren’
und in ’Abfolgen’ einordnen. Die ’Übereinstimmung’
von Modell und Phänomen erzeugt psychologisch ein
befriedigendes’ Gefühl. Und praktisch ergibt sich daraus
meist die Möglichkeit, zu ’planen’ und Zustände ’voraus
zu sagen’.

Je komplexer solche Modelle werden, um so größer
ist aber auch die Gefahr, dass man nicht mehr so leicht
erkennen kann, wann diese Modelle ’falsch’ sind. Solche
Modelle stellen Zusammenhänge (im Kopf oder in der
Maschine) her, die dann vom Kopf in die Wirklichkeit
außerhalb des Körpers ’hinein gesehen’ werden, und
mögliche Alternativen oder kleine Abweichungen können
nicht mehr so ohne weiteres wahrgenommen werden.
Dann hat sich in den Köpfen der Menschen ein bestimmtes
Bild der Wirklichkeit ’festgesetzt’, das auf Dauer
fatale Folgen haben kann. In der Geschichte der empirischen
Wissenschaften kann man diese Prozesse mit
zahlreichen Beispielen nachvollziehen (siehe den Klassiker:
[Kuh62]). Dies bedeutet, je umfassender Modelle
des Erkennens werden, um so schwieriger wird es auf
Dauer – zumindest für das aktuelle menschliche Gehirn
das ’Zutreffen’ oder ’Nicht-Zutreffen’ dieser Modelle
zu kontrollieren.

Nachdem mit dem Gödelschen ’Unentscheidbarkeitstheorem’
schon Grenzen des mathematischen Beweisens sichtbar wurden (Siehe: [WD17q]),
was dann mit der Heisenbergschen ’Unschärferelation’
(Siehe: [WD17j]) auf das empirischen Messen erweitert
wurde, kann es sein, dass das aktuelle menschliche
Gehirn eine natürliche Schranke für die Komplexität
möglicher Erklärungsmodelle bereit hält, die unserem
aktuellen Erkennen Grenzen setzt (Grenzen des Erkennens
werden im Alltag in der Regel schon weit vorher
durch psychologische und andere Besonderheiten des
Menschen geschaffen).

VII. PERIODISIERUNGEN: BIS HOMO SAPIENS

Wie schon angedeutet, ist das Vornehmen einer
Periodisierung ein Stück willkürlich. Autor cagent hat
den Zeitpunkt der Aufspaltung der Primaten um etwa
-80 Mio Jahren vor dem Jahr 0 gewählt. Dabei gilt
generell, dass solche Zeitangaben nur Näherungen sind,
da die zugehörigen Wandlungsprozesse sich immer als
Prozess über viele Millionen Jahre erstrecken (später
dann allerdings immer schneller).

Bei der Datierung von Artefakten (primär
Knochenfunden, dazu dann alle weiteren Faktoren,
die helfen können, den zeitlichen Kontext zu fixieren),
gibt es einmal den Ansatzpunkt über die äußere und
materielle Beschaffenheit der Artefakte, dann aber
auch – im Falle biologischer Lebensformen – den
Ansatzpunkt über die genetischen Strukturen und
deren Umformungslogik. Über die Genetik kann man
Ähnlichkeiten (Distanzen in einem Merkmalsraum)
zwischen Erbanlagen feststellen sowie eine ungefähre
Zeit berechnen, wie lange es gebraucht hat, um von
einer Erbanlage über genetische Umformungen zu
einer anderen Erbanlage zu kommen. Diese genetisch
basierten Modellrechnungen zu angenommenen Zeiten
sind noch nicht sehr genau, können aber helfen,
die Materie- und Formen-basierten Zeitangaben zu
ergänzen.

  • Ordnung: Primates (Siehe: [SWW13]:Kap.5.2)
    (Aufteilung ab ca. -80 Mio) –->Strepsirrhini (Lorisi-,
    Chiromyi-, Lemuriformes) und Haplorhini (Tarsier,
    Neu- und Altweltaffen (einschließlich Menschen))
    (Siehe: [SWW13]:S.428,S.432, S.435 [WE17l],
    [WD17r])
  • Unterordnung: Haplorrhini (Aufteilung ab ca. -60
    Mio) (Siehe: [WE17l]) –->Tarsiiformes und Simiiformes
    Nebenordnung: Simiiformes (Aufteilung ab ca. –
    42.6 Mio) -–>Platyrrhini (Neuwelt- oder Breitnasenaffen)
    und Catarrhini (Altwelt- oder Schmalnasenaffen)
    (Siehe: Siehe: [SWW13]:S.428, [WE17l])
  • Teilordnung: Catarrhini (Altwelt- oder Schmalnasenaffen)
    (Aufteilung ab ca. -29/-25 Mio) -–>Cercopithecoidea
    (Geschwänzte Altweltaffen) und Hominoidea
    (Menschenartige) (Siehe: Siehe: [WE17l] und
    [WD17r])

    • Überfamilie: Hominoidea (Menschenartige)
      (Aufteilung ab ca. -20 Mio/ -15 Mio) –>Hylobatidae
      (Gibbons)und Hominidae (Große Menschenaffen
      und Menschen) (Siehe: [WD17r])
    • Aufspaltung der Menschenaffen (Hominidae) in die
      asiatische und afrikanische Linie (ca. -11 Mio)
      (Siehe: [WD17r])

      • Familie: Hominidae (Menschenaffen)(Aufteilung ab
        ca. -15Mio/-13 Mio in Afrika) –>Ponginae (Orang-
        Utans) und Homininae (Siehe: [WD17r])

        • Unterfamilie: Homininae
          Aufteilung der Homininae (ab ca. -9 Mio/ -8 Mio) –>
          Tribus: Gorillini und Hominini (Siehe: [WE17d])

          • Gattung: Graecopithecus (Süden von Griechenland)
          • Spezies/ Art: Graecopithecus freybergi (Siehe: [WD17i]) (ca. -7.2 Mio)
          • Gattung: Sahelanthropus (ab ca. -7.0/ -6.0 Mio)
          • Spezies/ Art: Sahelanthropus tchadensis
            (Siehe: [WD17v] [WE17k]) (im Tschad)
        • Tribus (Stamm/ Tribe): Hominini
        • Aufteilung der Hominini (ab ca. -6.6/-4.2 Mio)
          (Siehe: [SWW13]:S.435, [WE17d]) -–>Pan
          (Schimpansen) und Homo (Die Lebensform
          Panina bildet einen Unterstamm zum
          Stamm ’homini’. Für die Trennung zwischen
          Schimpansen (Pan) und Menschen (Homo) wird
          ein komplexer Trennungsprozess angenommen,
          der viele Millionen Jahre gedauert hat. Aktuelle
          Schätzungen variieren zwischen ca. -12 Mio und
          -6-8 Mio Jahren (Siehe: [WE17a])

          • Gattung: Orrorin tugenensis (ab ca. -6.2 bis
            ca. -5.65 Mio) (Siehe: [WD17t])
          • Gattung: Ardipithecus (ab ca. -5.7 Mio bis ca.
            -4.4 Mio) (Siehe: [WD17b])
          • Gattung: Australopithecus anamensis (ab
            ca. -4.2 Mio bis ca. -3.9 Mio) (Siehe:
            [SWW13]:S.475f)
          • Gattung: Australopithecus (ab ca. -4 Mio bis
            ca. -2/-1.4 Mio) (Siehe: [SWW13]:S.475f)
          • Gattung: Australopithecus afarensis (ab
            ca. -3.5 Mio bis ca. -3 Mio) (Siehe:
            [SWW13]:S.476)
          • Gattung: Kenyanthropus platyops (ab ca. –
            3.5/ -3.3 Mio) (Siehe: [WD17m]) Kann
            möglicherweise auch dem Australopithecus
            zugerechnet werden (Siehe: [SWW13]:S.475,
            479).
          • Gattung: Australopithecus africanus (ab
            ca. -3.2 Mio bis ca. -2.5 Mio) (Siehe:
            [SWW13]:S.477)
          • Gattung: Australopithecus ghari (um ca.- 2.5
            Mio) (Siehe: [SWW13]:S.477)
          • Gattung: Paranthropus (Australopithecus)
            (ab ca. -2.7 Mio) (Siehe: [WE17j]).
            Kann möglicherweise auch dem
            Australopithecus zugerechnet werden (Siehe:
            [SWW13]:S.475).

            • Spezies/ Art: Paranthropus (Australopithecus)
              aethiopicus (ab ca. -2.6 Mio bis ca. -2.3
              Mio) (Siehe: [SWW13]:S.478)
            • Spezies/ Art: Paranthropus (Australopithecus)
              boisei (ab ca. -2.3 Mio bis ca. -1.4 Mio)
              (Siehe: [SWW13]:S.478). Mit dem Australopithecus
              boisei starb der Australopithecus
              vermutlich aus.
            • Spezies/ Art: Paranthropus (Australopithecus)
              robustus (ab ca. -1.8 Mio bis ca. -1.5
              Mio) (Siehe: [SWW13]:S.478)
          • Gattung: Homo (ab ca. -2.5/ -2.0 Mio).
            Im allgemeinen ist es schwierig, sehr klare
            Einteilungen bei den vielfältigen Funden
            vorzunehmen. Deswegen gibt es bei der
            Zuordnung der Funde zu bestimmten Mustern
            unterschiedliche Hypothesen verschiedener
            Forscher. Drei dieser Hypothesen seien hier
            explizit genannt:

            1. Kontinuitäts-Hypothese: In dieser Hypothese
              wird angenommen, dass es vom
              homo ergaster aus viele unterschiedliche
              Entwicklungszweige gegeben hat, die
              aber letztlich alle zum homo sapiens
              geführt haben. Die Vielfalt der Formen
              in den Funden reflektiert also so eine
              genetische Variabilität.
            2. Multiregionen-Hypothese: In dieser Hypothese
              wird angenommen, dass sich –
              ausgehend vom homo ergaster – regional
              ganz unterschiedliche Formen ausgebildet
              haben, die dann – bis auf den homo sapiens
              mit der Zeit ausgestorben sind
            3. Out-of-Africa Hypothese: Neben
              früheren Auswanderungen aus Afrika
              geht es in dieser Hypothese darum, dass
              sich nach allen neuesten Untersuchungen
              sagen lässt, dass alle heute lebenden
              Menschen genetisch zurückgehen auf
              den homo sapiens, der ca. um -100.000
              Jahren von Afrika aus kommend nach und
              nach alle Erdteile besiedelt hat (Siehe:
              [SWW13]:S.488ff, 499).

            Natürlich ist auch eine Kombination der ersten
            beiden Hypothesen möglich (und wahrscheinlich),
            da es zwischen den verschiedenen Formen
            immer wieder Vermischungen geben
            konnte.

          • Spezies/ Art: Homo rudolfensis (von
            ca. -2.4 bis ca. -1.8 Mio) (Siehe:
            [SWW13]:S.481)
          • Spezies/ Art: Homo habilis (von ca. -2.4 Mio bis ca. 1.65 Mio). Erste Art der Gattung Homo. Benutzte Steinwerkzeuge (Oldowan Kultur). Diese Artefakte sind
            nachweisbar für -2.5 bis -700.000 (Siehe: [SWW13]:S.480)
          • Gattung: Australopithecus sediba (um ca.
            -2 Mio) (Siehe: [SWW13]:S.477)
          • Spezies/ Art: Homo gautengensis (von ca.
            -1.9 Mio bis ca. -0.6 Mio)(Südafrika) (Siehe:
            [WE17h])
          • Spezies/ Art: Homo ergaster (von ca. -1.9
            Mio bis ca. -1.0 Mio) Werkzeuggebrauch
            wahrscheinlich, ebenso die Nutzung von
            Feuer (Lagerplätze mit Hinweisen um ca.
            -1.6 Mio). Stellung zu homo erectus unklar.
            (Siehe: [SWW13]:S.482f) Funde in
            Nordafrika (ca. -1.8 Mio), Südspanien (ca. –
            1.7-1.6 Mio und -1 Mio), Italien (ca. -1 Mio),
            Israel (ca. -2 Mio), Georgien (ca. -1.8 bis –
            1.7 Mio) und China (ca. -1.0 Mio) zeigen,
            dass homo ergaster sich schon sehr früh
            aus Afrika heraus bewegt hat.
          • Spezies/ Art: Homo erectus (Siehe:
            [WE17f]) (ab ca. -1.9 Mio bis ca. -85.000/
            -56.000); entwickelte sich vor allem in
            Asien (China, Java…), möglicherweise
            hervorgegangen aus dem homo ergaster.
            Ist fas zeitgleich zu homo ergaster in Afrika
            nachweisbar. Würde voraussetzen, dass
            homo ergaster in ca. 15.000 Jahren den
            Weg von Afrika nach Asien gefunden hat.
            (Siehe: [SWW13]:S.484-487)
          • Spezies/ Art: Homo antecessor (Siehe:
            [WE17e]) (von ca. -1.2 Mio bis –
            800.000). Hauptsächlich Funde in
            Nordafrika und Südspanien. Wird zur
            ersten Auswanderungswelle ’Out of Africa’
            gerechnet, die nach Europa und Asien kam.
            Letzte Klarheit fehlt noch. Es scheint viele
            Wechselwirkungen zwischen h.ergaster,
            h.erectus, h.antecessor, h.heidelbergensis,
            h.rhodesiensis, h.neanderthalensis sowie
            h.sapiens gegeben zu haben. (Siehe:
            [SWW13]:S.489)
          • Spezies/ Art ?: Homo cepranensis
            (Datierung zwischen ca. -880.000 bis
            ca.-440.000); (Siehe: [WD17k]) noch keine
            klare Einordnung (siehe Anmerkungen zu
            h.antecessor.)
          • Spezies/ Art: Homo heidelbergensis
            (Siehe: [WD17l]) (von ca. -600.000 bis
            -200.000). Überwiegend in Europa; es
            gibt viele Ähnlichkeiten mit Funden
            außerhalb von Europa in Afrika, Indien,
            China und Indonesien, z.B. Ähnlichkeiten
            zu homo rhodesiensis. Steinwerkzeuge,
            weit entwickelte Speere, Rundbauten,
            Feuerstellen, evtl. auch Kultstätten. (Siehe:
            [SWW13]:SS.490-493).
          • Spezies/ Art: Homo rhodesiensis (Siehe:
            [WE17i]) (von ca.-300.000 bis ca. –
            125.000)(Ost- und Nord-Afrika, speziell
            Zambia)
          • Spezies/ Art: Homo neanderthalensis
            (ab ca. -250.000 bis ca. -33.000). Frühe
            Formen und späte Formen. Genetische
            Eigenentwicklung seit ca. -350.000/ -400.000. Schwerpunkt Europa, aber Ausdehnung von Portugal, Spanien, bis
            Wales, Frankreich, England, Deutschland,
            Kroatien, schwarzes Meer, Nordirak,
            Zentralasien, Syrien, Israel . Meist nie
            mehr als insgesamt einige 10.000 in ganz
            Europa. In der Schlussphase parallel
            mit homo sapiens für ca. 50.000 Jahre.
            Es kam zu geringfügigen genetischen
            Beeinflussungen. Eine eigenständige
            hohe Werkzeugkultur, die aus der
            Steinwerkzeugkultur der Acheul´een ca.
            -200.000 hervorging und bis -40.000
            nachweisbar ist. Neben Steinwerkzeugen
            auch Schmuck. Sie pflegten Kranke,
            bestatteten ihre Toten. Die differenzierte
            Sozialstruktur, das gemeinsames Jagen,die
            Werkzeugkultur, das großes Gehirn
            sowie die Genbeschaffenheit lassen es
            wahrscheinlich erscheinen, dass der
            Neandertalerüber Sprache verfügte. Ein
            besonders kalter Klimaschub um -50.000
            verursachte einen starken Rückzug aus
            West- und Mitteleuropa, der dann wieder
            mit Einwanderer aus dem Osten gefüllt
            wurde. Im Bereich Israels/ Palästina gab
            es zwischen ca. -120.000 und -50.000
            eine Koexistenz von Neandertaler und
            homo sapiens. Was auch darauf hindeutet,
            dass eine erste Auswanderungswelle von
            h.sapiens schon um ca. -120.000/ -100.000
            stattgefunden hatte, aber nur bis Israel
            gekommen ist. Warum die Neandertaler
            ausstarben ist unbekannt. homo sapiens
            hat seine Population in Europa im Zeitraum
            -55.000 und -35.000 etwa verzehnfacht.
            (Siehe: [SWW13]:SS.493-498)
          • Spezies/ Art: Homo sapiens (ab ca. -190.000 bis heute); Wanderungsbewegungen aus Afrika heraus ab ca. -125.000
            erster Vorstoß bis Arabien. Parallel gab
            es eine kleine Auswanderung um -120.000
            über das Niltal bis Palästina/Israel, die
            aber keine weitere Expansion zeigte. Um
            -70.000 von Arabien aus in den Süden des mittleren Ostens, um ca. -60.000/ -50.000 nach Neuguinea und
            Australien. Vor ca. -50.000 bis -45.000 über
            Kleinasien nach Südost-, Süd- und Westeuropa.
            Um ca. -40.000 über Zentralasien
            bis Nordchina. Von Asien aus um -19.000/ -15.000 Einwanderung in Nordamerika über
            die Beringstraße, bis nach Südamerika um
            ca. -13.000. Es gibt aber auch die Hypothese,
            dass Südamerika schon früher
            (ca. -35.000 ?)über den Pazifik besiedelt
            wurde. Die Gene der Indianer in Nord- und
            Südamerika stimmen mit Menschen aus
            Sibirien, Nordasien und Südasien überein.
            Ab der Zeit -60.000/ -40.000 wird ein deutlicher
            kultureller Entwicklungssprung beim
            homo sapiens diagnostiziert, dessen Entwicklung
            seitdem anhält und sich heute
            noch erheblich beschleunigt. Felszeichnungen
            ab ca. -40.000, Werkzeuge, Wohnungen,
            Kleidung, Sprache.
          • Spezies/ Art: Homo floresiensis
            (Siehe: [WE17g])(ca. um -38.000 bis -12.000)(Insel Flores, Indonesien). Benutze Steinwerkzeuge, beherrschte das Feuer, Kleinwüchsig, entwickeltes Gehirn. Insel
            war seit mindestens -800.000 besiedelt.
            Vorfahren könnten seit -1 Mio dort gewesen
            sein. (Siehe: [SWW13]:S.487f)
          • Spezies/ Art: Denisovaner (noch kein
            wissenschaftlicher Name vereinbart)(um
            -40.000) (Siehe: [WD17c]), Funde im
            Altai Gebirge (Süd-Sibierien); es gibt
            Funde auf den Pilippinen, in Indonesien,
            Neuguinea, Australien, auf einigen Inseln
            des südlichen Pazifik, mit den Genen der
            Denisovaner. Herkunft möglicherweise von
            h.heidelbergensis. Es gab genetischen
            Austausch mit h.sapiens. (Siehe:
            [SWW13]:S.498)

VIII. WAS FOLGT AUS ALLEDEM?

Jeder, der diesen Text bis hierher gelesen haben
sollte, wird sich unwillkürlich fragen: Ja und, was heißt
das jetzt? Was folgt aus Alledem?

In der Tat ist dieser Text noch nicht abgeschlossen.

Der Text stellt allerdings eine notwendige
Vorüberlegung dar zu der – hoffentlich – weiter führenden
Frage nach der Besonderheit des homo sapiens als
Erfinder und Nutzer von intelligenten Maschinen.

Während die abschließende Definition von potentiell
intelligenten Maschinen mit dem mathematischen
Konzept der Turingmaschine im Prinzip vollständig
vorliegt, erscheint die Frage, wer oder was denn der
homo sapiens ist, je länger umso weniger klar. Mit
jedem Jahr empirischer Forschung (in allen Bereichen)
enthüllt sich scheibchenweise eine immer unfassbarere
Komplexität vor unseren Augen, die ein Verständnis
des homo sapiens samt seinem gesamten biologischen
Kontext eher in immer weitere Ferne zu rücken scheint.

Konnten die großen Offenbarungsreligionen über
viele Jahrhunderte irgendwie glauben, dass sie
eigentlich wissen, wer der Mensch ist (obwohl sie
nahezu nichts wussten), ist uns dies heute – wenn wir
die Wissenschaften ernst nehmen – immer weniger
möglich. Wenn im jüdisch-christlichen Glauben der
Mensch bildhaft als ’Ebenbild Gottes’ bezeichnet werden
konnte und damit – zumindest indirekt – angesichts
dieser unfassbaren Erhabenheit eine Art Schauer über
den Rücken jagen konnte (ohne dass zu dieser Zeit
verstehbar war, worin denn die Besonderheit genau
besteht), so werden wir in den letzten Jahren durch
immer tiefere Einblicke in die Abgründe der Komplexität
von Leben und Lebensprozessen in einem scheinbar
lebensfremden physikalischen Universum provoziert,
herausgefordert, und Gelegenheit zum Staunen gäbe es
allerdings genug.

In diesem anwachsenden Wissen um
unser Nichtwissen begegnen wir einer schwer fassbaren
Größe, die wir salopp ’biologisches Leben’ nennen, die
aber alles übersteigt, dessen wir denkerisch fähig sind.

Eine der vielen Paradoxien des Universums ist
genau dieses Faktum: in einem scheinbar ’leblosen’
physikalischen Universum ’zeigen sich’ materielle
Strukturen, die Eigenschaften besitzen, die es strikt
physikalisch eigentlich nicht geben dürfte, und die sich
in einer Weise verhalten, die das ganze Universum
prinzipiell zu einem ’Un-Ort’ machen: das bekannte
physikalische Universum ist lebensfeindlich, das
biologische Leben will aber genau das Gegenteil:
es will leben. Wie kann das zusammen gehen? Warum
kann ein scheinbar lebloses physikalisches Universum
Überhaupt der Ort sein, wo Leben entsteht, Leben
stattfinden will, Leben sich schrittweise dem inneren
Code des ganzen Universums bemächtigt?

In weiteren Beiträgen wird es darum gehen, dieses
Phänomen ’biologisches Leben’ weiter zu erhellen,
und zu zeigen, wie das biologische Leben sich mit
Hilfe intelligenter Maschinen nicht nur generell weiter
entwickeln wird, sondern diesen Prozess noch erheblich
beschleunigen kann. Es gilt hier die Arbeitshypothese,
dass die intelligenten Maschinen ein konsequentes
Produkt der biologischen Evolution sind und dass es
gerade dieser Kontext ist, der dieser Technologie ihre
eigentliche Zukunftsfähigkeit verleiht.

Die heutigen Tendenzen, die Technologie vom biologischen Leben
zu isolieren, sie in dieser Isolation zugleich in geradezu
religiöser Manier zu Überhöhen, wird die evolutionär
induzierte Entwicklung dieser Technologie eher
behindern, und damit auch das vitale Element der
biologischen Evolution, den homo sapiens.

Der homo sapiens ist kein Individuum, er wird
repräsentiert durch eine Population, die wiederum nur
Teil einer umfassenderen Population von Lebensformen
ist, die sich gegenseitig am und im Leben halten. Es wird
wichtig sein, dass der homo sapiens diese Arbeitsteilung
versteht, bevor er mit seiner wachsenden Aufbau- und
Zerstörungskraft das biologische Universum zu stark
beschädigt hat.

Zum aktuellen Zeitpunkt kann niemand mit Gewissheit
sagen, ob das alles irgendeinen ’Sinn’ besitzt, d.h. ob es
in all den Abläufen in der Zukunft eine Menge möglicher
Zielzustände gibt, die in irgendeinem Sinne als ’gut’/
’schön’/ ’erfüllend’ oder dergleichen bezeichnet werden
können. Genauso wenig kann aber irgend jemand zum
aktuellen Zeitpunkt mit Gewissheit einen solchen Sinn
ausschließen. Rein empirisch kann man schon heute
eine solche Menge an atemberaubenden Strukturen und
Zusammenhänge erfassen, die ’aus sich heraus’ ein
Exemplar der Gattung homo sapiens in ’Erstaunen’ und
’Begeisterung’ versetzen können; aber weder gibt es für
solch ein Erstaunen einen Zwang, eine Regel, ein Muss,
noch ist all dies ’zwingend’. Noch immer können wir
nicht ausschließen, dass dies alles nur ein Spiel ist,
eine gigantische kosmologische Gaukelei, oder – wie
es die physikalischen kosmologischen Theorien nahelegen
– in einem gigantischen Kollaps endet, aus der
möglicherweise wieder ein Universum entsteht, aber ein
anderes.

REFERENCES

  • [AJL+15] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff,
    K. Roberts, and P. Walter.Molecular Biology of the Cell.
    Garland Science, Taylor & Francis Group, LLC, Abington
    (UK) – New York, 6 edition, 2015.
  • [GJ79] Michael R. Garey and David S. Johnson.Computers and
    Intractibility. A Guide to the Theory of NP.Completeness.
    W.H. Freeman an Company, San Francisco (US), 1 edition,
    1979.
  • [Keg15] Bernhard Kegel.Die Herrscher der Welt. DuMont, Köln (DE),
    1 edition, 2015.
  • [Kuh62] Thonas S. Kuhn.The Structure of Scientific Revolutions.
    University of Chicago Press, Chicago (US), 1 edition, 1962.
  • [Par15] Hermann Parzinger.DIE KINDER DES PROMETHEUS.
    Geschichte der Menschheit vor der Erfindung der Schrift.
    Wissenschaftliche Buchgesellschaft, Darmstadt (DE), 2 edition,
    2015.
  • [Rot00] Peter Rothe.Erdgeschichte. Spurensuche im Gestein. Wissenschaftliche
    Buchgesellschaft, Darmstaadt (DE), 1 edition, 2000.
  • [SWW13] Volker Storch, Ulrich Welsch, and Michael Wink, editors.
    Evolutionsbiologie. Springer-Verlag, Berlin – Heidelberg, 3 edition, 2013.
  • [WD17a] Wikipedia-DE. Archäologie. 2017.
  • [WD17b] Wikipedia-DE. Ardipithecus. 2017.
  • [WD17c] Wikipedia-DE. Denisova-mensch. 2017.
  • [WD17d] Wikipedia-DE. Eiszeitalter. 2017.
  • [WD17e] Wikipedia-DE. Evolutionsbiologie. 2017.
  • [WD17f] Wikipedia-DE. Genetik. 2017.
  • [WD17g] Wikipedia-DE. Geologie. 2017.
  • [WD17h] Wikipedia-DE. Geschichte der geologie. 2017.
  • [WD17i] Wikipedia-DE. Graecopithecus freybergi. 2017.
  • [WD17j] Wikipedia-DE. Heisenbergsche unschärferelation. 2017.
  • [WD17k] Wikipedia-DE. Homo cepranensis. 2017.
  • [WD17l] Wikipedia-DE. Homo heidelbergensis. 2017.
  • [WD17m] Wikipedia-DE. Kenyanthropus platyops. 2017.
  • [WD17n] Wikipedia-DE. Klimatologie. 2017.
  • [WD17o] Wikipedia-DE. Känozoisches eiszeitalter. 2017.
  • [WD17p] Wikipedia-DE. Kosmologie. 2017.
  • [WD17q] Wikipedia-DE. Kurt gödel. 2017.
  • [WD17r] Wikipedia-DE. Menschenaffen. 2017.
  • [WD17s] Wikipedia-DE. Molekularbiologie. 2017.
  • [WD17t] Wikipedia-DE. Orrorin tugenensis. 2017.
  • [WD17u] Wikipedia-DE. Paläontologie. 2017.
  • [WD17v] Wikipedia-DE. Sahelanthropus tchadensis. 2017.
  • [WD17w] Wikipedia-DE. Supervulkan. 2017.
  • [WE17a] Wikipedia-EN. chimpanzee–human last common ancestor
    (chlca). 2017.
  • [WE17b] Wikipedia-EN. Cosmology. 2017.
  • [WE17c] Wikipedia-EN. Earth science. 2017.
  • [WE17d] Wikipedia-EN. Homininae. 2017.
  • [WE17e] Wikipedia-EN. Homo antecessor. 2017.
  • [WE17f] Wikipedia-EN. Homo erectus. 2017.
  • [WE17g] Wikipedia-EN. Homo floresiensis. 2017.
  • [WE17h] Wikipedia-EN. Homo gautengensis. 2017.
  • [WE17i] Wikipedia-EN. Homo rhodesiensis. 2017.
  • [WE17j] Wikipedia-EN. Paranthropus. 2017.
  • [WE17k] Wikipedia-EN. Sahelanthropus tchadensis. 2017.
  • [WE17l] Wikipedia-EN. Simian. 2017.

VIII. KONTEXTE

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER.

KÜNSTLICHE INTELLIGENZ – Newell und Simon 1976

PDF

IDEE

Im Jahr 2017 nimmt die Erwähnung von sogenannter Künstlicher Intelligenz außerhalb der Wissenschaften, im öffentlichen Bereich, fast inflatorisch zu. Zugleich muss man feststellen, dass Erklärungen des Begriffs ‚Künstliche Intelligenz‘ wie auch anderer Begriffe in seinem Umfeld Mangelware sind. Es wird daher ab jetzt mehr Blogeinträge geben, die auf diese Thematik gezielter eingehen werden. Hier ein erster Beitrag mit Erinnerung an einen wichtigen Artikel von Newell and Simon 1976.

I. INFORMATIK ALS EMPIRISCHE WISSENSCHAFT

Informatik als empirische Disziplin (nach Newell und Simon, 1976)

Informatik als empirische Disziplin (nach Newell und Simon, 1976)

Im Jahr 1975 empfingen Allen Newell und Herbert A.Simon den angesehenen ACM Turing Preis von der ACM aufgrund ihrer vielen wichtigen Beiträge zur Künstlichen Intelligenzforschung in den vorausgehenden Jahren. Die Preisrede beider Autoren wurde in den Communications of the ACM 1976 abgedruckt (siehe: NewellSimon:1976).

In dieser Rede wagen die Autoren eine generelle Sicht auf die Informatik (‚computer science‘), die Akzente erkennen lässt, die von heutigen Auffassungen von Informatik — zumindest wie sie in Deutschland üblich sind — doch deutlich abweicht.

Für die beiden Autoren ist die Informatik eine empirische Wissenschaft, deren Interesse darin besteht, das Verhalten von Menschen, dort, wo es Intelligenz erkennen lässt, in ein theoretisches Modell zu übersetzen, das sich dann als eine konkrete Maschine (ein Computer, ein Roboter) physikalisch realisieren lässt. Man kann dann diese konkrete Maschine dazu benutzen, Tests durchzuführen, durch die man überprüfen kann, ob sich die gebaute Maschine hinreichend ähnlich wie ein Mensch verhält oder aber davon deutlich abweicht. Liegen Abweichungen vor, dann muss man den Sachverhalt weiter ergründen und versuchen, ob man das theoretische Modell verbessern kann.

Für sie erscheint der Mensch als eine Art Standardmodell für Intelligenz, allerdings nicht so, dass man den Begriff ‚Intelligenz‘ mit einer einzigen Verhaltensweise oder mit einem einzigen Prinzip identifizieren könnte. Das vielfältige menschliche Verhalten verweist nach den Autoren vielmehr auf eine Vielzahl von Komponenten, deren Zusammenwirken zu einem als ‚intelligent‘ wirkenden Verhalten führt. Für das Erkennen einer möglichen ‚Intelligenz‘ ist es ferner wichtig, dass man den ganzen Kontext berücksichtigt, in dem spezifische Aufgaben vorliegen, die gelöst werden sollten.

Durch ihre Forschungsarbeiten zu symbolischen Systemen und zur heuristischen Suche haben Newell und Simon herausgefunden, dass die Klärung eines Problemraumes nur dann besser als zufällig sein kann, wenn der Problemraum minimale Regelhaftigkeiten, eine minimale Ordnung aufweist, die — sofern sie erkannt wurde — dann in Form spezieller Informationen angesammelt werden kann und dann, nach Bedarf, bei der Klärung des Problemraumes genutzt werden kann. Und es ist genau diese spezifische angesammelte Information die die Autoren mit Intelligenz gleichsetzen! Ein Mensch kann nur dann gezielter, schneller eine Aufgabe lösen, wenn er über spezielle Informationen (Wissen) verfügt, die ihn in die Lage versetzen, genau jene Verhaltensweisen zu zeigen, die schnell und effizient zum Ziel führen.

Überträgt man dies auf die theoretischen Modelle der Informatik, dann muss man Wege finden, spezifisches Bereichswissen (engl.: ‚domain knowledge‘) für ein intelligentes Verhalten in geeignete Datenstrukturen und Prozesse zu übersetzen. Auf die vielen Beispiele und Details zu diesen Überlegungen wird hier verzichtet [diese kann jeder in dem Artikel nachlesen ….].

II. DISKURS

Hier einige Überlegungen im Anschluss an den Artikel von Newell und Simon.

A. Intelligenz

Zunächst ist interessant, dass die Verwendung des Begriffs ‚Intelligenz‘ gebunden wird an das Verhalten von Menschen, wodurch der Mensch als undiskutierter Maßstab für mögliche Intelligenz gesetzt wird.

Daraus folgt nicht notwendigerweise, dass es jenseits des Menschen keine andere Formen von Intelligenz gibt, sondern nur, dass man den Typ von Intelligenz, der beim Menschen vorliegt und sichtbar wird, vorläufig als Standard benutzen möchte. Also eine Intelligenz mit Index: Intelligenz_human.

Das macht auch verständlich, dass man als wichtige empirische Wissenschaft in Begleitung der Informatik die kognitive Psychologie sieht, die sich u.a. auch mit der sogenannten ‚Informationsverarbeitung im Menschen‘ beschäftigt.

Es wundert dann allerdings, dass die Autoren den im Rahmen der Psychologie eingeführten Begriff des Intelligenz-Quotienten (IQ) samt den dazugehörigen erprobten Messverfahren nicht benutzen, nicht einmal erwähnen. Dies würde die Möglichkeit eröffnen, die Verhaltensleistung von technischen Systemen entsprechend zu messen und direkt mit Menschen zu vergleichen. Der oft zitierte Turing-Test (nicht von den beiden Autoren) ist verglichen mit den Testbatterien des IQ-Quotienten mehr als dürftig und nahezu unbrauchbar.

Durch den Verzicht auf die sehr detailliert ausgearbeiteten Testbatterien der Psychologie bleibt die Charakterisierung des Begriffs ‚Intelligenz‘ in der Informatik weitgehend vage, fast beliebig.

An dieser Stelle könnte man einwenden, dass in der Informatik andere Aufgabenstellungen untersucht werden als in der Psychologie üblich bzw. andere Aufgabenstellung, die Menschen in dieser Weise nicht angehen, dadurch wir die Verwendung des Begriffs ‚Intelligenz‘ aber noch undurchsichtiger, geradezu ominös.

Obgleich Newell und Simon betonen, dass sie die Informatik als eine empirische Theorie sehen, bleibt der ganze Komplex des tatsächlichen objektiven Messens etwas vage. Zum objektiven Messen gehören zuvor vereinbarte Standards, die beim Messen als Referenzen benutzt werden, um ein Zielobjekt zu ‚vermessen‘. Wenn das zu messende Zielobjekt ein Verhalten sein soll (nämlich das Verhalten von Maschinen), dann muss zuvor sehr klar definiert sein, was denn das Referenz-Verhalten von Menschen ist, das in einem (welchen?) Sinn als ‚intelligent‘ angesehen wird und das dazu benutzt wird, um das Maschinenverhalten damit zu vergleichen. Es ist weder bei Newell und Simon klar zu sehen, wie sie ihr Referenzverhalten von Menschen zuvor klar definiert haben, noch sind die Messprozeduren klar.

Der grundsätzliche Ansatz von Newell und Simon mit der Informatik als empirischer Disziplin (zumindest für den Bereich ‚Intelligenz) erscheint auch heute noch interessant. Allerdings ist das begriffliche Chaos im Kontext der Verwendung des Begriffs ‚Intelligenz‘ heute zu einem notorischen Dauerzustand geworden, der es in der Regel unmöglich macht, den Begriff von ‚künstlicher Intelligenz‘ in einem wissenschaftlichen Sinne zu benutzen. Jeder benutzt ihn heute gerade mal, wie es ihm passt, ohne dass man sich noch die Mühe macht, diese Verwendung irgendwie transparent zu machen.

B. Lernen

Während Newell und Simon im Fall des Begriffs ‚Intelligenz‘ zumindest ansatzweise versuchen, zu erklären, was sie damit meinen, steht es um den Begriff ‚Lernen‘ ganz schlecht.

Explizit kommt der Begriff ‚Lernen‘ bei den Autoren nicht vor, nur indirekt. Dort wo heuristische Suchprozesse beschrieben werden, die mit Hilfe von symbolischen Systemen geleistet werden, stellen sie fest, dass man aufgrund ihrer empirischen Experimente wohl (in dem theoretischen Modell) annehmen muss, dass man Informationen speichern und verändern können muss, um zu jenem Wissen kommen zu können, das dann ein optimiertes = intelligentes Verhalten ermöglicht.

Aus psychologischen Lerntheorien wissen wir, dass ‚Intelligenz‘ und ‚Lernen‘ zwei unterschiedliche Eigenschaften eines Systems sind. Ein System kann wenig intelligent sein und doch lernfähig, und es kann sehr intelligent sein und doch nicht lernfähig.

Nimmt man die Charakterisierung von Newell und Simon für ‚Intelligenz‘ dann handelt es sich um ein ’spezielles Wissen‘ zum Aufgabenraum, der das System in die Lage versetzt, durch ein ‚gezieltes Verhalten‘ schneller ans Ziel zu kommen als durch rein zufälliges Verhalten. Eine solche Intelligenz kann einem System zur Verfügung stehen, auch ohne Lernen, z.B. (i) bei biologischen Systemen als eine genetisch vererbte Verhaltensstruktur; (ii) bei technischen Systemen durch eine volle Konfiguration durch Ingenieure. Bei biologischen Systeme tritt allerdings ‚Intelligenz‘ nie isoliert auf sondern immer in Nachbarschaft zu einer Lernfähigkeit, weil die dynamische Umwelt biologischer Systeme beständig neue Anpassungen verlangt, die nicht alle vorher gesehen werden können. Im Fall technischer Systeme mit begrenzter Lebensdauer und definiertem Einsatz war dies (und ist dies) weitgehend möglich.

Wenn man von ‚Künstlicher Intelligenz‘ spricht sollte man daher die beiden Strukturen ‚Intelligenz‘ und ‚Lernen‘ sehr klar auseinander halten. Die Fähigkeit, etwas zu lernen, erfordert völlig andere Eigenschaften als die Struktur eines Wissens, durch das ein System sich ‚intelligent‘ statt ‚zufällig‘ verhalten kann.

C. Theorie

Die Forderung von Newell und Simon, die Informatik als eine ‚empirische Wissenschaft‘ zu betrachten, die richtige theoretische Modelle (= Theorien) konstruiert und diese über realisierte Modelle dann empirisch überprüft, hat im Rahmen des allgemeinen Systems Engineerings auch heute noch einen möglichen Prozess-Rahmen, der alle diese Forderungen einlösen kann. Allerdings hat es sich in der Informatik eingebürgert, dass die Informatik einen Sonderweg kreiert hat, der unter der Überschrift Softwareengineering zwar Teilaspekte des generellen Systemsengineerings abbildet, aber eben nur Teilaspekte; außerdem ist durch die Beschränkung auf die Software ohne die Hardware ein wesentlicher Aspekt des Gesamtkonzepts Computer ausgeklammert. Ferner ist der harte Aspekt einer vollen empirischen Theorie durch die Phasenbildungen ‚logisches Design‘ nur unvollständig abgebildet. Designmodelle sind kein Ersatz für eine richtige Theorie. Für das sogenannte ‚modellgetriebene Entwickeln‘ gilt das Gleiche.

D. Mensch als Maßstab

War es noch für Newell und Simon offensichtlich klar, dass man für den Begriff ‚Intelligenz‘ den Menschen als Referenzmodell benutzt, so ist dies in der heutigen Informatik weitgehend abhanden gekommen. Dies hat einmal damit zu tun, dass der Wissenschaftsbegriff der Informatik samt der meisten Methoden bislang nicht in den allgemeinen, üblichen Wissenschaftsbegriff integriert ist, zum anderen dadurch, dass die Aufgaben, die die intelligenten Maschinen lösen sollen, aus allen möglichen ad-hoc Situationen ausgewählt werden, diese keinen systematischen Zusammenhang bilden, und man in den meisten Fällen gar nicht weiß, wie man den Bezug zum Menschen herstellen könnte. Dadurch entsteht der vage Eindruck, dass die ‚Intelligenz‘ der künstlichen Intelligenzforschung irgendwie etwas anderes ist als die menschliche Intelligenz, von der menschlichen Intelligenz möglicherweise sogar ganz unabhängig ist. Man macht sich allerdings nicht die Mühe, systematisch und zusammenhängend die Verwendung des Begriffs der ‚Intelligenz‘ in der Informatik zu klären. Aktuell hat man den Eindruck, dass jeder gerade mal das behauptet, was ihm gerade gefällt. Auch eine Art von Fake News. Die Marketingabteilungen der großen Konzerne freut es, weil sie nach Belieben alles Versprechen können, was sie wollen, ohne dass irgendjemand sinnvoll nachprüfen kann, was das genau ist, ob das überhaupt geht.

Doch sollte man sich durch diese terminologische Unklarheiten, die auf eine fehlende wissenschaftliche Methodik der Informatik zurück zu führen sind, nicht davon ablenken lassen, zu konstatieren, dass trotz chaotischer Begrifflichkeit im Konkreten und Im Detail seit Newell und Simon 1976 extreme Fortschritte gemacht wurden in speziellen Algorithmen und spezieller Hardware, mit der man heute viel mehr realisieren kann, als sich Newell und Simon damals hätten träumen lassen. Die Vorteile, die man sich durch diese Fortschritte im Konkreten erarbeitet hat, werden aber weitgehend verspielt durch große Theoriedefizite, die zu gerade kuriosen Anschauungen und kuriosen Forschungsprojekten führen. In der KI ist dies aber nichts Neues: es gab sehr unterschiedliche Phasen; alle Fehler führten irgendwann dann doch zu verbesserten Einsichten.

QUELLE

Allen Newell and Herbert A. Simon. Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3):113–126, 1976.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER.

REDAKTIONELLES – NEUE AUTOREN – THEMENFELDER – KRITERIEN

NEUER AUTOR

1. Aus Anlass eines neuen Autors, der sich aus eigener Initiative in den Diskurs in diesem Blog eingebracht hat, hier einige Bemerkungen, wie sich der Blog aus redaktioneller Hinsicht sieht.

BLICKRICHTUNG DES BLOGS

2. Die Blickrichtung des Blogs ist die der Philosophie auf das Spannungsfeld zwischen dem homo sapiens und der vom Menschen initiierten Kultur und Technik, speziell der Technologie der intelligenten Maschinen. Welche Zukunft hat der homo sapiens auf der Erde, im bekannten Universum, und speziell im Wechselspiel mit den intelligenten Maschinen? Wie müssen wir, die wir Exemplare der Lebensform homo sapiens sind, uns selbst sehen? Welche Bilder beschreiben uns angemessen, welche nicht?

EMPIRISCHE ERKENNTNISQUELLEN

3. Antworten auf diese Fragen bieten nahezu alle wissenschaftlichen Disziplinen, die es zur Zeit gibt. Allerdings ist eine wissenschaftliche Disziplin – wenn sie sich denn wirklich als empirische Wissenschaft versteht – rein methodisch an eine eingeschränkte Sicht auf die Wirklichkeit unter Anwendung ganz bestimmter Methoden gebunden. Dies hat viele Vorteile, aber auch Nachteile. Die Nachteile bestehen darin, dass die erfahrbare Welt als solche eine Einheit bildet, die in sich unfassbar verwoben ist. Die einzelnen Disziplinen können aber nur Fragmente liefern. Dies reicht heute immer weniger. Mit dem immer weiteren Voranschreiten der einzelnen Disziplinen brauchen wir immer dringender auch Blicke auf Zusammenhänge.

INTERDISZIPLINARITÄT IST EIN FAKE

4. Hier gibt es das Zauberwort von der Interdisziplinarität: verschiedene Disziplinen arbeiten gemeinsam an einer Problemstellung. Aus der Nähe betrachtet ist dies aber nur eine Scheinlösung. Wenn Vertreter aus mehreren Einzeldisziplinen A, B, C aufeinandertreffen, entsteht nicht automatisch eine integrierte Sicht V(A,B,C), in der von einem höheren Reflexionsniveau auf diese Einzeldisziplinen geschaut wird. In der Praxis gibt es erst einmal drei Sichten A, B, C, jeder redet auf den anderen ein und hofft, der andere versteht, was man sagt. Das funktioniert aber im Normalfall nicht. Es gibt viel Verwirrung und Frustration und man ist froh, wenn man wieder für sich alleine weiter arbeiten kann. Wenn es dann doch irgendwo leidlich funktioniert, dann nur deswegen, weil die Beteiligten über besonders gute empathische Fähigkeiten verfügen, sich besonders viel Zeit nehmen, die anderen Positionen zu verstehen, und wenigstens eine(r) dabei ist, der irgendwie übergeordnete Gesichtspunkte formulieren kann, ad hoc.

NORMIERTE VORGEHENSMODELLE

5. In der Industrie funktioniert dies nur dann, wenn sich alle auf ein gemeinsames Vorgehensmodell geeinigt haben, das auf allen Ebenen Vorgehensweisen und Ausdrucksmittel normiert hat. Diese Vorgehensmodelle (z.B. in der Art des Systems Engineerings im englischsprachigen Raum) funktionieren aber nur, wenn es Menschen gibt, die 20 – 30 Jahre Berufserfahrung haben, um die Methoden und Begrifflichkeiten zu verstehen, und selbst dann ist das gemeinsame Verständnis sehr fragil: die Verrechnung der komplexen Wirklichkeit in begrifflich normierte Modelle kann aus verschiedenen Gründen nicht funktionieren. Aber die Industrie hat hier in der Regel keine Wahl: sie muss liefern und kann sich nicht auf philosophische Dispute einlassen.

ALTERNATIVE BLOG

6. In diesem Blog ist das anders: der Blog muss nicht liefern. Wir leisten uns hier den Luxus, Fragen als Fragen zuzulassen, und wir erlauben uns, eine Suche zu starten, wenn gesucht werden muss. Die Erfahrung des Scheiterns ist mindestens so wertvoll wie scheinbare Lösungen. Hier muss keine herrschende Meinung bedient werden.
7. Hier geht es nicht um dumpfe Interdisziplinarität, sondern um eine offene philosophische Reflexion auf die Unterschiede der einzelnen Disziplinen und die Frage, wie man die verschiedenen Sichten zusammen bringen könnte. Zeitschriften für einzelwissenschaftliche Höchstleistungen gibt es genug. Hier geht es um die Reflexion auf die einzelwissenschaftliche Leistung und die Frage, wie stehen z.B. biologische, psychologische und soziologische Ergebnisse in einem Zusammenhang? Wie soll man den homo sapiens verstehen, der molekularbiologisch aus kleinen chemischen Maschinen, den Zellen besteht, die sich aber aus Molekülen erst entwickeln mussten, und dann eine wahnwitzige Entwicklungsgeschichte von 3.8 Mrd Jahren bis zu einer Lebensform, die u.a. über die Fähigkeit verfügt, Zeit wahrnehmen zu können, abstrakte Strukturen denken kann, das sich mittels banaler physikalischer Ereignisse (Schall) koordinieren kann, Kultur hervorbringt, Technik? Wie soll man die Fähigkeit des Denkens beschreiben, die neuronale Korrelate zu haben scheint, zugleich aber nur introspektiv direkt erfahrbar ist? Usw.

EUROPÄISCHES SCHISMA

8. Leider gab es in der Kulturgeschichte Europas eine folgenschwere Trennung der Art, dass sich die neu aufkommenden empirischen Wissenschaften in hunderten von Jahren von der Philosophie getrennt haben und auch umgekehrt, die Philosophie diese Trennung mit kultiviert hat, anstatt in den aufkommenden empirischen Wissenschaften die großartige Chance zu sehen, die ihre oft faktenleeren aber methodisch umfassenden Reflexionen unter Einbeziehung der empirischen Wissenschaften anzureichern. Leider gehört es bei vielen sogenannten Philosophen immer noch zum guten Ton, auf die empirischen Disziplinen als geistloses Treiben herab zu schauen; dabei übersehen die Philosophen, dass es genau ihr Job wäre, die fantastischen Ergebnisse der Einzeldisziplinen aufzugreifen, ‚beim Wort zu nehmen‘, und sie in leistungsfähige begriffliche Systeme einzuordnen, die in der Lage wären, diese Vielfalt in einer begründeten Einheit zum Leuchten zu bringen.
9. Die sogenannte Interdisziplinarität ist vor diesem Hintergrund ein andauerndes Ärgernis: es wird so getan, als ob das Zusammensperren von verschiedenen Experten in einen Raum automatisch eine begründete Zusammenschau liefern würde. Eine Unzahl von Forschungsprojekten mit EU-Geldern, in denen Interdisziplinarität erzwungen wird ohne dass man den methodischen und diskursiven Raum mit liefert, ohne dass die Beteiligten eine entsprechende Ausbildung haben, kann davon milliardenschwer künden.

ANDERE UNIVERSITÄTEN

10. Was wir bräuchten wären Universitäten, in denen jeder Studierende einer Einzelwissenschaft grundsätzlich auch lernt, wie man im Rahmen einer Wissenschaftsphilosophie das Vorgehen und das Reden einzelner Disziplinen in einen denkerisch begründeten Zusammenhang einordnen und bewerten kann. Dies würde voraussetzen, dass es Professoren gibt, die über diese Fähigkeiten verfügen und über Lehrpläne, in denen dies vorgesehen ist. Beides gibt es nicht. Der normale Professor an deutschen Universitäten hat von wissenschaftsphilosophischen Konzepten noch nie etwas gehört und aufgrund eines sehr eingeschränkten Effiziensdenkens (und einer leider immer schlimmer werden Konkurrenz um finanzielle Mittel) im universitären Bereich sind solche Lernprozesse nicht vorgesehen. Es ist auch nicht absehbar, dass sich dies in den nächsten 10-20 Jahren grundlegend ändern würde. Dazu müsste es Professoren geben, die das selbst lernen, aber wer soll sie ausbilden?

DER BLOG

11. Dieser Blog steht angesichts der allgemeinen universitären Situation mit seinem Anliegen daher eher alleine dar. Autoren, die einzelwissenschaftliche Erkenntnisse (z.B. in der eigenen Disziplin) in einem größeren Zusammenhang reflektieren, sind wunderbare Ausnahmen. Solche Autoren sind hier willkommen.
12. Mit dem Autor hardbern hat ein weiterer Autor den Mut, den dringend notwendigen Diskurs über den homo sapiens und seine Zukunft auf zu nehmen. Es wäre schön, wenn es weitere solche Autoren geben würde. Natürlich wird sich damit auch der Diskurs außerhalb des Blogs in Form von direkten Gesprächen, Vortragsdiskussionen, Workshops und ähnlichen weiter ausbilden.
13. Der Initiator dieses Blogs, cagent, ist seit 1.April 2017 emeritiert. Dies bietet die Möglichkeit, den Blog nicht nur neben einem vollen Arbeitsprogramm zu betreiben, sondern sich den Inhalten und potentiellen Autoren intensiver zu widmen. Z.B. denkt er darüber nach, künftig gezielt verschiedene ausgewiesene Experten zu den Fragen des Blogs direkt anzusprechen. Philosopisch-wissenschaftliches Denken lebt von der den Menschen eigenen Neugierde, zu verstehen, weil man verstehen will. Es geht nicht um Geld oder Ehre, es geht wirklich um die wahren Bilder der Welt, nicht als einzelwissenschaftliche Splitter, sondern als durch Denken vermittelter Zusammenhang von allem. Wenn das Wissen stirbt, versinken wir im Dunkel.

„Technische Superintelligenzen werden die Menschheit bedrohen“ – Wie kann man eine so absurde Behauptung aufstellen?

Science-Fiction-Visionen von intelligenten oder gar superintelligenten Maschinen haben eine lange Historie. Besonders in der Hype-Phase der so genannten „Künstlichen Intelligenz (KI)“ in den 1960-1980er Jahren waren Behauptungen en vogue, dass Computeranwendungen die Menschheit in Bezug auf ihre Intelligenz bald einholen oder gar überholen werden – mit unabsehbaren Folgen und Bedrohungen für die Menschheit. “Once the computers got control, we might never get it back. We would survive at their sufferance. If we’re lucky, they might decide to keep us as pets”, meinte z.B. Marvin Minsky im Jahr 1970.

Als Zeithorizont für solche technische Superintelligenzen werden gerne ca. 10-30 Jahre angegeben – egal wann so etwas behauptet wurde. Dieser Zeitrahmen ist anscheinend nah genug, um genug Aufmerksamkeit zu erregen und weit genug weg, um für die Gültigkeit der Behauptungen nicht mehr gerade stehen zu müssen.

Ich habe den Eindruck, dass Behauptungen über technische Superintelligenzen aktuell wieder eine Hochzeit erleben. Dabei werden sie nicht nur von Hollywood, sondern auch von Wissenschaftsjournalisten dankbar aufgegriffen und verwertet. Dass sich frühere Prognosen dieser Art als falsch herausgestellt haben, spielt dabei keine Rolle. Gerne wird auf „Experten“ verwiesen, die sich diesbezüglich (alle) längst einig seien und nur im exakten Zeitpunkt noch nicht ganz sicher seien.

Durch die Frage wann es so weit sei, wird die Diskussion um das „ob“ meiner Meinung nach völlig vernachlässigt. Ich bin Informatiker. Ich beschäftige mich seit über 30 Jahren mit KI, entwickle seit mehreren Jahren KI-Anwendungen für den Unternehmenseinsatz und veröffentliche darüber Artikel und Bücher. Demnach halte ich mich für einen KI-Experten. Und nach meiner Meinung sind Behauptungen von technischen Superintelligenzen absurd.

Derzeit arbeite ich in einem KI-Projekt, in dem wir Software für Ärzte entwickeln, die Krebspatienten behandeln. Ein schöner Nebeneffekt der Arbeit an diesem Projekt ist, dass ich mein Schulwissen in Biologie und insbesondere Genetik auffrischen durfte. Während das früher für mich trockener Schulstoff war, kann ich jetzt nachvollziehen, warum die Ursprünge des Lebens Menschen faszinieren. Ich hatte einige Aha-Effekte, was sie Vielschichtigkeit, Vernetzung und Dynamik von Prozessen des natürlichen Lebens betrifft. Ich möchte diese laienhaft kurz mitteilen, um sie anschließend KI-Anwendungen gegenüberzustellen.

Es gibt chemische und physikalische Grundsätze, nach denen sich Atome zu Molekülen bzw. Molekülketten zusammensetzen – quasi mechanisch nach festen, einfachen Regeln. Und diese einfachen Molekülketten verhalten sich wie kleine Maschinen, die spezielle Aufgaben verrichten. Da gibt es Maschinen, die schneiden die DNA in der Mitte auf; dann gibt es welche, die kopieren die DNA-Information auf RNA; es gibt welche, die prüfen, ob es Kopierfehler gegeben hat und korrigieren diese (aber nicht alle Fehler – es soll ja noch Raum für Mutation bleiben); dann gibt es Maschinen, die lesen RNA, interpretieren sie nach dem genetischen Code und bauen daraus neue Molekülketten: Proteine, aus denen Zellen zusammengesetzt werden.

Wenn ich diese physikalisch-biologischen Vorgänge betrachte frage mich: findet hier gerade der Übergang von toter Materie zum Leben statt? Wo genau?

Und nun geht es weiter: Die Proteine bilden Zellen – kleine Maschinen, die ganz unterschiedliche Aufgaben erfüllen. Manche transportieren Sauerstoff; Manche andere stürzen sich auf Schädlinge und bekämpfen diese; Wiederum andere bauen feste Knochen. Und weiter geht es: Zellen zusammen bilden Organe mit klaren Aufgaben. Eines verdaut unser Essen, eines pumpt Blut und ein Organ vollführt erstaunliche Denkleistungen. Und alle Organe zusammen formen einen Menschen. Dieser wird gezeugt, geboren (jeder der eigene Kinder hat, weiß von der Faszination der Geburt), wächst, lernt, handelt intelligent und stirbt wieder. Viele Menschen zusammen bilden Kulturen, die entstehen, Wissen und Fähigkeiten entwickeln, und wieder vergehen. Diese Kulturen werden von einer intelligenten Spezies, genannt Homo sapiens, geformt. Diese einzelne Spezies entstand durch Evolutionsprozesse, denen sie kontinuierlich unterworfen ist. Wie die meisten Spezies wird sie irgendwann vergehen. Alle Spezies zusammen bilden das Leben auf dieser Erde. Und die Erde ist nur ein einziger Planet eines Sonnensystems einer Galaxie des Universums, über dessen mögliche andere intelligente Lebensformen wir nichts wissen.

Alle diese Ebenen, die ich laienhaft angedeutet habe, sind in sich hoch komplexe Systeme, die alle miteinander verwoben sind. Und vermutlich gibt es genauso viele Ebenen im submolekularen Bereich. Niemand kann ernsthaft behaupten, das komplexe Zusammenspiel über all diese miteinander vernetzten Ebenen auch nur annähernd, geschweige denn vollständig zu begreifen. Was wir heute zu wissen glauben, wird morgen als überholt erkannt und wirft viele neue Fragen für übermorgen auf. Im Ernst zu glauben, dass die unfassbare Komplexität des Lebens, sowie der Intelligenz als einer Ausdrucksform des Lebens, durch Computeranwendungen abgebildet oder gar weit übertroffen werden könnte, scheint mir eine extreme Unterschätzung der Natur oder eine groteske Überschätzung von Wissenschaft und Technik zu sein.

Schauen wir uns doch einmal KI-Anwendungen im Detail an. KI-Anwendungen werden stets zu einem speziellen Zweck entwickelt. So kann z.B. IBMs Deep Blue Schach spielen und Googles AlphaGo kann Go spielen. Beide Systeme übertreffen dabei die menschlichen Welt- und Großmeister. IBM Watson kann Fragen des allgemeinen Lebens beantworten – selbst wenn sie knifflig und mit Wortwitz gestellt sind – und schlägt alle menschlichen Champions der Quizshow Jeopardy! Selbstfahrende Autos erreichen ihre Ziele unter korrekter Berücksichtigung der Verkehrsregeln – vermutlich bereits in naher Zukunft sicherer als menschliche Fahrer.

All dies sind faszinierende Beispiele für mächtige KI-Anwendungen, die ich persönlich vor 20 Jahren nicht für möglich gehalten hätte. Aber sicher ist auch: Deep Blue wird niemals von sich aus anfangen, Go zu spielen, oder Quizfragen zu beantworten. IBM Watson kann nicht Schachspielen und wird es auch nicht lernen, egal in wie viel Quizshows die Anwendung eingesetzt wird. Und das selbstfahrende Auto wird nicht plötzlich auf die Idee kommen, sich für das Präsidentenamt zu bewerben, die Wahl gewinnen, anschließend die Demokratie und schlussendlich die Menschheit abschaffen. Das ist einfach absurd und gehört in den Bereich der Fiktion.

Alle diese KI-Anwendungen wurden von Informatikern und anderen Ingenieuren entwickelt. Intern werden u.A. Techniken des Machine Learning (ML) eingesetzt, meist das sogenannte „Supervised Learning“. Dabei werden Beispieldaten verwendet. So werden z.B. viele unterschiedliche Bilder von Stoppschildern, inklusive der Information, dass es sich jeweils um ein Stoppschild handelt, geladen. Mithilfe statistischer Methoden werden Modelle entwickelt, die es erlauben, bei neuen Bildern mit einer großen Wahrscheinlichkeit korrekt zu erkennen, ob ein Stoppschild abgebildet ist oder nicht. Dies kann dann in selbstfahrenden Autos für Fahrentscheidungen genutzt werden.

Also: die Anwendung lernt nicht von selbst, sondern mittels Eingabe von Beispielen durch Ingenieure („Supervisor“ im Supervised Learning). Wenn die Erkennungsraten nicht gut genug sind, ändern die Ingenieure entsprechende Parameter und starten das Lernverfahren erneut. Mit menschlichem Lernen kann das kaum verglichen werden.

Eine KI-Technik, die etwas mehr Ähnlichkeit zum Lernen eines Menschen hat, ist das sogenannte „Reinforcement Learning“. Dabei wird eine Umgebung eingesetzt, in der die Computeranwendung selbst Beispiele erzeugen und ausprobieren kann. Somit ist es möglich, ein Modell zu erzeugen, ohne dass dafür ein menschlicher Supervisor nötig ist. Zum Beispiel kann man ein Schachprogramm immer wieder gegen sich selbst (bzw. gegen ein anderes Schachprogramm) spielen lassen und die Machine Learning Verfahren auf die Verläufe und Ergebnisse dieser Spiele anwenden. Was jedoch Ingenieure vorgeben müssen, ist eine sogenannte Nutzenfunktion, z.B. „es ist positiv, ein Schachspiel zu gewinnen und es ist negativ, eines zu verlieren“. Würde man aus Spaß das Vorzeichen der Nutzenfunktion vertauschen, so würde die KI-Anwendung trainiert, Schachspiele möglichst schnell zu verlieren. Für die Anwendung wäre das überhaupt kein Problem. Sie spürt ja gar nichts, auch nicht die Auswirkungen eines verlorenen Schachspiels. Den Anreiz, eine Anwendung zu entwickeln, die Schachspiele auch gewinnt, haben die Ingenieure. Sie geben alles Notwendige von außen vor – nicht die KI-Anwendung aus sich heraus.

Im Gegensatz zur KI-Anwendung haben Menschen jedoch einen Körper. Babys verspüren Hunger und lernen von sich aus, sich so zu verhalten, dass sie etwas zu essen bekommen (Schreien hilft meist). Kinder brauchen den Zuspruch und die Zuneigung der Eltern und lernen sich so zu verhalten, dass sie Zuspruch und Zuneigung auch erhalten. Jugendliche und junge Erwachsene lernen, wie sie sich in ihrer Gesellschaft zu verhalten haben, um zu überleben – so unterschiedlich Gesellschaften auch sein können. Sie lernen aus sich heraus, weil sie Körper und Geist haben und wirklich in ihrer Umgebung leben – quasi die Resultate ihres Handelns hautnah spüren. KI-Anwendungen werden im Gegensatz dazu ausschließlich von außen durch Ingenieure gestaltet, auch wenn Techniken des Machine Learning eingesetzt werden.

KI-Anwendungen laufen auf Computer-Hardware. Wie die Anwendungen ist auch die Hardware von Ingenieuren entwickelt worden. Auch wenn wir die Metapher der „Generationen“ verwenden (wir reden z.B. von einer „neuen Prozessorgeneration“), hat dies selbstverständlich nichts mit Fortpflanzung in der Natur zu tun. Ein Prozessor kommt nicht auf die Idee, einen neuen Prozessor zu entwickeln und er zeugt auch keinen Prozessor, der mittels Evolution plötzlich besser ist als sein Vater.

Vergleichen wir nun KI-Anwendungen mit biologischem, intelligentem Leben: Auf der einen Seite beobachten wir ein unfassbar komplexes, vielschichtiges, dynamisches, selbstorganisierendes System – die vielen Schichten bzw. Ebenen habe ich laienhaft oben angedeutet. Auf der anderen Seite haben wir ein menschengemachtes, zweischichtiges System, bestehend aus KI-Anwendung und Computer-Hardware. Beide Schichten sind in sich starr und nicht selbstorganisierend. Die Dynamik (neue Hardwaregenerationen, bessere Algorithmen etc.) kommt von außen durch menschliche Ingenieursleistung. Wie kann man nun nüchtern betrachtet zur Behauptung kommen, dass dieses starre, menschengemachte System irgendwie plötzlich und von selbst dynamisch, selbstorganisierend, lebendig und intelligent wird: eine technische Superintelligenz, welche die Menschheit bedrohen kann? Ich kann beim besten Willen nicht den allerkleinsten Ansatz dafür sehen.

Bleibt die Frage, warum es immer wieder (einzelne) Fachexperten wie Marvin Minsky gibt, die solche, aus meiner Sicht absurden, Behauptungen aufstellen. Ist es ihr Ziel, Aufmerksamkeit zu erzeugen? Können sie eventuell daraus finanziellen Nutzen zu ziehen, z.B. in Form von Fördergeldern (das hat in den 1980er Jahren prima funktioniert)? Glauben sie wirklich daran und sorgen sie sich um die Menschheit? Sind solche ernst gemeinten Behauptungen vielleicht der Ausdruck einer schon fast ideologischen Wissenschafts- und Technikgläubigkeit? Ich weiß es nicht.

Dabei sind die Fortschritte der KI, vor allem in den letzten 20 Jahren, in der Tat höchst beeindruckend. Und tatsächlich bergen sie neben zahlreichen Chancen auch größte Risiken, wenn die Techniken blauäugig angewendet werden. In der Ausgabe 2/2017 der Communications of the ACM schreibt Alan Bundy in seinem Viewpoint sehr pointiert und aus meiner Sicht richtig: „Smart machines are not a threat to humanity. Worrying about machines that are too smart distracts us from the real and present threat from machines that are too dumb“.

Menschen überlassen KI-Anwendungen zunehmend wichtige Entscheidungen, obwohl selbstverständlich keine Anwendung perfekt ist. Bei selbstfahrenden Autos mag das durchaus sinnvoll sein, sobald diese nachweislich sicherer fahren als Menschen. Aber wirklich gefährlich wird es bei Entscheidungen, deren Auswirkungen kein Mensch mehr überblicken kann. Ein viel diskutiertes Gebiet ist der Hochfrequenzhandel, bei dem KI-Anwendungen Kauf- und Verkaufsentscheidungen autonom treffen, ohne dass heute die Auswirkungen auf das gesamte Wirtschaftssystem überblickt werden können. Noch deutlicher wird das im militärischen Bereich, wenn KI-Anwendungen prognostizieren sollen, ob ein Angriffsfall vorliegt und im Extremfall in Sekundenbruchteilen autonom über einen (möglicherweise nuklearen) Gegenschlag entscheiden sollen. Über solche KI-Anwendungen wurde bereits 1983 im Rahmen der Strategic Defense Initiative (SDI) intensiv diskutiert (bezeichnenderweise während der Hochzeit des KI-Hypes); und solche Diskussionen kommen leider immer wieder auf die Tagesordnung.

Wenn eine überhöhte Technik- und Wissenschaftsgläubigkeit nur dazu führt, absurde Behauptungen über technische Superintelligenzen aufzustellen, so ist das nicht weiter schlimm – sie provozieren nur harmlose akademische Diskussionen oder inspirieren amüsante Science Fiction Filme. Wenn wir aber als Gesellschaft – und besonders die politischen und wirtschaftlichen Entscheider – die Grenzen von Wissenschaft und Technik nicht klar sehen und folglich KI-Anwendungen Entscheidungen überlassen, die zwingend von verantwortlichen Menschen getroffen werden müssen, so kann dies fatale Folgen für unsere Gesellschaft haben.

Anmerkung:

Im Anschluss an diesen Artikel gab es eine Vortragsveranstaltung in der Reihe Philosophie Jetzt im Gespräch am 28.September 2017

MEMO: AUGE IN AUGE MIT DER KÜNSTLICHEN INTELLIGENZ. PHILOSOPHIESOMMER 2016 IN DER DENKBAR – Sitzung vom 12.Juni 2016

Entsprechend den vielfachen Wünschen der Teilnehmer war für die Sitzung am 12.Juni 2016 ein Experte für intelligente Maschinen eingeladen worden, eine kleine Einführung in die aktuelle Situation zu geben.

Ziel des Beitrags sollte es sein, anhand konkreter Beispiele ein wenig mehr zu verdeutlichen, was intelligente Maschinen wirklich leisten können. Im anschließenden Diskurs sollte es wieder darum gehen, diesen Beitrag als Ausgangspunkt zu nehmen, um die Fragen der anwesenden Teilnehmer und ihre Gedanken zu Worte kommen zu lassen.

Gedankenskizze von der Sitzung des Philosophiesommers 2016 in der DENKBAR vom 12.Juni 2016

Gedankenskizze von der Sitzung des Philosophiesommers 2016 in der DENKBAR vom 12.Juni 2016

Das Diagramm gibt einen ersten Überblick über die Struktur der Sitzung. Im Einstieg wurden in lockerer Form verschiedene Videos vorgestellt, immer wieder unterbrochen durch ad hoc Erläuterungen, die sehr konkrete Eindrücke von den agierenden Forschern und ihren Algorithmen vermittelten. Danach gab es ein sehr lebhaftes Gespräch, in dem weniger die Details der Algorithmen diskutiert wurden, sondern mehr die Gefühle, Befürchtungen und Fragen, die das Ganze bei allen auslöste.

KI DIREKT

Das Gebiet der KI ist ziemlich groß. An diesem Tag wurde von einem kleinen Ausschnitt berichtet, er sich aber zur Zeit im Zentrum größten Interesses befindet. Es ging vornehmlich um Bilderkennung und ein bisschen um Methoden des anfangshaften Verstehens von Sprache.

Bei der Bilderkennung wurden Beispiel gezeigt, wie Rechner heute Szenen analysieren und darin dann einzelne Objekte erkennen könne; wie dann in einer Folge von Szenen die erkannten Objekte räumliche Strukturen bilden können (Räume, Straßen, …), in denen man dann nach Pfaden/ Wegen suchen kann. Unter den Videos war auch eine künstlerische Anwendung, die zeigte, dass man diese Technologien auch ganz anders einsetzen kann. (Ergänzend kann man z.B. auch hinweisen auf Bereiche wie die Musik, in der KI mittlerweile komplexe Musikstücke analysieren und neu arrangieren kann, und sogar als eigenständiger Musiker in einer Band mitspielen kann, z.B. „Wunder der Technik Musikalische Drohnen ersetzen das Orchester „, oder „Neue Jobs für Roboter„).

Bei dem anfangshaften Verstehen von Sprache wurden Methoden vorgestellt, die aus den Verteilungen von Worten und Wortverbindungen zu Bedeutungsschätzungen kommen können, und auch hier wieder alltagspraktische Anwendungen wie jene, bei der Texte eines Politikers künstlerisch so abgewandelt werden konnten, dass sie wie die Texte dieses Politikers aussahen, aber vom Algorithmus produziert worden waren. Aber auch hier gilt, dass dies nur ein kleiner Ausschnitt von dem war, was heute schon im Einsatz ist (man denke an den sogenannten Roboter-Journalismus, wo die Nachrichten und Artikel ganzer Webseiten mittlerweile komplett durch Algorithmen erstellt werden, z.B. „Roboterjournalismus: Maschinen ohne Moral“ oder „Automatisierter Journalismus: Nehmen Roboter Journalisten den Job weg?)

GESPRÄCH : WIDERHALL IN UNS

Bei den Teilnehmern überwog die Skepsis die Faszination.

KI AKTEURE

Auffällig war den meisten, wie jung die Akteure in der Szene waren, selbst die Chefs und CEOs von milliardenschweren Unternehmen. Wie diese (scheinbar) unbekümmert die Vorzüge ihrer Technik priesen, begeistert, enthusiastisch; Nachdenklichkeiten, kritische Überlegungen sah man nicht (im Kontrast dazu vielleicht die Eindrücke, die man von deutschen Konzernen hat mit ihren schwerfälligen autoritären Strukturen, mit ihren zementierten Abläufen, der großen Risikoaversion…). Der Geist der KI-Akteure hingegen erzeugt Neues, Innovatives, bewegt die Welt. In Erinnerungen an den Bau der Atombombe mit den begeisterten Forschern für das technische faszinierend Machbare stellte sich mancher aber auch die Frage, ob diese Unbekümmertheit, diese emotionslose Technik, nicht auch gefährlich ist (je mehr Bilderkennung z.B. im öffentlichen Bereich, dann auch mehr umfassende Kontrolle, Überwachung. Das ‚System‘ weiß dann immer, wo man gerade ist und mit wem er zusammen ist (immerhin hat sich das US-Verteidigungsministerium den Chef von Alphabet (dazu gehört google) mittlerweile offiziell als Berater geholt)). Andere fragten sich, ob es in Zukunft eigentlich nur noch Informatiker gibt (quasi als allfällige Diener der KI), während alle anderen überflüssig werden.

OFFENE ZIELE

Sieht man die aktuelle Techniksituation als Momentaufnahme eines Prozesses mit einer Geschichte und möglichen Zukünften, dann kann (und muss?) man die Frage, nach dem darin wirkenden Fortschrittsbegriff stellen, nach den wirkenden Kriterien.

WAS IST INTELLIGENZ?

Ein Teilaspekt ist der Begriff der Künstlichen Intelligenz mit dem Teilbegriff Intelligenz. Was ist damit eigentlich gemeint? Auf welche Intelligenz bezieht man sich? In der Psychologie benutzt man seit ca. 100 Jahren einen operationalisierten Intelligenzbegriff zur Messung der Intelligenz (Binet). Doch diese Betrachtungsweise ist sehr quantifizierend und wird vielfach kritisiert, auch mit Verweis auf kulturelle Unterschiede. Im Unterschied zur Pschologie findet man im Bereich der KI selbst bzw. in der Informatik keine einheitliche Definition von Intelligenz (siehe z.B. KI ). Während die KI im klassischen Sinne sich an der Intelligenz von biologischen Systemen orientiert, die nachempfunden werden soll, findet sich heute vielfach ein engeres, ingenieurmäßiges Verstehen von KI als Maschinelles Lernen. Hier wird die Frage nach Intelligenz im allgemeinen gar nicht mehr gestellt. Stattdessen gibt es immer konkrete, spezielle Aufgabenstellungen, die technisch gelöst werden sollen, und die Lösung konzentriert sich dann ausschließlich auf diese eingeschränkten Aspekte.

SELBSTBESCHREIBUNG DES MENSCHEN ALS MASCHINE

Die Diskussion um den Intelligenzbegriff streift auch das Phänomen, dass die Menschen in nahezu allen Epochen dahin tendieren, sich selbst immer im Licht der neuesten Erkenntnisse und Techniken zu beschreiben, sozusagen auf der Suche nach sich selbst. Eigentlich weiß kein Mensch so richtig, wer er ist und ist dankbar für jedes Bild, was man ihm anbietet. So vergleichen sich Kinder heute häufig mit einem PC: ‚mein Kopf ist wie ein Computer‘; ‚ich habe das nicht abgespeichert‘; ‚meine Festplatte ist leer’…. Zu Zeiten eines La Mettrie (1709 – 1751)  wurde der Geist der Dualisten (vor allem repräseniert duch Descartes) aus dem Körper des Menschen verbannt; der Körper war nur noch eine Maschine (im damaligen Verständnis) ohne Geist.

VIRTUALITÄT ALS GEFAHR?

Mit Blick auf die KI und die enorme Zunahme an digitalen Räumen als virtuelle Welten wurde auch die Frage aufgeworfen, wieweit dies eine Gefahr darstellt? Verzetteln wir uns nicht? Wissen wir noch Virtuelles und Reales auseinander zu halten? Dazu sei angemerkt, dass sich das Erleben und Denken des Menschen ja primär in seinem Gehirn abspielt, das als Gehirn im Körper sitzt ohne direkten Weltbezug. D.h. schon das normale Denken des Menschen hat das Problem, dass es dem einzelnen zwar real erscheint, inhaltlich aber – bezogen auf eine unterstellte Außenwelt – mit der Außenwelt nicht automatisch übereinstimmen muss. Es gehört ja gerade zur Kulturgeschichte des Menschen, dass er mühsam lernen musste, dass die meisten Gedanken der Vergangenheit eben nur Gedanken waren und nicht die Welt beschrieben haben, wie sie wirklich (=empirisch überprüfbar) ist. Insofern stellen die neuen virtuellen Welten nichts wirklich Neues dar, wohl aber eine Modifikation der Situation, die neu verstanden und gelernt werden muss.

BRAUCHEN WIR NOCH MEHR EVOLUTION?

Greift man nochmals den Gedanken auf, dass die aktuelle Techniksituation als Momentaufnahme eines Prozesses mit einer Geschichte und möglichen Zukünften Teil der Evolution ist, wurde gefragt, ob wir noch mehr Evolution brauchen? Außerdem, welches Ziel hat diese Evolution?

Mit Blick auf den Blogeintrag vom 11.Juni 2016 wurde eingeblendet, dass sich die Frage nach der Evolution möglicherweise anders stellt. Schliesslich sind wir selbst, alle Menschen, alle Lebewesen, Produkt der Evolution, wir sind Teilnehmer, aber bislang nicht als Herren des Geschehens. Und vieles spricht dafür, dass alle Phänomene im Umfeld des Menschen auch nicht los lösbar sind von der Evolution. Sie gehören quasi dazu, wenn auch vielleicht in einem neuen qualitativen Sinn. Soweit wir heute erkennen können, ist es seit dem Auftreten des homo sapiens sapiens (hss) zum ersten Mal seit dem Auftreten des Lebens auf der Erde möglich, dass das Leben als Ganzes sich in Gestalt des hss sich quasi selbst anschauen kann, es kann sich mehr und mehr verstehen, es kann seine eigenen Baupläne lesen und mehr und mehr abändern. Dies eröffnet für das Leben auf der Erde (und damit im ganzen bekannten Universum) eine völlig neue und radikale Autonomie. Die allgemeine physikalische Entropie wird bislang dadurch zwar nur lokal aufgehoben, aber immerhin, dass es überhaupt möglich ist, über die bekannten Naturgesetze hinaus durch bestimmte Prozesse Strukturen zu erzeugen, die der Entropie zuwider laufen, ist ein bemerkenswertes Faktum, das bislang von der Physik so gut wie gar nicht zur Kenntnis genommen wird (und auch nicht von den Akteuren selbst, dem hss).

RADIKALE AUTONOMIE

Möglicherweise ist die fundamentale Tragweite der neuen radikalen Autonomie des Lebens auch deshalb noch nicht so recht ins Bewusstsein getreten, weil im Alltag, im konkreten Dasein, die körperlichen Grenzen sehr deutlich sind, die ganze Trieb-, Bedürfnis-, und Emotionsstruktur des Menschen in ihrer Konkretheit und Intensität vielfach als so stark empfunden wird, dass man die großen Linien, die geradezu kosmologische Dimension dieser radikalen Autonomie noch kaum wahrnimmt.

Dazu kommt, dass die Tatsache, dass sich fast alle interessanten Prozesse im Innern des Menschen abspielen, es notwendig macht, dass diese inneren Prozesse über Kommunikation miteinander koordiniert werden müssten. Dies ist aufwendig und schwierig. Viele (die meisten) Menschen scheitern hier, kapitulieren. So verharren sie – und damit ganze Generationen – in bestimmten Empfindungs-, Denk- und Handlungsmustern, die nicht weiter führen, die eher Rückschritt bedeuten.

Aktuell erscheint es offen, in welche der vielen möglichen Zukünfte wir uns bewegen werden. Werden demnächst die intelligenten Maschinen alles übernehmen, weil der hss ausgedient hat? Oder wird es doch bei einer Symbiose auf hohem Niveau bleiben, in der der hss die intelligenten Maschinen für sich nutzt und die intelligenten Maschinen durch den Menschen Räume erobern können, die ihnen sonst verschlossen wären? Oder – und diese dritte Möglichkeit sieht aktuell – soweit ich sehe – eigentlich noch niemand – wird er Mensch in den nächsten Jahren neu erwachen und begreifen, dass diese radikale Autonomie etwas radikal Neues darstellt, etwas, das es so noch nie zuvor in den 13.8 Mrd Jahren gegeben hatte?

Um die radikale Autonomie nutzen zu können, muss der Mensch erstmalig in der Geschichte des Lebens die Frage nach den Werten, nach den Zielen, wohin die Reise eigentlich gehen soll, selber stellen … und beantworten. Bis zum hss gab es keine Wertediskussion. Die Evolution stellte einen Prozess dar, in dem bestimmte Lebensformen im Kontext der Erde überlebt hatten; das waren die einzigen Werte im Nachhinein. Vor der Neuwerdung im Reproduktionsprozess gab es keine expliziten Werte. Es gab bisherige Erfolge und viel Zufall.

Einen Überblick über alle Beiträge zum Philosophiesommer/ zur Philosophiewerkstatt nach Titeln findet sich HIER.

MEMO ZU: 6 THESEN ZUM LEBEN: KREATIVITÄT, KOOPERATION, KOMMUIKATION, MEHR ALS JETZT, SEXUALITÄT, DAS BÖSE – PHILOSOPHIESOMMER 2016 in der DENKBAR Frankfurt am So, 15.Mai 2016

Hier wieder ein kurzer Bericht zum Philosophiesommer 2016 in der Denkbar, Treffen am So 15.Mai 2016 (siehe die zugehörige Einladung)

Die Einleitung geriet etwas lang, vielleicht auch angesichts der vielen neuen Gesichter. Letztlich hielten wir aber unseren vorgeschlagenen Zeitplan ein. Sehr erfreulich war die breite Streuung der versammelten Kompetenzen, was sich dann in den Beiträgen widerspiegelte.

EINLEITUNG: SPANNUNGSFELD MENSCH – INTELLIGENTE MASCHINE

Ausgangspunkt war die spannungsvolle Diskussion vom letzten Treffen, bei dem zwar das Spannungsfeld Mensch einerseits, intelligente Maschinen andererseits, zur Sprache kam, wir uns aber nicht auf ein klares Thema für die Fortsetzung einigen konnten. Dies führte zur Formulierung von sechs Thesen zu Grundmerkmalen des biologischen Lebens, so wie sie sich am Beispiel des homo sapiens sapiens nach heutigem Kenntnisstand ablesen lassen. Diese Thesen sind gedacht als mögliche Orientierungspunkte für die weitere Diskussion des Spannungsfeldes Mensch – intelligente Maschinen.

STICHWORTE ZU INTELLIGENTE MASCHINEN

Analog zu den sechs Thesen zum biologischen Leben wurden ein paar Meilensteine zum Begriff der intelligenten Maschine in den Raum gestellt, an denen man das Reden über intelligente Maschinen fest machen kann.

STANDARD FÜR EINEN COMPUTER

Es wurde verwiesen auf den berühmten Artikel On Computable Numbers, with an Application to the Entscheidungsproblem. In: Proceedings of the London Mathematical Society. Band 42, 1937, S. 230–265, von Alan Mathison Turing (19121954), in dem er im Kontext eines mathematischen Beweises ein einfaches Gedankenkonstrukt einführte, was später zu seinen Ehren Turingmaschine genannt wurde. Dieses Gedankenkonstrukt, die Turingmaschine, ist bis heute der gedankliche Standard, die Norm, für Fragen der Entscheidbarkeit von Problemstellungen in der Computerwissenschaft. Nach heutigem Kenntnisstand kann kein realer Computer mehr als dieses gedankliche Konstrukt genannt Turingmaschine (und dies gilt auch für alle denkbaren reale Computer der Zukunft).

INTELLIGENTE MASCHINEN

Es war auch dann Turing, der 1950, als es gerade erste Ungetüme von Computer gab, die noch nicht allzu viel konnten, die Frage diskutierte, ob Computer einmal so intelligent werden könnten wie ein homo sapiens sapiens (siehe: Computing Machinery and Intelligence. In: Mind. LIX, Nr. 236, 1950, ISSN  0026-4423, S. 433–460 ). Er räsonierte darüber, dass Computer, wenn sie genauso lernen dürften wie Kinder, eigentlich auch alles wissen könnten, wie Kinder. Auf dem Weg zur intelligenten Maschine sah er weniger technische Probleme, sondern soziale psychologische: Menschen werden Probleme haben, intelligenten lernende Maschinen neben sich in ihrem Alltag zu haben.

EMOTIONALE MASCHINEN

Einer der einflussreichsten und wichtigsten Wissenschaftler der künstlichen Intelligenzforschung, Marvin Minsky (1927 – 2016) veröffentlichte wenige Jahre vor seinem Tod ein Buch über die emotionale Maschine ( The Emotion Machine, Simon & Schuster, New York 2006). Es ist – formal gesehen – kein streng wissenschaftliches Buch, aber dennoch bedenkenswert, da er hier im Lichte seines Wissens durchspielt, wie man die menschlichen Erfahrungen von diversen Gefühlszuständen mit dem zu diesem Zeitpunkt bekannten Wissen über Computer rekonstruieren – sprich erzeugen – könnte. Er sieht in solch einem Projekt kein prinzipielles Problem.(Anmerkung: Es könnte interessant sein, dieses Buch zusammen mit Psychologen und Psychotherapeuten zu diskutieren (evtl. ergänzt um Gehirnforscher mit einem psychologischen Training)).

SUPERINTELLIGENZ UND WERTE

Einen weiteren Aspekt bringt der in Oxford lehrende Philosoph Nick Bostrom ins Spiel. In seinem Buch Superintelligenz (Superintelligence. Paths, Dangers, Strategies. Oxford University Press, Oxford 2014) sieht er bzgl. der Möglichkeit, super-intelligenter Maschinen grundsätzlich auch keine grundsätzliche Schwierigkeit, wohl aber in der Wertefrage: nach welchen Werten (Zielgrößen, Präferenzen) werden sich diese super-intelligenten Maschinen richten? Werden sie sich gegen den Menschen wenden? Kann der Mensch ihnen solche Werte einspeisen, die diese super-intelligente Maschinen dem Menschen wohlgesonnen sein lassen? Er selbst findet auf diese Fragen keine befriedigende Antwort. Auch wird durch seine Analysen deutlich (was Bostrom nicht ganz klar stellt), dass die Wertefrage grundsätzlich offen ist. Die Menschen selbst demonstrieren seit Jahrtausenden, dass sie keine Klarheit besitzen über gemeinsame Werte, denen alle folgen wollen.

SECHS THESEN ZUM BIOLOGISCHEN LEBEN

Vom BigBang (-13.8 Mrd Jahre) bis heute; ausgewählte Ereignisse

Vom BigBang (-13.8 Mrd Jahre) bis heute; ausgewählte Ereignisse

Angesichts des zuvor skizzierten ungebrochenen Glaubens an die Möglichkeiten einer Superintelligenz bei gleichzeitigem ungelösten Werteproblem bei den Menschen selbst stellt sich die Frage, ob wir Menschen als späte Produkte des biologischen Lebens nicht doch Eigenschaften an und in uns tragen, die mehr sind als eine beliebige Meinung. Aus der Vielzahl der neuesten wissenschaftlichen Erkenntnisse zum biologischen Leben und zum homo sapiens sapiens hatte Gerd Doeben-Henisch sechs in Form von Thesen ausgewählt und der Diskussion vorangestellt.

1. KREATIVITÄT JENSEITS DES BEKANNTEN: Die Explosion des Lebens fand statt auf der Basis eines Erfolgswissens aus der Vergangenheit (repräsentiert im DNA-Molekül) ohne Wissen um die Zukunft. Inmitten eines Nicht-Wissens wurde nicht nur das erprobte Wissen aus der Vergangenheit genutzt, sondern der Reproduktionsprozess erlaubte eine Vielzahl von Alternativen, die alle im Moment des Ereignisses das radikale Risiko des Scheiterns beinhalteten. Diese basale Form der Kreativität war die Methode, Leben zu finden, und das Risiko des Scheiterns der Preis: Ohne Tod kein Leben.
2. KOOPERATION ÜBR GRENZEN HINWEG: Die Explosion des Lebens fand statt durch Erlangung der Fähigkeit, mit völlig fremden Systemen (die oft lebensbedrohlich waren) in eine Kooperation geradezu galaktischen Ausmaßes einzutreten, die eine WinWin-Situation für alle Beteiligte bildete. Das Zustandekommen solcher WinWin-Situationen war in den ersten Milliarden Jahren zufällig; der Erhalt der gefundenen Vorteile beruhte auf der grundlegenden Fähigkeit des Lebens, Erfolge zu konservieren.
3. ÜBERWINDUNG DES JETZT: Solange die biologischen Systeme nicht über Gedächtnis, Abstraktionsfähigkeit, basalem Denken verfügten, waren sie im Jetzt der Sinneseindrücke gefangen. Es gab kein Gestern und kein Morgen. Nach der Explosion des Lebens ab ca. -450 Mio Jahren kam es zu einem einzigartigen Punkt: nach 13.8 Mrd Jahren konnte sich das Leben in Gestalt der Hominiden, speziell dann des homo sapiens sapiens, plötzlich selbst anschauen und verfügte ab da über das Potential, sich selbst zu verändern.
4. KOORDINIERUNG INDIVIDUELLER VIRTUELLER WELTEN: Mit der Überschreitung des Jetzt durch interne Konstruktionen entsteht im einzelnen Individuum ein rekonstruierendes virtuelles Abbild der realen Welt. Damit die vielen einzelnen dieses virtuelle Wissen gemeinsam nutzen können, braucht es neue, leistungsfähige Formen der Koordinierung durch symbolische Kommunikation. Erfindungen wie die Sprache, die Schrift, der Buchdruck usw. belegen eindrucksvoll, was symbolische Interaktion vermag.
5. JENSEITS VON SEXUALITÄT: Während die bisherige Form der Sexualität als Strategie der Mischung genetischer Informationen kombiniert mit endogenem Handlungsdruck bei den handelnden Individuen über Jahrmillionen den Erhalt des Lebens offensichtlich ermöglicht hat, führen die neuen Lebensverhältnisse der großen Siedlungsdichten und der drohenden Überbevölkerung zur Frage, wie sich der Mensch von den endogenen Handlungsdrücken hinreichend befreien kann. Mann – Frau war gestern?
6. DYNAMIK DES BÖSEN – WO LEBT DAS GUTE: tiefsitzende Triebstrukturen im Menschen (Macht, Geld, Dünkel, …) sind seit Jahrtausenden bekannt. Mit den neuen globalen Informationstechnologien können sie sich schneller und effektiver im globalen Maßstab organisieren als nationale politische Systeme. Globale Kartelle des Machtmissbrauchs und der der Kriminalität bedrohen die neuzeitlichen Freiheitsansätze des Kreativen (neben anderen Faktoren).

FREIER DISKURS
Bei diesem breiten Spektrum des Themas war klar, dass nicht alle angesprochenen Aspekte gleichzeitig diskutiert werden konnten.

Gedankenskizze zum Philosophiesommer 2016, Sitzung am 15.Mai 2016, in der DENKBAR Frankfurt

Gedankenskizze zum Philosophiesommer 2016, Sitzung am 15.Mai 2016, in der DENKBAR Frankfurt

SEXUALITÄT
Die ersten Gesprächsbeiträge griffen die These zur Sexualität auf. Eher grundsätzliche Überlegungen thematisierten, dass Sexualität als ein grundlegendes und übergreifendes Prinzip zu sehen ist; die einzelnen Individuen sind hier nur – in gewisser Weise – nur ‚Marionetten‘ in dem großen Spiel des Lebens. Das Leben will überleben, der einzelne muss entsprechend funktionieren. Dass die biologisch vorgegebene eingebaute endogene Drucksituation im Laufe der Jahrtausende innerhalb der unterschiedlichen Kulturen mit ihren Wertesystemen zu vielfältigen Formen der Regulierungen geführt hat (meist zu Lasten der Frauen), ist manifest. Versuche der Menschen, die strenge Kopplung zwischen Sexualität und Reproduktion zu lockern gab es immer. Erst in neuester Zeit verfeinerten sich die Techniken, bieten sich Möglichkeit in die chemischen oder gar genetischen Prozesse einzugreifen bzw. durch die Reproduktionsmedizin die Reproduktion mehr und mehr aus dem biologischen System auszulagern. War schon immer die Anzahl der Kinder ein Indikator für den aktuellen Wohlstand, so führt heute die zunehmende Bevölkerungsdichte erneut zu Überlegungen, den bisherigen Reproduktionsmechanismus zu verändern. Für alle die neuen Maßnahmen und Technologien zur Veränderung der Reproduktion spielt der Einsatz von Computern eine immer größere Rolle. Zugleich wird der Computern für die Sexualität in Form von Sexrobotern auch immer mehr eingesetzt. Bräuchten super-intelligente Maschinen auch ein Äquivalent zur Sexualität, um sich zu vermehren?

INTELLIGENTE MASCHINEN

Die Position der intelligenten Maschinen blieb auffällig abstrakt. Was können sie eigentlich wirklich leisten? Richtig intelligente Maschinen scheint es noch nicht wirklich zu geben. Generell wurde nicht ausgeschlossen, dass super-intelligente Maschinen eine neue Variante der Evolution ermöglichen können. Haben diese super-intelligente Maschinen dann einen eigenen Willen? Würden sie aus sich heraus zu dem Punkt kommen, dass sie die Menschen abschaffen würden? Können wir den super-intelligente Maschinen solche Werte einpflanzen, dass sie den Menschen grundsätzlich wohlgesonnen sind (hier sei erinnert an die vielen geistreichen Science Fiction von Isaak Asimov (1919 – 1992), der unter anderem die Robotergesetze erfunden hatte, die genau diese Idee umsetzen sollten: menschenfreundliche Roboter ermöglichen).

NICHT SCHWARZ-WEISS DENKEN

Im Gespräch zeichnete sich auch eine Position ab, die viele Argumente auf sich vereinte, nämlich jene, die weniger konfrontativ Mensch und super-intelligente Maschinen gegenüberstellt, sondern von einer symbiotischen Wechselbeziehung ausgeht. Der Mensch entwickelt schrittweise die neuen Technologien, und in dem Masse, wie diese real erfahrbar werden, beginnt die ganze Gesellschaft, sich damit auseinander zu setzen. Systemisch gibt es damit beständige Rückkopplungen, die – falls die gesellschaftliche Dynamik (Öffentlichkeit, freie Meinung, Diskurs..) intakt ist – nach Optimierungen im Verhältnis zwischen Menschen und Maschinen sucht. Natürlich gibt es massive wirtschaftliche Interessen, die versuchen, die neuen Möglichkeiten für sich zu nutzen und versuchen, alle Vorteile einseitig zu akkumulieren; es ist dann Aufgabe der ganzen Gesellschaft, dieser Tendenz entsprechend entgegen zu wirken. Dabei kann es sehr wohl zu Neujustierungen bisheriger Normen/ Werte kommen.

WEISHEIT DES LEBENS
Wenn man bedenkt, welch ungeheuren Leistungen das biologische Leben seit 3.8 Mrd Jahren auf der Erde vollbracht hat, wie es Lebewesen mit einer gerade zu galaktischen Komplexität geschaffen hat (der Körper des homo sapiens sapiens hat nach neuen Schätzungen ca. 34 Billionen (10^12) Körperzellen (plus noch mehr Bakterien in und am Körper), die alle als Individuen im Millisekundentakt zusammenwirken, während dagegen die Milchstraße, unsere Heimatgalaxie, ca. nur 100 – 300 Mrd. Sonnen besitzt), dann kann man nicht grundsätzlich ausschließen, dass diese Leben implizit über eine ‚Weisheit‘ verfügt (man könnte auch einfach von ‚Logik‘ sprechen), die möglicherweise größer, tiefer umfassender ist, als jede denkbare Superintelligenz, weil diese, wann und wo auch immer, nicht von außerhalb des Systems entsteht, sondern innerhalb des Systems.

NÄCHSTES THEMA

Da viele Teilnehmer sagten, dass sie sich unter diesen intelligenten Maschinen immer noch nichts Rechtes vorstellen können, wurde ein anwesender Experte für intelligente Maschinen (aus der Gattung homo sapiens sapiens) gebeten, für das nächste Treffen eine kleine Einführung in die aktuelle Situation zu geben.

Ein Überblick zu allen bisherigen Themen des Philosophiesommers (und seiner Vorgänger) nach Titeln findet sich HIER.

DIE SELBSTABSCHALTUNG – UND NOCH EIN PAAR BETRACHTUNGEN ZUR PSYCHOLOGIE DES MENSCHEN

  1. Im Laufe seines Lebens trifft man auf sehr viele unterschiedliche Menschen. Über Körperformen, Geruchsprofile, Spracheigenschaften, Hautfarben, Verhaltensbesonderheiten, Art des Lachens oder Weinens, Essgewohnheiten, Musikvorlieben, und vielem mehr, gibt es eine große Bandbreite. Viele neigen dazu, äußerliche Besonderheiten sofort aufzugreifen, sie hoch zu stilisieren als abgrenzende Besonderheiten, als besondere Menschenklasse, als der bzw. die Anderen. Dabei sind es nur die ganz gewöhnlichen Varianten, die im biologischen Programm der Menschwerdung möglich und vorgesehen sind. Der/ die/ das Andere erweckt in vielen Menschen zudem oft spontane Ängste, weil sie instinktiv spüren, dass sie selbst, so, wie sie sind, nichts Absolutes sind, nicht die einzige Wahrheit; das sie selbst angesichts des Anderen sich auch als etwas Besonderes spüren, etwas Veränderliches, möglicherweise etwas Zufälliges, das am Selbstverständnis nagen kann: wer bin ich, wenn ich auch nur etwas Anderes für Andere bin? Wer bin ich, wenn ich auch nur etwas Zufälliges für andere bin, eine Variante?
  2. Es ist offensichtlich, dass Menschen, von Innen getrieben, nach Fixpunkten suchen, nach Wahrheiten, nach Gewissheiten, nach Anerkennung, nach einem positiven Selbstgefühl. Menschen halten es nicht gut aus, sie mögen es nicht, wenn ihr Selbstgefühl leidet. Und selbst in schweren Formen der Erniedrigung (z.B. in der leider viel zu häufigen Realität, wenn Frauen von Männern misshandelt werden), suchen Menschen noch in der Erniedrigung eine Form der Wertschätzung heraus zu lesen: Ja, der andere quält mich, aber noch in dieser Form der Qual nimmt der andere mich doch ernst, nimmt er mich wahr, verbringt er Zeit mit mir, usw. Dieses letzte Flackern des Lebenswillens reicht zwar aus, sich über der Nulllinie zu halten, nicht aber, um das zu verändern, was Leid und Zerstörung mit sich bringt.
  3. Dass Männer so oft Frauen misshandeln, weil Männer sich Frauen gegenüber aus vielfachen Gründen unterlegen fühlen, erscheint aber nur als eine Spielart von vielen anderen: Wenn Mitglieder einer politischen Partei wie besinnungslos auf Mitglieder anderer politischer Parteien mit Worten (und bisweilen auch Fäusten) einschlagen, dabei gebetsmühlenartig ihre Slogans wiederholen ohne dass irgend jemand näher überprüft hat, ob und wie man die Dinge auch anders sehen könnte, dann ist dies letztlich nichts anderes. Die andere Gesinnung als solche wird zum ab- und ausgrenzenden Merkmal, der Andere erscheint als direkte in Fragestellung der eigenen Position. Egal welche Parteien, ich habe noch nie erlebt, dass man mit einem aktiven Mitglied einer Partei (ob in Deutschland, Frankreich, England, den USA oder wo auch immer) bei einer Veranstaltung, wo verschiedene Vertreter präsent sind, einfach normal über mögliche Alternativen reden konnte.
  4. Bei Religionsgemeinschaften – zumindest in ihren fundamentalistischen Teilen – ist dies nicht anders (Juden, Christen, Muslime, Buddhisten, Hindus, …). Sie alle treten auf wie Marionetten eines Einpeitschers, der nicht außen steht, sondern sich in ihr eigenes Gehirn eingenistet hat und von dort aus alles terrorisiert. Das Furchtbare, das Erschreckende daran ist eben dieses: der Einpeitscher sitzt in ihrem eigenen Gehirn und er erlaubt diesen Menschen nicht, dass sie Fragen stellen, Fragen zu sich selbst, Fragen zu ihren eigenen Anschauungen, Fragen über die Welt, Fragen dazu, wie denn das alles gekommen ist, usw. Der Einpeitscher in ihren Gehirnen ist wie ein Computervirus, der dieses Gehirn gekapert hat, es so umprogrammiert hat, dass es gegen jegliche Beeinflussung von außen immunisiert wurde. Manche gehen damit bis in ihren eigenen Tod, wie jene Ameisen, die von einem bestimmten Pilz befallen wurden, der dann mit chemischen Stoffen über das Blut das Gehirn dieser Ameise so steuert, dass sie sich Vögeln zum Fraß anbieten, damit der Pilz in diese Vögel gelangen kann. Nicht anders funktionieren die fremde Einpeitscher-Slogans im eigenen Gehirn: sie schalten diese Menschen quasi ab, machen sie zu willenlosen Werkzeugen ihres Gedankenvirus. Man erkennt diese Menschen daran, dass sie im Gespräch immer nur Slogans wiederholen und nicht mehr selbst denken können.
  5. Wer glaubt, dass dies nur bei dummen Menschen funktioniert, der lebt in einer gefährlichen Täuschung. Der Virus der Selbstabschaltung findet sich auch bei intelligenten Menschen, und zwar nicht weniger häufig als bei sogenannten dummen Menschen (ich benutze die Begriffe ‚dumm‘ und ‚intelligent‘ normalerweise nicht, weil sie sehr oft zur Abgrenzung und Abwertung benutzt werden, aber in diesem Fall tue ich es, um genau diese Instrumentalisierung von Eigenschaften als Waffe gegen Menschen anzusprechen). Da die Welt sehr kompliziert ist und die allerwenigsten Menschen genügen Zeit haben, allen Dingen selbst soweit auf den Grund zu gehen, dass sie sich ernsthaft eine eigene Meinung bilden können, sind viele Menschen – ob sie wollen oder nicht – auf die Meinung anderer angewiesen. Davor sind auch intelligente Menschen nicht befreit. Da auch sogenannte intelligente Menschen die ganze Bandbreite menschlicher Triebe, Bedürfnisse, Emotionen, Gefühle in sich tragen (auch Eitelkeit, Machthunger usw.), angereichert mit ebenso vielen sublimen Ängsten, ist ihre Intelligenz nicht im luftleeren Raum, nicht beziehungslos, sondern steht auch permanent unter dem Andruck all dieser – vielfach unbewussten – Ängste, Triebe und Emotionen. Und, jeder einzelne, wie im Bilderbuch, nutzt seine Intelligenz um all diese unbewältigten Ängste, Triebe und Emotionen maximal zu bedienen. Wer seine Ängste, Triebe und Emotionen nicht in den Griff bekommt (Wer kennt jemanden, der dies vollständig kann?), erfindet wunderbare Geschichten (Psychologen nennen dies Rationalisieren), warum man eher das tut als etwas anderes; warum man nicht kommen konnte, weil; warum man unbedingt dorthin fahren muss, weil; warum dieser Mensch blöd ist, weil; usw. um damit  die wahren Motive unangetastet zu lassen.  Die große Masse der intellektuell verkleideten Geschichten ist in dieser Sicht möglicherweise Schrott, in der Politik, in der Religion, im menschlichen Zwischeneinander, in der Wirtschaft ….
  6. In einem der vielen Gespräche, die man so führt, stand mir einmal jemand gegenüber, der ohne Zweifel hochintelligent war und sehr viel wusste. Leitmotiv seiner vielen Äußerungen war, dass die meisten Menschen dumm sind und innerlich abgeschaltet sind. Daher lohne es sich nicht, sich mit Ihnen zu beschäftigen. Dabei fand er nichts dabei, dass er selbst immer wieder die gleichen Argumentationsfiguren wiederholte und bei Nachfrage, nach seinen Voraussetzungen tatsächlich erregt wurde, weil seine Kronzeugen nicht anzugreifen waren; seine eigenen Kronzeugen waren eben einfach wahr. Wer war hier abgeschaltet? War dies auch eine Strategie, um sich von der Vielfalt des Lebens mit Begründung abschotten zu können? Im Gespräch ging es fast nur um die Unterwerfung unter seine Prämissen; ein neugieriges Hinhören oder spielerisches Umgehen mit Varianten war im Ansatz trotz vielfacher Angebote meinerseits ausgeschlossen. Dieses Verhalten wirkte auf mich wie eine massive Selbstabschaltung vor der Vielfalt und dem Reichtum des Lebens, insbesondere auch als eine massive Selbstabschaltung vor den eigenen Abgründen und Möglichkeiten.
  7. Dieses sehr verbreitete Phänomen der Selbstabschaltung der Menschen von der Welt, von den anderen Menschen, vor sich selbst, ist gepaart mit einerseits einer unkritischen Überhöhung jener Positionen, die man (wie intelligent man auch sein mag) als für sich als wahr übernommen hat, und zugleich einer fast fanatischen Verteuflung von allem anderen. Wie eine Menschheit, die am Virus der Selbstabschaltung leidet, die sich nähernde Zukunft meistern soll, ist schwer zu sehen. Bislang haben die impliziten Kräfte der biologischen Evolution lebensunfähige Strukturen aussortiert. Das hat oft viele Millionen Jahre, wenn nicht hunderte von Millionen Jahren gedauert. Durch die Transformierung der Realität in das symbolische Denken von Gehirnen, erweitert um Kulturtechniken des Wissens, zuletzt durch Computer, Netzwerke und Datenbanken, hat es der homo sapiens geschafft, sich von diesem sehr langsamen Gang der bisherigen Form der Evolution zu befreien. Im Prinzip kann die Menschheit mit ihren Wissenstechniken die Erde, das Weltall, die Evolution denkerisch nachempfinden, nach analysieren, selber mögliche Zukünfte durchspielen und dann versuchen, durch eigenes Verhalten zu beschleunigen. Wenn nun aber dieses Denken eingebettet ist in eine unbewältigte Struktur von Ängsten, Trieben und Emotionen aus der Frühzeit des Lebens, ohne dass genau dafür neue leistungsfähige Kulturtechniken gefunden wurden, dann wirken all diese neuen analytischen Errungenschaften wie ein Panzer, der von einem kleinen Baby gesteuert wird mitten in einer belebten Stadt. Dies wirkt nicht wie ein Erfolgsrezept.
  8. Da das Universum ohne unsere Zutun entstanden ist, unsere Milchstraße, unser Sonnensystem, unsere Erde, das biologische Leben, wir alle, besteht vielleicht ein wenig Hoffnung, das in diesem – für uns nur schwer zu durchschauenden – Chaos Elemente vorhanden sind, implizite Dynamiken, die wir (dank unseres Selbstabschaltungsvirus?) bislang noch nicht entdeckt haben. Leider ist das, was viele offizielle Religionen als Lösungsmuster propagieren, offensichtlich nicht das, was uns hilft. Die meisten institutionalisierten Religionen erscheinen selbst als Teil des Problems.
  9. Man darf gespannt sein. Ich bin es. Höchstwahrscheinlich werde ich in meinem Leben nicht mehr erleben können, ob und wie die Menschheit ihre eigene Selbstabschaltung in den Griff bekommt.

Einen Überblick zu allen Beträgen in diesem Blog von cagent nach Titeln findet sich HIER.

SEMIOTIK UND KÜNSTLICHE INTELLIGENZ. EIN VIELVERSPRECHENDES TEAM. Nachschrift eines Vortrags an der Universität Passau am 22.Okt.2015

KONTEXT

  1. Im Rahmen der interdisziplinären Ringvorlesung Grenzen (Wintersemester 2015/16) an der Universität Passau (organisiert von der Deutsche Gesellschaft für Semiotik (DGS) e.V. in Kooperation mit der Professur für Neuere deutsche Literaturwissenschaft und Mediensemiotik (Prof. Dr. Jan-Oliver Decker und Dr. Stefan Halft) hatte ich einen Vortrag angenommen mit dem Titel Semiotik und künstliche Intelligenz. Ein vielversprechendes Team. Wie immer halte ich Vorträge immer zu Fragen, die ich bis dahin noch nicht ausgearbeitet hatte und nutze diese Herausforderung, es dann endlich mal zu tun.
  2. Die Atmosphäre beim Vortrag war sehr gut und die anschließenden Gespräche brachte viele interessanten Aspekte zutage, was wir im Rahmen der DGS noch tun sollten/ könnten, um das Thema weiter zu vertiefen.

MOTIV – WARUM DIESES THEMA

  1. Angesichts der vielfältigen Geschichte der Semiotik könnte man natürlich ganze Abende nur mit Geschichten über die Semiotik füllen. Desgleichen im Fall der künstlichen Intelligenz [KI]. Der Auslöser für das Thema war dann auch der spezielle Umstand, dass im Bereich der KI seit etwa den 80iger Jahren des 20.Jahrhunderts in einigen Forschungsprojekten das Thema Semiotik ganz neu auftaucht, und nicht als Randthema sondern verantwortlich für die zentralen Begriffe dieser Forschungen. Gemeint sind die berühmten Roboterexperimente von Luc Steels (ähnlich auch aufgegriffen von anderen, z.B. Paul Vogt) (siehe Quellen unten).
  2. Unter dem Eindruck großer Probleme in der klassischen KI, die aus einem mangelnden direkten Weltbezug resultierten (das sogenannte grounding Problem) versuchte Steels, Probleme des Zeichen- und Sprachlernens mit Hilfe von Robotern zu lösen, die mit ihren Sensoren direkten Kontakt zur empirischen Welt haben und die mit ihren Aktoren auch direkt auf die Welt zurück wirken können. Ihre internen Verarbeitungsprozesse können auf diese Weise abhängig gemacht werden (eine Form von grounding) von der realen Welt (man spricht hier auch von embodied intelligence).
  3. Obwohl Steels (wie auch Vogt) auf ungewöhnliche Weise grundlegende Begriffe der Semiotik einführen, wird dieser semiotische Ansatz aber nicht weiter reflektiert. Auch findet nicht wirklich eine Diskussion des Gesamtansatzes statt, der aus dieser Kombination von Semiotik und Robotik/ KI entsteht bzw. entstehen könnte. Dies ist schade. Der Vortrag Semiotik und künstliche Intelligenz. Ein vielversprechendes Team stellt einen Versuch dar, heraus zu arbeiten, warum die Kombination Semiotik und KI nicht nur Sinn macht, sondern eigentlich das Zeug hätte, zu einem zentralen Forschungsparadigma für die Zukunft zu werden. Tatsächlich liegt dem Emerging Mind Projekt, das hier im Blog schon öfters erwähnt wurde und am 10.November 2015 offiziell eröffnet werden wird, genau dieses Semiotik-KI-Paradigma zugrunde.

WELCHE SEMIOTIK?

  1. Wer Wörterbücher zur Semiotik aufschlägt (z.B. das von Noeth 2000), wird schnell bemerken, dass es eine große Vielfalt von Semiotikern, semiotischen Blickweisen, Methoden und Theorieansätze gibt, aber eben nicht die eine große Theorie. Dies muss nicht unbedingt negativ sein, zumal dann nicht, wenn wir ein reiches Phänomen vor uns haben, das sich eben einer einfachen Theoriebildung widersetzt. Für die Praxis allerdings, wenn man Semiotik in einer realen Theoriebildung einsetzen möchte, benötigt man verbindliche Anknüpfungspunkte, auf die man sich bezieht. Wie kann man solch eine Entscheidung motivieren?
  2. Aus der Sicht der Wissenschaftsphilosophie biete es sich an, die unterschiedlichen Zugangsweisen zur Erfahrung und und Beschreibung von Wirklichkeit als quasi Koordinatensystem zu wählen, diesem einige der bekanntesten semiotischen Ansätze zu zuordnen und dann zu schaue, welche dieser semiotischen Positionen der Aufgabenstellung am nächsten kommen. Von einer Gesamttheorie her betrachtet sind natürlich alle Ansätze wichtig. Eine Auswahl bzw. Gewichtung kann nur pragmatische Gründe haben.

ZUGÄNGE ZUR WIRKLICHKEIT

  1. Grundsätzlich gibt es aus heutiger Sicht zwei Zugangsweisen: über den intersubjektiven (empirischen) Bereich und über das subjektive Erleben.
  2. Innerhalb des empirischen Bereichs gab es lange Zeit nur den Bereich des beobachtbaren Verhaltens [SR] (in der Psychologie) ohne die inneren Zustände des Systems; seit ca. 50-60 Jahren eröffnen die Neurowissenschaften auch einen Zugriff auf die Vorgänge im Gehirn. Will man beide Datenbereiche korrelieren, dann gerät man in das Gebiet der Neuropsychologie [NNSR].
  3. Der Zugang zur Wirklichkeit über den subjektiven Bereich – innerhalb der Philosophie auch als phänomenologischer Zugang bekannt – hat den Vorteil einer Direktheit und Unmittelbarkeit und eines großen Reichtums an Phänomenen.
  4. Was den meisten Menschen nicht bewusst ist, ist die Tatsache, dass die empirischen Phänomene nicht wirklich außerhalb des Bewusstseins liegen. Die Gegenstände in der Zwischenkörperzone (der empirische Bereich) sind als Gegenstände zwar (was wir alle unterstellen) außerhalb des Bewusstseins, aber die Phänomene, die sie im Bewusstsein erzeugen, sind nicht außerhalb, sondern im Bewusstsein. Das, was die empirischen Phänomene [PH_em] von den Phänomenen, unterscheidet, die nicht empirisch [PH_nem] sind, ist die Eigenschaft, dass sie mit etwas in der Zwischenkörperwelt korrespondieren, was auch von anderen Menschen wahrgenommen werden kann. Dadurch lässt sich im Falle von empirischen Phänomenen relativ leicht Einigkeit zwischen verschiedenen Kommunikationsteilnehmern über die jeweils korrespondierenden Gegenstände/ Ereignisse erzielen.
  5. Bei nicht-empirischen Phänomenen ist unklar, ob und wie man eine Einigkeit erzielen kann, da man nicht in den Kopf der anderen Person hineinschauen kann und von daher nie genau weiß, was die andere Person meint, wenn sie etwas Bestimmtes sagt.
  6. Die Beziehung zwischen Phänomenen des Bewusstseins [PH] und Eigenschaften des Gehirns – hier global als NN abgekürzt – ist von anderer Art. Nach heutigem Wissensstand müssen wir davon ausgehen, dass alle Phänomene des Bewusstseins mit Eigenschaften des Gehirns korrelieren. Aus dieser Sicht wirkt das Bewusstsein wie eine Schnittstelle zum Gehirn. Eine Untersuchung der Beziehungen zwischen Tatsachen des Bewusstseins [PH] und Eigenschaften des Gehirns [NN] würde in eine Disziplin fallen, die es so noch nicht wirklich gibt, die Neurophänomenologie [NNPH] (analog zur Neuropsychologie).
  7. Der Stärke des Bewusstseins in Sachen Direktheit korrespondiert eine deutliche Schwäche: im Bewusstsein hat man zwar Phänomene, aber man hat keinen Zugang zu ihrer Entstehung! Wenn man ein Objekt sieht, das wie eine Flasche aussieht, und man die deutsche Sprache gelernt hat, dann wird man sich erinnern, dass es dafür das Wort Flasche gibt. Man konstatiert, dass man sich an dieses Wort in diesem Kontext erinnert, man kann aber in diesem Augenblick weder verstehen, wie es zu dieser Erinnerung kommt, noch weiß man vorher, ob man sich erinnern wird. Man könnte in einem Bild sagen: das Bewusstsein verhält sich hier wie eine Kinoleinwand, es konstatiert, wenn etwas auf der Leinwand ist, aber es weiß vorher nicht, ob etwas auf die Leinwand kommen wird, wie es kommt, und nicht was kommen wird. So gesehen umfasst das Bewusstsein nur einen verschwindend kleinen Teil dessen, was wir potentiell wissen (können).

AUSGEWÄHLTE SEMIOTIKER

  1. Nach diesem kurzen Ausflug in die Wissenschaftsphilosophie und bevor hier einzelne Semiotiker herausgegriffen werden, sei eine minimale Charakterisierung dessen gegeben, was ein Zeichen sein soll. Minimal deshalb, weil alle semiotischen Richtungen, diese minimalen Elemente, diese Grundstruktur eines Zeichens, gemeinsam haben.
  2. Diese Grundstruktur enthält drei Komponenten: (i) etwas, was als Zeichenmaterial [ZM] dienen kann, (ii) etwas, das als Nichtzeichenmaterial [NZM] fungieren kann, und (iii) etwas, das eine Beziehung/ Relation/ Abbildung Z zwischen Zeichen- und Nicht-Zeichen-Material in der Art repräsentiert, dass die Abbildung Z dem Zeichenmaterial ZM nicht-Zeichen-Material NZM zuordnet. Je nachdem, in welchen Kontext man diese Grundstruktur eines Zeichens einbettet, bekommen die einzelnen Elemente eine unterschiedliche Bedeutung.
  3. Dies soll am Beispiel von drei Semiotikern illustriert werden, die mit dem zuvor charakterisierten Zugängen zur Wirklichkeit korrespondieren: Charles William Morris (1901 – 1979), Ferdinand de Saussure (1857-1913) und Charles Santiago Sanders Peirce (1839 – 1914) .
  4. Morris, der jüngste von den Dreien, ist im Bereich eines empirischen Verhaltensansatzes zu positionieren, der dem verhaltensorientierten Ansatz der modernen empirischen Psychologie nahe kommt. In diesem verhaltensbasierten Ansatz kann man die Zeichengrundstruktur so interpretieren, dass dem Zeichenmaterial ZM etwas in der empirischen Zwischenwelt korrespondiert (z.B. ein Laut), dem Nicht-Zeichen-Material NZM etwas anderes in der empirischen Außenwelt (ein Objekt, ein Ereignis, …), und die Zeichenbeziehung Z kommt nicht in der empirischen Welt direkt vor, sondern ist im Zeichenbenutzer zu verorten. Wie diese Zeichenbeziehung Z im Benutzer tatsächlich realisiert ist, war zu seiner Zeit empirische noch nicht zugänglich und spielt für den Zeichenbegriff auch weiter keine Rolle. Auf der Basis von empirischen Verhaltensdaten kann die Psychologie beliebige Modellannahmen über die inneren Zustände des handelnden Systems machen. Sie müssen nur die Anforderung erfüllen, mit den empirischen Verhaltensdaten kompatibel zu sein. Ein halbes Jahrhundert nach Morris kann man anfangen, die psychologischen Modellannahmen über die Systemzustände mit neurowissenschaftlichen Daten abzugleichen, sozusagen in einem integrierten interdisziplinären neuropsychologischen Theorieansatz.
  5. Saussure, der zweit Jüngste von den Dreien hat als Sprachwissenschaftler mit den Sprachen primär ein empirisches Objekt, er spricht aber in seinen allgemeinen Überlegungen über das Zeichen in einer bewusstseinsorientierten Weise. Beim Zeichenmaterial ZM spricht er z.B. von einem Lautbild als einem Phänomen des Bewusstseins, entsprechend von dem Nicht-Zeichenmaterial auch von einer Vorstellung im Bewusstsein. Bezüglich der Zeichenbeziehung M stellt er fest, dass diese außerhalb des Bewusstseins liegt; sie wird vom Gehirn bereit gestellt. Aus Sicht des Bewusstseins tritt diese Beziehung nur indirekt in Erscheinung.
  6. Peirce, der älteste von den Dreien, ist noch ganz in der introspektiven, phänomenologischen Sicht verankert. Er verortet alle drei Komponenten der Zeichen-Grundstruktur im Bewusstsein. So genial und anregend seine Schriften im einzelnen sind, so führt diese Zugangsweise über das Bewusstsein zu großen Problemen in der Interpretation seiner Schriften (was sich in der großen Bandbreite der Interpretationen ausdrückt wie auch in den nicht selten geradezu widersprüchlichen Positionen).
  7. Für das weitere Vorgehen wird in diesem Vortrag der empirische Standpunkt (Verhalten + Gehirn) gewählt und dieser wird mit der Position der künstlichen Intelligenz ins Gespräch gebracht. Damit wird der direkte Zugang über das Bewusstsein nicht vollständig ausgeschlossen, sondern nur zurück gestellt. In einer vollständigen Theorie müsste man auch die nicht-empirischen Bewusstseinsdaten integrieren.

SPRACHSPIEL

  1. Ergänzend zu dem bisher Gesagten müssen jetzt noch drei weitere Begriffe eingeführt werden, um alle Zutaten für das neue Paradigma Semiotik & KI zur Verfügung zu haben. Dies sind die Begriffe Sprachspiel, Intelligenz sowie Lernen.
  2. Der Begriff Sprachspiel wird auch von Luc Steels bei seinen Roboterexperimenten benutzt. Über den Begriff des Zeichens hinaus erlaubt der Begriff des Sprachspiels den dynamischen Kontext des Zeichengebrauchs besser zu erfassen.
  3. Steels verweist als Quelle für den Begriff des Sprachspiels auf Ludwig Josef Johann Wittgenstein (1889-1951), der in seiner Frühphase zunächst die Ideen der modernen formalen Logik und Mathematik aufgriff und mit seinem tractatus logico philosophicus das Ideal einer am logischen Paradigma orientierten Sprache skizzierte. Viele Jahre später begann er neu über die normale Sprache nachzudenken und wurde sich selbst zum schärfsten Kritiker. In jahrelangen Analysen von alltäglichen Sprachsituationen entwickelte er ein facettenreiches Bild der Alltagssprache als ein Spiel, in dem Teilnehmer nach Regeln Zeichenmaterial ZM und Nicht-Zeichen-Material NZM miteinander verknüpfen. Dabei spielt die jeweilige Situation als Kontext eine Rolle. Dies bedeutet, das gleiche Zeichenmaterial kann je nach Kontext unterschiedlich wirken. Auf jeden Fall bietet das Konzept des Sprachspiels die Möglichkeit, den ansonsten statischen Zeichenbegriff in einen Prozess einzubetten.
  4. Aber auch im Fall des Sprachspielkonzepts benutzt Steels zwar den Begriff Sprachspiel, reflektiert ihn aber nicht soweit, dass daraus ein explizites übergreifendes theoretisches Paradigma sichtbar wird.
  5. Für die Vision eines neuen Forschungsparadigmas Semiotik & KI soll also in der ersten Phase die Grundstruktur des Zeichenbegriffs im Kontext der empirischen Wissenschaften mit dem Sprachspielkonzept von Wittgenstein (1953) verknüpft werden.

INTELLIGENZ

  1. Im Vorfeld eines Workshops der Intelligent Systems Division des NIST 2000 gab es eine lange Diskussion zwischen vielen Beteiligten, wie man denn die Intelligenz von Maschinen messen sollte. In meiner Wahrnehmung verhedderte sich die Diskussion darin, dass damals nach immer neuen Klassifikationen und Typologien für die Architektur der technischen Systeme gesucht wurde, anstatt das zu tun, was die Psychologie schon seit fast 100 Jahren getan hatte, nämlich auf das Verhalten und dessen Eigenschaften zu schauen. Ich habe mich in den folgenden Jahren immer wieder mit der Frage des geeigneten Standpunkts auseinandergesetzt. In einem Konferenzbeitrag von 2010 (zusammen mit anderen, insbesondere mit Louwrence Erasmus) habe ich dann dafür argumentiert, das Problem durch Übernahme des Ansatzes der Psychologie zu lösen.
  2. Die Psychologie hatte mit Binet (1905), Stern (1912 sowie Wechsler (1939) eine grundsätzliche Methode gefunden hatte, die Intelligenz, die man nicht sehen konnte, indirekt durch Rückgriff auf Eigenschaften des beobachtbaren Verhaltens zu messen (bekannt duch den Begriff des Intelligenz-Quotienten, IQ). Die Grundidee bestand darin, dass zu einer bestimmten Zeit in einer bestimmten Kultur bestimmte Eigenschaften als charakteristisch für ein Verhalten angesehen werden, das man allgemein als intelligent bezeichnen würde. Dies impliziert zwar grundsätzlich eine gewisse Relativierung des Begriffs Intelligenz (was eine Öffnung dahingehend impliziert, dass zu anderen Zeiten unter anderen Umständen noch ganz neue Eigenschaftskomplexe bedeutsam werden können!), aber macht Intelligenz grundsätzlich katalogisierbar und damit messbar.
  3. Ein Nebeneffekt der Bezugnahme auf Verhaltenseigenschaften findet sich in der damit möglichen Nivellierung der zu messenden potentiellen Strukturen in jenen Systemen, denen wir Intelligenz zusprechen wollen. D.h. aus Sicht der Intelligenzmessung ist es egal ob das zu messende System eine Pflanze, ein Tier, ein Mensch oder eine Maschine ist. Damit wird – zumindest im Rahmen des vorausgesetzten Intelligenzbegriffs – entscheidbar, ob und in welchem Ausmaß eine Maschine möglicherweise intelligent ist.
  4. Damit eignet sich dieses Vorgehen auch, um mögliche Vergleiche zwischen menschlichem und maschinellem Verhalten in diesem Bereich zu ermöglichen. Für das Projekt des Semiotk & KI-Paradigmas ist dies sehr hilfreich.

LERNEN

  1. An dieser Stelle ist es wichtig, deutlich zu machen, dass Intelligenz nicht notwendigerweise ein Lernen impliziert und Lernen nicht notwendigerweise eine Intelligenz! Eine Maschine (z.B. ein schachspielender Computer) kann sehr viele Eigenschaften eines intelligenten Schachspielers zeigen (bis dahin, dass der Computer Großmeister oder gar Weltmeister besiegen kann), aber sie muss deswegen nicht notwendigerweise auch lernfähig sein. Dies ist möglich, wenn erfahrene Experten hinreichend viel Wissen in Form eines geeigneten Programms in den Computer eingeschrieben haben, so dass die Maschine aufgrund dieses Programms auf alle Anforderungen sehr gut reagieren kann. Von sich aus könnte der Computer dann nicht dazu lernen.
  2. Bei Tieren und Menschen (und Pflanzen?) gehen wir von einer grundlegenden Lernfähigkeit aus. Bezogen auf das beobachtbare Verhalten können wir die Fähigkeit zu Lernen dadurch charakterisieren, dass ein System bis zu einem Zeitpunkt t bei einem bestimmten Reiz s nicht mit einem Verhalten r antwortet, nach dem Zeitpunkt t aber dann plötzlich doch, und dieses neue Verhalten über längere Zeit beibehält. Zeigt ein System eine solche Verhaltensdynamik, dann darf man unterstellen, dass das System in der Lage ist, seine inneren Zustände IS auf geeignete Weise zu verändern (geschrieben: phi: I x IS —> IS x O (mit der Bedeutung I := Input (Reize, Stimulus s), O := Output (Verhaltensantworten, Reaktion r), IS := interne Zustände, phi := Name für die beobachtbare Dynamik).
  3. Verfügt ein System über solch eine grundlegende Lernfähigkeit (die eine unterschiedlich reiche Ausprägung haben kann), dann kann es sich im Prinzip alle möglichen Verhaltenseigenschaften aneignen/ erwerben/ erlernen und damit im oben beschriebenen Sinne intelligent werden. Allerdings gibt es keine Garantie, dass eine Lernfähigkeit notwendigerweise zu einer bestimmten Intelligenz führen muss. Viele Menschen, die die grundsätzliche Fähigkeit besitzen, Schachspielen oder Musizieren oder Sprachen zu lernen,  nutzen diese ihre Fähigkeiten niemals aus; sie verzichten damit auf Formen intelligenten Verhaltens, die ihnen aber grundsätzlich offen stehen.
  4. Wir fordern also, dass die Lernfähigkeit Teil des Semiotik & KI-Paradigmas sein soll.

LERNENDE MASCHINEN

  1. Während die meisten Menschen heute Computern ein gewisses intelligentes Verhalten nicht absprechen würden, sind sie sich mit der grundlegenden Lernfähigkeit unsicher. Sind Computer im echten Sinne (so wie junge Tiere oder menschliche Kinder) lernfähig?
  2. Um diese Frage grundsätzlich beantworten zu können, müsste man ein allgemeines Konzept von einem Computer haben, eines, das alle heute und in der Zukunft existierende und möglicherweise in Existenz kommende Computer in den charakteristischen Eigenschaften erschöpfend beschreibt. Dies führt zur Vor-Frage nach dem allgemeinsten Kriterium für Computer.
  3. Historisch führt die Frage eigentlich direkt zu einer Arbeit von Turing (1936/7), in der er den Unentscheidbarkeitsbeweis von Kurt Gödel (1931) mit anderen Mitteln nochmals nachvollzogen hatte. Dazu muss man wissen, dass es für einen formal-logischen Beweis wichtig ist, dass die beim Beweis zur Anwendung kommenden Mittel, vollständig transparent sein müssen, sie müssen konstruktiv sein, was bedeutet, sie müssen endlich sein oder effektiv berechenbar. Zum Ende des 19.Jh und am Anfang des 20.Jh gab es zu dieser Fragestellung eine intensive Diskussion.
  4. Turing wählte im Kontrast zu Gödel keine Elemente der Zahlentheorie für seinen Beweis, sondern nahm sich das Verhalten eines Büroangestellten zum Vorbild: jemand schreibt mit einem Stift einzelne Zeichen auf ein Blatt Papier. Diese kann man einzeln lesen oder überschreiben. Diese Vorgabe übersetze er in die Beschreibung einer möglichst einfachen Maschine, die ihm zu Ehren später Turingmaschine genannt wurde (für eine Beschreibung der Elemente einer Turingmaschine siehe HIER). Eine solche Turingmaschine lässt sich dann zu einer universellen Turingmaschine [UTM] erweitern, indem man das Programm einer anderen (sekundären) Turingmaschine auf das Band einer primären Turingmaschine schreibt. Die primäre Turingmaschine kann dann nicht nur das Programm der sekundären Maschine ausführen, sondern kann es auch beliebig abändern.
  5. In diesem Zusammenhang interessant ist, dass der intuitive Begriff der Berechenbarkeit Anfang der 30ige Jahre des 20.Jh gleich dreimal unabhängig voneinander formal präzisiert worden ist (1933 Gödel und Herbrand definierten die allgemein rekursiven Funktionen; 1936 Church den Lambda-Kalkül; 1936 Turing die a-Maschine für ‚automatische Maschine‘, später Turing-Maschine). Alle drei Formalisierungen konnten formal als äquivalent bewiesen werden. Dies führte zur sogenannten Church-Turing These, dass alles, was effektiv berechnet werden kann, mit einem dieser drei Formalismen (also auch mit der Turingmaschine) berechnet werden kann. Andererseits lässt sich diese Church-Turing These selbst nicht beweisen. Nach nunmehr fast 80 Jahren nimmt aber jeder Experte im Feld an, dass die Church-Turing These stimmt, da bis heute keine Gegenbeispiele gefunden werden konnten.
  6. Mit diesem Wissen um ein allgemeines formales Konzept von Computern kann man die Frage nach der generellen Lernfähigkeit von Computern dahingehend beantworten, dass Computer, die Turing-maschinen-kompatibel sind, ihre inneren Zustände (im Falle einer universellen Turingmaschine) beliebig abändern können und damit die Grundforderung nach Lernfähigkeit erfüllen.

LERNFÄHIGE UND INTELLIGENTE MASCHINEN?

  1. Die Preisfrage stellt sich, wie eine universelle Turingmaschine, die grundsätzlich lernfähig ist, herausfinden kann, welche der möglichen Zustände interessant genug sind, um damit zu einem intelligenten Verhalten zu kommen?
  2. Diese Frage nach der möglichen Intelligenz führt zur Frage der verfügbaren Kriterien für Intelligenz: woher soll eine lernfähige Maschine wissen, was sie lernen soll?
  3. Im Fall biologischer Systeme wissen wir mittlerweile, dass die lernfähigen Strukturen als solche dumm sind, dass aber durch die schiere Menge an Zufallsexperimenten ein Teil dieser Experimente zu Strukturen geführt hat, die bzgl. bestimmter Erfolgskriterien besser waren als andere. Durch die Fähigkeit, die jeweils erfolgreichen Strukturen in Form von Informationseinheiten zu speichern, die dann bei der nächsten Reproduktion erinnert werden konnten, konnten sich die relativen Erfolge behaupten.
  4. Turing-kompatible Computer können speichern und kodieren, sie brauchen allerdings noch Erfolgskriterien, um zu einem zielgerichtete Lernen zu kommen.

LERNENDE SEMIOTISCHE MASCHINEN

  1. Mit all diesen Zutaten kann man jetzt lernende semiotische Maschinen konstruieren, d.h. Maschinen, die in der Lage sind, den Gebrauch von Zeichen im Kontext eines Prozesses, zu erlernen. Das dazu notwendige Verhalten gilt als ein Beispiel für intelligentes Verhaltens.
  2. Es ist hier nicht der Ort, jetzt die Details solcher Sprach-Lern-Spiele auszubreiten. Es sei nur soviel gesagt, dass man – abschwächend zum Paradigma von Steels – hier voraussetzt, dass es schon mindestens eine Sprache L und einen kundigen Sprachteilnehmer gibt (der Lehrer), von dem andere Systeme (die Schüler), die diese Sprache L noch nicht kennen, die Sprache L lernen können. Diese Schüler können dann begrenzt neue Lehrer werden.
  3. Zum Erlernen (Training) einer Sprache L benötigt man einen definierten Kontext (eine Welt), in dem Lehrer und Schüler auftreten und durch Interaktionen ihr Wissen teilen.
  4. In einer Evaluationsphase (Testphase), kann dann jeweils überprüft werden, ob die Schüler etwas gelernt haben, und wieviel.
  5. Den Lernerfolge einer ganzen Serie von Lernexperimenten (ein Experiment besteht aus einem Training – Test Paar) kann man dann in Form einer Lernkurve darstellen. Diese zeigt entlang der Zeitachse, ob die Intelligenzleistung sich verändert hat, und wie.
  6. Gestaltet man die Lernwelt als eine interaktive Softwarewelt, bei der Computerprogramme genauso wie Roboter oder Menschen mitwirken können, dann kann man sowohl Menschen als Lehrer benutzen wie auch Menschen im Wettbewerb mit intelligenten Maschinen antreten lassen oder intelligente Maschinen als Lehrer oder man kann auch hybride Teams formen.
  7. Die Erfahrungen zeigen, dass die Konstruktion von intelligenten Maschinen, die menschenähnliche Verhaltensweisen lernen sollen, die konstruierenden Menschen dazu anregen, ihr eigenes Verhalten sehr gründlich zu reflektieren, nicht nur technisch, sondern sogar philosophisch.

EMERGING MIND PROJEKT

  1. Die zuvor geschilderten Überlegungen haben dazu geführt, dass ab 10.November 2015 im INM Frankfurt ein öffentliches Forschungsprojekt gestartet werden soll, das Emerging Mind Projekt heißt, und das zum Ziel hat, eine solche Umgebung für lernende semiotische Maschinen bereit zu stellen, mit der man solche semiotischen Prozesse zwischen Menschen und lernfähigen intelligenten Maschinen erforschen kann.

QUELLEN

  • Binet, A., Les idees modernes sur les enfants, 1909
  • Doeben-Henisch, G.; Bauer-Wersing, U.; Erasmus, L.; Schrader,U.; Wagner, W. [2008] Interdisciplinary Engineering of Intelligent Systems. Some Methodological Issues. Conference Proceedings of the workshop Modelling Adaptive And Cognitive Systems (ADAPCOG 2008) as part of the Joint Conferences of SBIA’2008 (the 19th Brazilian Symposium on Articial Intelligence); SBRN’2008 (the 10th Brazilian Symposium on Neural Networks); and JRI’2008 (the Intelligent Robotic Journey) at Salvador (Brazil) Oct-26 – Oct-30(PDF HIER)
  • Gödel, K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, In: Monatshefte Math.Phys., vol.38(1931),pp:175-198
  • Charles W. Morris, Foundations of the Theory of Signs (1938)
  • Charles W. Morris (1946). Signs, Language and Behavior. New York: Prentice-Hall, 1946. Reprinted, New York: George Braziller, 1955. Reprinted in Charles Morris, Writings on the General Theory of Signs (The Hague: Mouton, 1971), pp. 73-397. /* Charles William Morris (1901-1979) */
  • Charles W. Morris, Signication and Signicance (1964)
  • NIST: Intelligent Systems Division: http://www.nist.gov/el/isd/
  • Winfried Noth: Handbuch der Semiotik. 2., vollständig neu bearbeitete Auflage. Metzler, Stuttgart/Weimar 2000
  • Charles Santiago Sanders Peirce (1839-1914) war ein US-amerikanischer Mathematiker, Philosoph und Logiker. Peirce gehort neben William James und John Dewey zu den maßgeblichen Denkern des Pragmatismus; außerdem gilt er als Begründer der modernen Semiotik. Zur ersten Einführung siehe: https://de.wikipedia.org/wiki/Charles Sanders Peirce Collected Papers of Charles Sanders Peirce. Bände I-VI hrsg. von Charles Hartshorne und Paul Weiss, 1931{1935; Bände VII-VIII hrsg. von Arthur W. Burks 1958. University Press, Harvard, Cambridge/Mass. 1931{1958
  • Writings of Charles S. Peirce. A Chronological Edition. Hrsg. vom Peirce Edition Project. Indiana University Press,Indianapolis, Bloomington 1982. (Bisher Bände 1{6 und 8, geplant 30 Bände)
  • Saussure, F. de. Grundfragen der Allgemeinen Sprachwissenschaft, 2nd ed., German translation of the original posthumously publication of the Cours de linguistic general from 1916 by H.Lommel, Berlin: Walter de Gruyter & Co., 1967
  • Saussure, F. de. Course in General Linguistics, English translation of the original posthumously publication of the Cours de linguistic general from 1916, London: Fontana, 1974
  • Saussure, F. de. Cours de linguistique general, Edition Critique Par Rudolf Engler, Tome 1,Wiesbaden: Otto Harrassowitz, 1989 /*This is the critical edition of the dierent sources around the original posthumously publication of the Cours de linguistic general from 1916. */
  • Steels, Luc (1995): A Self-Organizing Spatial Vocabulary. Articial Life, 2(3), S. 319-332
  • Steels, Luc (1997): Synthesising the origins of language and meaning using co-evolution, self-organisation and level formation. In: Hurford, J., C.Knight und M.Studdert-Kennedy (Hrsg.). Edinburgh: Edinburgh Univ. Press.

  • Steels, Luc (2001): Language Games for Autonomous Robots. IEEE Intelligent Systems, 16(5), S. 16-22. Steels, Luc (2003):

  • Evolving grounded Communication for Robots. Trends in Cognitive Science, 7(7), S. 308-312.

  • Steels, Luc (2003): Intelligence with Representation. Philosophical Transactions of the Royal Society A, 1811(361), S. 2381-2395.

  • Steels, Luc (2008): The symbol grounding problem has been solved, so what’s next?. In M. de Vega, Symbols and Embodiment: Debates on Meaning and Cognition. Oxford: Oxford University Press, S. 223-244.
  • Steels, Luc (2012): Grounding Language through Evolutionary Language Games. In: Language Grounding in Robots. Springer US, S. 1-22.

  • Steels, Luc (2015), The Talking Heads experiment: Origins of words and meanings, Series: Computational Models of Language Evolution 1. Berlin: Language Science Press.
  • Stern, W., Die psychologischen Methoden der Intelligenzprüfung und deren Anwendung an Schulkindern, Leipzig: Barth, 1912

  • Turing, A. M. On Computable Numbers with an Application to the Entscheidungsproblem. In: Proc. London Math. Soc., Ser.2, vol.42(1936), pp.230-265; received May 25, 1936; Appendix added August 28; read November 12, 1936; corr. Ibid. vol.43(1937), pp.544-546. Turing’s paper appeared in Part 2 of vol.42 which was issued in December 1936 (Reprint in M.DAVIS 1965, pp.116-151; corr. ibid. pp.151-154).(an online version at: http://www.comlab.ox.ac.uk/activities/ieg/elibrary/sources/tp2-ie.pdf, last accesss Sept-30, 2012)

  • Turing, A.M. Computing machinery and intelligence. Mind, 59, 433-460. 1950

  • Turing, A.M.; Intelligence Service. Schriften, ed. by Dotzler, B.; Kittler, F.; Berlin: Brinkmann & Bose, 1987, ISBN 3-922660-2-3

  • Vogt, P. The physical symbol grounding problem, in: Cognitive Systems Research, 3(2002)429-457, Elsevier Science B.V.
  • Vogt, P.; Coumans, H. Investigating social interaction strategies for bootstrapping lexicon development, Journal of Articial Societies and Social Simulation 6(1), 2003

  • Wechsler, D., The Measurement of Adult Intelligence, Baltimore, 1939, (3. Auage 1944)

  • Wittgenstein, L.; Tractatus Logico-Philosophicus, 1921/1922 /* Während des Ersten Weltkriegs geschrieben, wurde das Werk 1918 vollendet. Es erschien mit Unterstützung von Bertrand Russell zunächst 1921 in Wilhelm Ostwalds Annalen der Naturphilosophie. Diese von Wittgenstein nicht gegengelesene Fassung enthielt grobe Fehler. Eine korrigierte, zweisprachige Ausgabe (deutsch/englisch) erschien 1922 bei Kegan Paul, Trench, Trubner und Co. in London und gilt als die offizielle Fassung. Die englische Übersetzung stammte von C. K. Ogden und Frank Ramsey. Siehe einführend Wikipedia-DE: https://de.wikipedia.org/wiki/Tractatus logicophilosophicus*/

  • Wittgenstein, L.; Philosophische Untersuchungen,1936-1946, publiziert 1953 /* Die Philosophischen Untersuchungen sind Ludwig Wittgensteins spätes, zweites Hauptwerk. Es übten einen außerordentlichen Einfluss auf die Philosophie der 2. Hälfte des 20. Jahrhunderts aus; zu erwähnen ist die Sprechakttheorie von Austin und Searle sowie der Erlanger Konstruktivismus (Paul Lorenzen, Kuno Lorenz). Das Buch richtet sich gegen das Ideal einer logik-orientierten Sprache, die neben Russell und Carnap Wittgenstein selbst in seinem ersten Hauptwerk vertreten hatte. Das Buch ist in den Jahren 1936-1946 entstanden, wurde aber erst 1953, nach dem Tod des Autors, veröffentlicht. Siehe einführend Wikipedia-DE: https://de.wikipedia.org/wiki/Philosophische Untersuchungen*/

Eine Übersicht über alle Blogeinträge des Autors cagent nach Titeln findet sich HIER

U.ACKERMANN: DIE DIGITALE REVOLUTION – Eine Herausforderung für die Freiheit – Kurzbesprechung

U.Ackermann (2014), DIE DIGITALE REVOLUTION – Eine Herausforderung für die Freiheit, in: U.Ackermann (Hg.), Freiheitsindex Deutschland 2014 des John Stuart Mill Instituts für Freiheitsforschung, Frankfurt am Main: Humanities online

KONTEXT

1. In diesem Blog wurde schon mehrfach das Thema Neue Technologien und deren Auswirkungen auf die Gesellschaft angesprochen. Das kleine Büchlein vom John Start Mill Institut unter der Leitung von Ulrike Ackermann passt sehr gut in diese Thematik.

ACKERMANN – FREIHEIT

2. Insbesondere der Beitrag der Herausgeberin Ulricke Ackermann fällt – im Vergleich zu vielen anderen Publikationen zu diesem Thema – sehr positiv auf. Das Freiheitsthema wird sehr differenziert heruntergebrochen auf die großen Dimensionen Individuum, Alltag und Politik, und das Ineinanderspiel von realer und virtueller (digitaler) Welt wird sachkundig an vielen Beispielen vorgestellt und kritisch gewürdigt.

3. Fernab einer einfachen Schwarz-Weiß-Malerei findet sie sowohl Worte für die unbestreitbaren neuen Möglichkeiten und Vorzüge, die die neue digitale Welt auf allen Ebenen eröffnet, deutet aber zugleich auch hin auf die unübersehbaren Risiken und schleichenden Tendenzen zu einer immer größeren Vereinnahmung des einzelnen auf allen Ebenen.

4. In der europäischen Aufklärungstradition und im Kontext von Menschenrechten und Demokratien wurde die konstitutive Bedeutung einer realen Privatheit für das Leben einer Demokratie, zwar nur sehr langsam, aber dann doch mit großer Entschiedenheit erkannt und in der Gesetzgebung verankert. Durch den immer leichteren Zugang auf private Daten durch die modernen Technologien und durch neue globale digitale Geschäftskonzepte, in denen die kostenlose Nutzung gegen höchst intime Datenausbeutung getauscht werden, gekoppelt mit der als ‚Fürsorge‘ getarnte Datensammlung von Behörden, geraten wir aber in eine Situation, in der die hochgeschätzte Privatheit mit ihren speziellen Freiheitsrechten sich mehr und mehr buchstäblich in Luft auflöst. Während die europäischen Institutionen den Eindruck erwecken, die Idee der Privat hochhalten zu wollen, verursachen die deutschen Regierungsvertreter einen Eindruck, als ob sie – entgegen offiziellen politischen Verlautbarungen – real eher eine starke Liberalisierungsformel (sprich: eine Auflösung der Privatheit) vertreten.

5. Die Fülle der Details im Artikel zeugen von großer Sachkenntnis und können hier nur erwähnt werden.

DISKUSSION

6. Eigentlich kann man dem Artikel nur Positives abgewinnen. Dennoch bleiben wichtige Fragen offen, denen im Rahmen dieses Blogs versucht wird, nach zu gehen.

7. Die Diskussion im Beitrag von Ulrike Ackermann folgt den großen Linien der europäischen Aufklärung und den aktuellen Werten der Menschenrechte und den grundlegenden Verfassungstexten in Deutschland und Europa. In diesem Rahmen ist die Argumentation schlüssig.

8. Einem aufmerksamen Betrachter der Menschenrechts- und Grundgesetzdiskussion (vgl. die 11-teilig Diskussion zum Begriff ‚Menschenwürde‘ im Kontext des gleichnamigen Buches von Paul Tiedemann in diesem Blog) wird aber nicht entgangen sein, dass sich die aktuellen Interpretationen dieser Werte im Bereich der Rechtsexperten eher in die Richtung bewegt, dass eine klare Begründung mindestens schwierig, wenn nicht gar unmöglich wird. Selbst ein Paul Tiedemann, dem die Bewahrung der Menschenwürde ein großes Anliegen ist, muss für die Begründung seines Standpunktes zu Argumentationen greifen, die alles andere als selbsterklärend sind.

9. Erweitert man den Blick auf die Entwicklung des Menschenbildes in den Naturwissenschaften und den technologienahen Bereichen, dann muss man konstatieren, dass die Naturwissenschaften, sofern sie überhaupt einen Bezug zum Menschenbild nehmen, den Menschen in keinster Weise so sehen, wie Grundgesetz und Menschenrechte dies voraussetzen. In den Naturwissenschaften ist der Mensch der Aufklärung praktisch verschwunden: eine Ansammlung von Molekülen, Atomen, Teilchen ohne jegliche spezifische Bedeutung und damit ohne jegliche Werte.

10. Bedenkt man, dass diese Verschiebungen im Weltbild zusätzlich einhergehen mit einem dramatischen Abbau von geistes- und sozialwissenschaftlichen Lehrstühlen und Standards, dann werden hier auch mögliche Quellen alternativer kritischer Betrachtungsweisen schlichtweg ausgelöscht.

11. Ein weiteres Moment ist die ‚Form‘ der Technologie. Mit dem Aufkommen von ‚intelligenten‘ Maschinen erleben wir nicht nur eine weitere industrielle Revolution, die bisherige Industrien und Arbeitswelten bedrohen, sondern wir erleben einen Frontalangriff auf alsbald scheinbar alle Fähigkeiten, die bislang als ‚typisch Menschlich‘ galten. Was dies für die bisherigen Gesellschaften bedeuten, ist schwer voraussagbar. Auf keinen Fall kann es ein einfaches ‚weiter so‘ wie bisher geben.

12. Sieht man diese neuen technologisches Möglichkeiten mit der simultanen Erosion des aufklärerischen Menschenbildes (repräsentiert in den Menschenrechten) und der Tendenz selbst demokratischer Regierungen, die Besonderheit des Menschen ‚zu opfern‘, dann kann man erahnen, dass die bisherige (‚klassische‘) Freiheitsdiskussion erheblich ausgeweitet und radikalisiert werden muss. Der Mensch selbst steht zur Debatte in einer Weise, wie wir es noch nie erlebt haben.

13. Genuine ‚Anwälte‘ des Menschen sind aktuell schwer identifizierbar. Die klassischen Offenbarungsreligionen taugen hier – wie schon in der Vergangenheit – nur sehr begrenzt. Ihre Menschenbilder sind bis heute zu stark mit vorwissenschaftlichen Bildern durchsetzt.

 

Einen Überblick über alle Blogeinträge von cagent nach Titeln findet sich HIER: cagent.

INTELLIGENZ, LERNEN, IMPLIZITE WERTE: ZUR BIOTECHNOLOGISCHEN KREATIVITÄT VERURTEILT

EINFÜHRUNG

1. Momentan kreuzen wieder einmal verschiedene Themen ihre Bahnen und die folgenden Zeilen stellen den Versuch dar, einige Aspekt davon festzuhalten.

2. Ein Thema rührt von dem Vortrag am 19.Mai her, bei dem es darum ging, die scheinbare Einfachheit, Begrenztheit und Langsamkeit von uns Menschen angesichts der aktuell rasant erscheinenden Entwicklungen in einen größeren Kontext einzuordnen, in den Kontext der biologischen Entwicklung, und dabei aufzuzeigen, welch fantastisches ‚Produkt‘ der homo sapiens im Kontext des biologischen Lebens darstellt und dass unsere Gegenwart nicht als ein ‚Endpunkt‘ misszuverstehen ist, sondern als eine hochaktive Transitzone in eine Zukunft, die keiner wirklich kennt.

3. Ein anderes Thema rührt her von den neuen Technologien der Informationstheorie, Informatik, Robotik, die unser Leben immer mehr begleiten, umhüllen, durchtränken in einer Weise, die unheimlich werden kann. In den Science-Fiction Filmen der letzten 40-50 Jahren werden die ‚intelligenten Maschinen‘ mehr und mehr zu den neuen Lichtgestalten während der Mensch verglichen mit diesen Visionen relativ ‚alt‘ aussieht.

4. Während viele – die meisten? – dem Akteur homo sapiens momentan wenig Aufmerksamkeit zu schenken scheinen, auf ihn keine ernsthafte Wetten abschließen wollen, traut man den intelligenten Maschinen scheinbar alles zu.

5. Ich selbst liefere sogar (neue) Argumente (in vorausgehenden Artikeln), warum eine Technologie der künstlichen Intelligenz ‚prinzipiell‘ alles kann, was auch biologische Systeme können.

6. In den Diskussionen rund um dieses Thema bin ich dabei verstärkt auf das Thema der ‚impliziten Werte‘ gestoßen, die innerhalb eines Lernprozesses Voraussetzung dafür sind, dass das Lernen eine ‚Richtung‘ nehmen kann. Dieser Punkt soll hier etwas ausführlicher diskutiert werden.

INTELLIGENZ

7. Eine Diskussion über die Möglichkeit von Intelligenz (bzw. dann sogar vielleicht einer Superintelligenz) müsste klären, wie man überhaupt Intelligenz definieren will. Was ‚Intelligenz an sich‘ sein soll, das weiß bis heute niemand. Die einzigen, die seit ca. 100 Jahren einen empirisch brauchbaren Intelligenzbegriff entwickelt haben, das sind die Psychologen. Sie definieren etwas, was niemand kennt, die ‚Intelligenz‘, ganz pragmatisch über einen Katalog von Aufgaben, die ein Kind in einem bestimmten Alter in einer bestimmten Gesellschaft so lösen kann, dass man dieses Kind in dieser Gesellschaft als ‚intelligent‘ bezeichnen würde. Bei einem Menschen mit einem anderen Alter aus einer anderen Gesellschaft kann dieser Aufgabenkatalog ganz andere Ergebnisse liefern.

8. Interessant ist in diesem Zusammenhang, dass Kinder, denen man aufgrund ihres vermessenen Verhaltens einen hohen Intelligenzwert zugeschrieben hat, bei Langzeituntersuchung auch überdurchschnittlich ‚erfolgreich‘ (eine in sich nicht einfache Kategorie) waren. Daraus hat man die Arbeitshypothese abgeleitet, dass das messbare intelligente Verhalten ein Indikator für bestimmte ‚interne Strukturen im Kind‘ ist, die dafür verantwortlich sind, dass das Kind solch ein Verhalten hervorbringen kann. Und es sind genau diese postulierten Ermöglichungsstrukturen für de Intelligenz, die im Kind wirksam sein sollen, wenn es im Laufe seines Lebens ‚erfolgreich‘ ist.

9. Die Ingenieurwissenschaften und die Informatik benutzen Begriffe wie ’smart‘ und ‚intelligent‘ heute fast inflationär, ohne sich in der Regel die Mühe zu machen, ihre technischen Intelligenzbegriffe mit dem psychologischen Intelligenzbegriff abzugleichen. Dies führt zu großen Begriffsverwirrungen und man kann im Falle der technischen Intelligenz in der Regel nicht sagen, in welchem Sinne ein Interface oder eine Maschine ‚intelligent‘ ist, wenn sie technisch ’smart‘ oder ‚intelligent‘ genannt wird.

10. Der berühmt Turing-Test zur Feststellung, ob eine technische Vorrichtung sich in ihrem textbasierten Dialog mit einem Menschen für den beteiligten Menschen als ununterscheidbar zu einem Menschen darstellen kann, ist nach den Standards der Psychologie wenig brauchbar. Die endlosen Diskussionen um den Turing-Test dokumentieren für mich die immer noch anhaltende methodische Verwirrung, die sich im Umfeld des technischen Intelligenzbegriffs findet. Das hohe Preisgeld für den Turing-Test kann die evidenten inhärenten Schwächen des Tests nicht beheben.

11. Wenn wir also über intelligente (oder gar super intelligente) Maschinen reden wollen, sollten wir uns an bekannte, empirisch nachprüfbare und vergleichbare Standards halten, und dies sind die der empirischen Psychologie. Das gleiche gilt auch für den nächsten zentralen Begriff, dem des ‚Lernens‘.

LERNEN

12. Auch bei dem Begriff ‚Lernen‘ finden wir wieder einen inflationären Sprachgebrauch von ‚Lernen‘ in der Informatik, der in keiner Weise mit dem empirischen Begriff des Lernens in den verhaltensorientierten Wissenschaften abgestimmt ist. Was eine ‚intelligente‘ Maschine der Informatik im Vergleich zu biologischen Systemen darstellen soll, ist im allgemeinen Fall unklar. An konkreten Beispielen wie ’schachspielender Computer, ‚Routenplanung‘ für eine Reise, ‚Quizfragen beantworten‘, ‚Gegenstände erkennen‘, gibt es zwar partielle verhaltensorientierte Beschreibungen von ‚maschineller Intelligenz‘, diese sind aber nicht in eine allgemeine verhaltensorientierte Theorie ‚intelligenter Maschinen‘ integriert.

13. In den verhaltensorientierten Wissenschaften wird ‚Lernen‘ über beobachtbares Verhalten definiert. ‚Anhaltende Verhaltensänderungen‘ in ‚Abhängigkeit von bestimmten Umweltereignissen‘ bilden die Anknüpfungspunkte, um im beobachteten System allgemein Zustände anzunehmen, die sich wahrnehmungsabhängig und erinnerungsabhängig ’nachhaltig ändern‘ können. Was genau sich ändert, weiß ein Psychologe nicht, nur dass es geeignete interne Strukturen geben muss, wenn sich ein bestimmtes Verhalten zeigt.

14. Setzt man den Körper als Ermöglichungsstruktur voraus, dann beschränkt sich Lernen auf interne Veränderungen des gegebenen Körpers. Das wäre das ’normale‘ lokale individuelle Lernen. Man kann aber auch die Strukturen eine Körpers selbst als Ergebnis eines Lernprozesses auffassen, dann bezieht sich das Lernen auf den Wandel der Körperstrukturen und -formen und die dafür verantwortlichen (angenommenen) internen Zustände sind z.T. im Reproduktionsmechanismus zu verorten. Insgesamt erscheint das strukturelle Lernen aber als komplexer mehrstufiger Prozess, der Phylogenese, Ontogenese und Epigenese umfasst.

GERICHTETE KREATIVE ENTWICKLUNG

15. Solange ein System sich in seinem Lernen damit beschäftigt, Ereignisse zu identifizieren, zu klassifizieren, Muster zu erfassen, auftretende Beziehungen zu erfassen, so lange ist das Lernen ‚an sich‘ ‚wertfrei‘. Spannender wird es bei ‚Auswahlprozessen‘: womit soll sich ein System beschäftigen: eher A oder eher Nicht-A? Durch Auswahlprozesse bekommt der individuelle Lernprozess eine ‚Richtung‘, einen selektierten Ereignisraum, der sich dann auch in den Wissensstrukturen des Systems widerspiegeln wird. Jede ‚Lerngeschichte‘ korrespondiert auf diese Weise mit einer entsprechenden ‚Wissensstruktur‘. Wenn jemand Weinanbau gelernt hat, aber es gibt keinen Wein mehr, sondern nur noch Handwerk, ist er ‚arbeitslos‘ oder muss ‚umlernen‘. Wer Betriebswirtschaft gelernt hat, aber zu wenig von Qualitätsprozessen versteht, kann erfolgreiche Firmen in den Ruin steuern. Auswahlprozesse realisieren ‚Präferenzen‘: Eher A als Nicht-A. Präferenzen repräsentieren implizit ‚Werte‘: A ist besser/ wichtiger als Nicht-A.

16. Im Falle der biologischen Evolution werden die Präferenzen sowohl vom biologischen Reproduktionsmechanismus geliefert (bis dahin vorhandene Erbinformationen), wie auch durch die herrschende Umgebung, die von bestimmten Körperformen nicht gemeistert werden konnten, von anderen schon. Die in ihren Nachkommen überlebenden Körperformen repräsentierten dann mit ihren Erbinformationen eine von außen induzierte Präferenz, die ‚gespeicherten Präferenzen der Vergangenheit‘ als eine Form von ‚Erinnerung‘, als ‚Gedächtnis‘. Über die ‚Zukunft‘ weiß die biologische Entwicklung nichts! [Anmerkung: Diese Ideen finden sich u.a. auch schon in den Schriften von Stuart Alan Kauffman. Sie ergeben sich aber auch unmittelbar, wenn man mit genetischen Algorithmen arbeitet und die Lernstruktur dieser Algorithmen heraushebt.].

17. Die biologische Entwicklung lebt vielmehr von der – impliziten! – ‚Hoffnung‘, dass die umgebende Welt sich nicht schneller ändert als die gespeicherten Erbinformationen voraussetzen. Da wir heute wissen, dass sich die Welt beständig verändert hat, teilweise sehr schnell oder gar blitzartig (Vulkanausbruch, Asteroidenbeschuss, Erdbeben,…), kann man sich fragen, wie die biologische Evolution es dann geschafft hat, das Leben quasi im Spiel zu halten, ohne etwas über die Zukunft zu wissen? Die Antwort ist eindeutig: durch eine Kombination von Kreativität und von Masse!

18. Die ‚Kreativität‘ ist implizit; die Reproduktion eines neuen Körpers aus vorhandenen genetischen Informationen verläuft auf sehr vielen Ebenen und in sehr vielen aufeinanderfolgenden Phasen. Fasst man diesen ganzen Prozess als eine ‚Abbildung‘ im mathematischen Sinne auf, dann kann man sagen, dass die Zuordnung von Körpern zu Erbinformationen nicht eindeutig ist; aus der gleichen Erbinformation kann rein mathematisch eine nahezu unendlich große Anzahl von ‚Varianten‘ entstehen, mit einem möglichen ‚Variantenkern‘. In der empirischen Welt ist die Varianz erstaunlich gering und der Variantenkern erstaunlich stabil. Aber offensichtlich hat die verfügbare Varianz ausgereicht, um die sich stark verändernden Umgebungsbedingungen bedienen zu können. Voraus zur Zukunft in einer sich verändernden Welt hat man immer nur ein Teilwissen. Das ‚fehlende Wissen‘ muss man sich teuer erkaufen; es gibt nichts zu Nulltarif. Für jedes Leben, das man in der Zukunft erhalten will, muss man einen – nicht leicht genau zu bestimmenden – hohen Einsatz erbringen, in der Hoffnung, dass die Breite des Ansatzes ausreichend ist.

GEGENWART ALS TRANSIT

19. Verglichen mit den Dramen der Vergangenheit könnten uns die ‚Erfolge‘ der Gegenwart dazu verleiten, anzunehmen, dass wir Menschen ‚über dem Berg‘ sind. Dass wir jetzt so langsam alles ‚im Griff‘ haben. Diese Vorstellung könnte sehr sehr trügerisch sein. Denn das Überleben auf der Erde rechnet in Jahrhunderttausenden, Millionen oder gar hunderten von Millionen Jahren. Eine kurzfristige ‚Boomzeit‘ von ein paar Jahrzehnten besagt nichts, außer dass wir feststellen, dass schon in wenigen Jahrzehnten ungeheuer viele biologische Arten ausgestorben sind, viele weitere vom Aussterben bedroht sind, und allein wir Menschen viele zentrale Probleme der Ernährung, des Wassers und der Energie noch keineswegs gelöst haben. Außerdem haben wir nach heutigem Kenntnisstand nicht noch weitere 4 Milliarden Jahre Zeit, sondern höchstens ca. eine Milliarde Jahre, weil dann laut der Physik die Sonne sich aufgrund ihrer Kernfusionsprozess sich soweit ausgedehnt haben wird, dass ein Leben auf der Erde (nach heutigem Kenntnisstand) nicht mehr möglich sein wird.

20. Letztlich dürften wir weiterhin in dieser Position der anzustrebenden Meisterung von etwas ‚Neuem‘ sein, das wir vorab nur partiell kennen. Nur durch ein hinreichendes Maß an Kreativität und hinreichend vielfältigen Experimenten werden wir die Herausforderung meistern können. Jede Form der Festschreibung der Gegenwart als ‚unveränderlich‘ ist mittel- und langfristig tödlich.

BIOLOGIE UND TECHNIK IN EINEM BOOT

21. Aus den vorausgehenden Überlegungen ergeben sich unmittelbar einige weitreichende Folgerungen.

22. Die heute gern praktizierte Trennung von Biologie einerseits und Technologie andererseits erscheint künstlich und irreführend. Tatsache ist, dass die gesamte Technologie aus der Aktivität des biologischen Lebens – speziell durch den homo sapiens – entstanden ist. Etwas Biologisches (der homo sapiens) hat mit Mitteln der Biologie und der vorfindlichen Natur ‚Gebilde‘ geschaffen, die so vorher zwar nicht existiert haben, aber sie sind auch nicht aus dem ‚Nichts‘ entstanden. Sie sind durch und durch ‚biologisch‘, wenngleich – faktisch – mit der übrigen Natur, mit dem bisherigen Ökosystem nicht immer ‚optimal‘ angepasst. Aber die Natur selbst hat millionenfach Systeme erzeugt, die nicht optimal angepasst waren. Die Natur ist ein dynamisches Geschehen, in dem milliardenfach, billionenfach Strukturen generiert werden, die für eine Zukunft gedacht sind, die keiner explizit kennt. Es ist sozusagen ein allgemeines ‚Herantasten‘ an das ‚werdende Unbekannt‘. Wer hier glaubt, die bekannte Gegenwart als ‚Maßstab schlechthin‘ benutzen zu können, irrt schon im Ansatz.

23. Wenn nun ein Teil dieser Natur, der homo sapiens als Realisierung eines biologischen Systems, es durch seine Aktivitäten geschafft hat, seine unmittelbare Lebensumgebung umfassend und zugleich schnell so umzugestalten, dass er als Hauptakteur nun plötzlich als ‚Flaschenhals‘ erscheint, als ‚Bremsklotz‘, dann ist dies zunächst einmal keine ‚Panne‘, sondern ein riesiger Erfolg.

24. Die körperlichen Strukturen des homo sapiens, ein Wunderwerk von ca. 4 Milliarden Jahren ‚Entwicklungsarbeit‘, besitzen eine Substruktur, das Gehirn, das in der Lage ist, die strukturellen Lernprozesse der biologischen Körper in Gestalt lokaler individueller Lernprozesse dramatisch zu beschleunigen. Komplexe Gedächtnisstrukturen, komplexe Begriffsoperationen, Symbolgebrauch, Logik und Mathematik, Rechenmaschinen, Bücher, Computer, Daten-Netzwerke haben dem individuellen Gehirn eine ‚kognitive Verstärkung‘ verpasst, die die Veränderungsgeschwindigkeit des strukturellen Körperlernens von einer Dimension von etwa (optimistischen) 10^5 Jahren auf etwa (pessimistischen) 10^1 Jahren – oder weniger – verkürzt haben. Dies stellt eine absolute Revolution in der Evolution dar.

25. Hand in Hand mit der dramatischen Verkürzung der Lernzeit ging und geht eine dramatische Steigerung der Kooperationsfähigkeit durch Angleichung der Sprache(n), Angleichung der Datenräume, politisch-juristische Absicherung sozialer Räume, Verbesserung der Infrastrukturen für große Zahlen und vielem mehr.

26. Innerhalb von nur etwa 50-100 Jahren ist die Komplexitätsleistung des homo sapiens geradezu explodiert.

27. Bislang sind die neuen (noch nicht wirklich intelligenten) Technologien eindeutig eine Hilfe für den homo sapiens, sich in dieser Welt zurecht zu finden.

28. Wenn man begreift, dass die scheinbare ‚Schwäche‘ des homo sapiens nur die Kehrseite seiner ungeheuren Leistungsfähigkeit sind, sein gesamtes Umfeld dramatisch zu beschleunigen, dann würde die naheliegende Frage eigentlich sein, ob und wie der homo sapiens die neuen Technologien nutzen kann, um seine aktuellen begrenzten körperlichen Strukturen eben mit Hilfe dieser neuen Technologien soweit umzubauen, dass er selbst mit seinen eigenen Gestaltungserfolgen auf Dauer noch mithalten kann (und es ist ja kein Zufall, dass die gesamte moderne Genetik ohne Computer gar nicht existieren würde).

29. Bislang bremsen ‚veraltete‘ Ethiken in den Köpfen der Politik eine dynamische Erforschung der alternativen Strukturräume noch aus. Dies ist bis zu einem gewissen Grad verständlich, da der homo sapiens als ‚Transitwesen‘ sich nicht selbst ruinieren sollte bevor er neue leistungsfähige Strukturen gefunden hat; aber Verbote als grundsätzliche Haltung sind gemessen an der erfolgreichen Logik des Lebens seit 4 Milliarden Jahre grundlegend unethisch, da lebensfeindlich.

30. Auch die heute so ‚trendige‘ Gegenüberstellung von homo sapiens und ‚intelligenten lernenden Maschinen‘ erscheint nach den vorausgehenden Überlegungen wenig wahrscheinlich.

31. Einmal hätten mögliche intelligente Maschinen das gleiche Entwicklungsproblem wie die biologischen Systeme, die ihre Überlebensfähigkeit seit 4 Milliarden Jahre demonstriert haben. Biologische Systeme haben einen ‚mehrlagigen‘ Lernmechanismus‘ ausgebildet, der ‚Kreativität‘ als wesentlichen Bestandteil enthält. Die bisherigen Konzepte für maschinelle Intelligenz sind verglichen damit höchst primitiv. Maschinelle Intelligenz ‚für sich‘ ist auch völlig ortlos, kontextfrei. Als Moment am biologischen Entwicklungsprozess jedoch,in einer symbiotischen Beziehung zu biologischen Systemen, kann künstliche Intelligenz eine maximal hohe Bedeutung gewinnen und kann von den ‚Wertfindungsmechanismen‘ der biologischen Systeme als Teil einer vorfindlichen Natur profitieren.

32. Die Gegenübersetzung von homo sapiens und (intelligenter) Technologie ist ein Artefakt, ein Denkfehler, ein gefährlicher Denkfehler, da er genau die maximale Dynamik, die in einer biotechnologischen Symbiose bestehen kann, behindert oder gar verhindert. Das wäre lebensfeindlich und darin zutiefst unethisch.

Einen Überblick über alle Blogeinträge von cagent nach Titeln findet sich HIER: cagent.